1
|
Song X, Liu C, Zhang M, Wei W, Yang L, Wang B, Huang Y, Song G, Wang F, Yang Y, Zhao Y, Zhang L, Fu P. The Efficacy and Safety of Continuous Veno-Venous Hemodiafiltration With High Cutoff Membrane Versus High Flux Membrane in Septic Acute Kidney Injury: A Randomized Controlled Study. Artif Organs 2025. [PMID: 39895488 DOI: 10.1111/aor.14963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND The application of high cutoff (HCO) membranes for continuous renal replacement therapy remains unclear in septic acute kidney injury (S-AKI) patients. METHODS S-AKI patients who received continuous veno-venous hemodiafiltration (CVVHDF) were randomly assigned to the experimental group (HCO membrane) and the control group (high flux membrane, HF membrane). Interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in serum and waste fluid were measured at 0, 2, 12, and 24 h after CVVHDF initiation and the 28-day mortality. RESULTS Eleven patients were randomized to the HCO group, and 9 patients in the HF group, with a mean age of 54.9 ± 3.2 years and 6 patients (30%) being female. After 24 h of treatment with CVVHDF, there were significant reductions in serum IL-6 and TNF-α concentrations in the HCO group (p = 0.001, 0.015) and HF group (p = 0.004, 0.031). The serum IL-6 reduction rate of the HCO group was significantly higher than that of the HF group (79.21% vs. 42.69%, p = 0.025), while serum TNF-α reduction rates were comparable between the 2 groups. There were no significant changes in serum albumin after 24 h using either HCO membrane (28.7 ± 1.7 g/L vs. 32.7 ± 1.6 g/L, p = 0.138) or HF membrane (29.6 ± 1.1 g/L vs. 32.6 ± 1.3 g/L, p = 0.055). The two groups had similar 24-h filter clotting rates and 28-day mortality. CONCLUSION While CVVHDF with the HCO membrane and HF membrane both achieved significant reductions in serum cytokine levels, the HCO membrane was associated with a greater reduction rate in IL-6 but not in TNF-α. No difference was observed in serum albumin, mortality, or filter clotting. TRIAL REGISTRATION Registry number: ChiCTR2000039725.
Collapse
Affiliation(s)
- Xiaowei Song
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, China
- Department of Nephrology, The Third People's Hospital of Chengdu, Chengdu, China
| | - Caihong Liu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Min Zhang
- Department of Nephrology, West China Hospital of Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Wei Wei
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Letian Yang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Bo Wang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Yongxiu Huang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Guojiao Song
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Fang Wang
- Department of Nephrology, West China Hospital of Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yingying Yang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Yuliang Zhao
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Ling Zhang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Ping Fu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Zhou Z, Kuang H, Wang F, Liu L, Zhang L, Fu P. High cut-off membranes in patients requiring renal replacement therapy: a systematic review and meta-analysis. Chin Med J (Engl) 2023; 136:34-44. [PMID: 36848147 PMCID: PMC10106154 DOI: 10.1097/cm9.0000000000002150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Whether high cut-off (HCO) membranes are more effective than high-flux (HF) membranes in patients requiring renal replacement therapy (RRT) remains controversial. The aim of this systematic review was to investigate the efficacy of HCO membranes regarding the clearance of inflammation-related mediators, β2-microglobulin and urea; albumin loss; and all-cause mortality in patients requiring RRT. METHODS We searched all relevant studies on PubMed, Embase, Web of Science, the Cochrane Library, and China National Knowledge Infrastructure, with no language or publication year restrictions. Two reviewers independently selected studies and extracted data using a prespecified extraction instrument. Only randomized controlled trials (RCTs) were included. Summary estimates of standardized mean differences (SMDs) or weighted mean differences (WMDs) and risk ratios (RRs) were obtained by fixed-effects or random-effects models. Sensitivity analyses and subgroup analyses were performed to determine the source of heterogeneity. RESULTS Nineteen RCTs involving 710 participants were included in this systematic review. Compared with HF membranes, HCO membranes were more effective in reducing the plasma level of interleukin-6 (IL-6) (SMD -0.25, 95% confidence interval (CI) -0.48 to -0.01, P = 0.04, I2 = 63.8%); however, no difference was observed in the clearance of tumor necrosis factor-α (TNF-α) (SMD 0.03, 95% CI -0.27 to 0.33, P = 0.84, I2 = 4.3%), IL-10 (SMD 0.22, 95% CI -0.12 to 0.55, P = 0.21, I2 = 0.0%), or urea (WMD -0.27, 95% CI -2.77 to 2.23, P = 0.83, I2 = 19.6%). In addition, a more significant reduction ratio of β 2 -microglobulin (WMD 14.8, 95% CI 3.78 to 25.82, P = 0.01, I2 = 88.3%) and a more obvious loss of albumin (WMD -0.25, 95% CI -0.35 to -0.16, P < 0.01, I2 = 40.8%) could be observed with the treatment of HCO membranes. For all-cause mortality, there was no difference between the two groups (risk ratio [RR] 1.10, 95% CI 0.87 to 1.40, P = 0.43, I2 = 0.0%). CONCLUSIONS Compared with HF membranes, HCO membranes might have additional benefits on the clearance of IL-6 and β 2-microglobulin but not on TNF-α, IL-10, and urea. Albumin loss is more serious with the treatment of HCO membranes. There was no difference in all-cause mortality between HCO and HF membranes. Further larger high-quality RCTs are needed to strengthen the effects of HCO membranes.
Collapse
Affiliation(s)
- Zhifeng Zhou
- Division of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Huang Kuang
- Division of Nephrology, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
| | - Fang Wang
- Division of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Lu Liu
- Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ling Zhang
- Division of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Fu
- Division of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
3
|
The Supporting Role of Combined and Sequential Extracorporeal Blood Purification Therapies in COVID-19 Patients in Intensive Care Unit. Biomedicines 2022; 10:biomedicines10082017. [PMID: 36009564 PMCID: PMC9405816 DOI: 10.3390/biomedicines10082017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Critical clinical forms of COVID-19 infection often include Acute Kidney Injury (AKI), requiring kidney replacement therapy (KRT) in up to 20% of patients, further worsening the outcome of the disease. No specific medical therapies are available for the treatment of COVID-19, while supportive care remains the standard treatment with the control of systemic inflammation playing a pivotal role, avoiding the disease progression and improving organ function. Extracorporeal blood purification (EBP) has been proposed for cytokines removal in sepsis and could be beneficial in COVID-19, preventing the cytokines release syndrome (CRS) and providing Extra-corporeal organ support (ECOS) in critical patients. Different EBP procedures for COVID-19 patients have been proposed including hemoperfusion (HP) on sorbent, continuous kidney replacement therapy (CRRT) with adsorbing capacity, or the use of high cut-off (HCO) membranes. Depending on the local experience, the multidisciplinary capabilities, the hardware, and the available devices, EBP can be combined sequentially or in parallel. The purpose of this paper is to illustrate how to perform EBPs, providing practical support to extracorporeal therapies in COVID-19 patients with AKI.
Collapse
|
4
|
Stahl K, Bode C, David S. Extrakorporale Behandlungsstrategien der Sepsis. TRANSFUSIONSMEDIZIN 2022. [DOI: 10.1055/a-1557-3201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Zusammenfassung
Hintergrund Die Mortalität der Sepsis bleibt auch im 21. Jahrhundert sehr hoch. Verschiedene adjuvante Strategien zur extrakorporalen Zytokinelimination wurden als zusätzliche
therapeutische Maßnahmen bei Sepsis und septischem Schock untersucht.
Ziele Zusammenfassung einer Auswahl extrakorporaler Blutreinigungstechniken und der aktuellen Erkenntnisse in der klinischen Anwendung mit besonderem Schwerpunkt auf dem
therapeutischen Plasmaaustausch.
Methoden Nicht systematische Literaturrecherche.
Ergebnisse Verschiedene extrakorporale Blutreinigungstechniken mit unterschiedlichen Evidenzniveaus hinsichtlich Zytokinelimination, Verbesserung der Hämodynamik und Verringerung der
Mortalität werden derzeit klinisch eingesetzt. Die am ausführlichsten untersuchten Modalitäten umfassen die hochvolumige Hämofiltration/Dialyse mit und ohne High-Cut-off-Filter sowie
Hämoadsorptionstechniken (einschließlich CytoSorb- und Polymyxin-B-Filter). Trotz teilweise ermutigender Beobachtungen bezüglich der Entfernung proinflammatorischer Zytokine und verbesserten
Hämodynamik zeigten randomisierte Outcome-Studien bislang keinen positiven Einfluss auf das Überleben. Aufgrund der Verwendung von Spenderplasma als Substitutionsflüssigkeit stellt der
therapeutische Plasmaaustausch das einzige Verfahren dar, das neben einer reinen Elimination zusätzlich verbrauchte protektive Faktoren ersetzen kann.
Schlussfolgerungen Die Anwendung extrakorporaler Blutreinigungsmethoden kann für Sepsispatienten außerhalb klinischer Studien bisher nicht empfohlen werden, da derzeit keine Beweise
für ihre Wirksamkeit vorliegen. Zukünftige Untersuchungen sollten darauf abzielen, das Patientenkollektiv hinsichtlich des klinischen Schweregrads, des Zeitpunkts der Intervention und
verschiedener inflammatorischer (Sub-)Phänotypen zu homogenisieren.
Collapse
Affiliation(s)
- Klaus Stahl
- Abteilung für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover, Deutschland
| | - Christian Bode
- Klinik für Anästhesie und operative Intensivmedizin, Universitätsklinikum Bonn, Deutschland
| | - Sascha David
- Abteilung für Nieren- und Hochdruckerkrankungen, Medizinische Hochschule Hannover & Institut für Intensivmedizin, Universitätsspital Zürich, Schweiz
| |
Collapse
|
5
|
Raina R, Sethi SK, Chakraborty R, Singh S, Teo S, Khooblall A, Montini G, Bunchman T, Topaloglu R, Yap HK. Blood Filters in Children with COVID-19 and AKI: A Review. Ther Apher Dial 2022; 26:566-582. [PMID: 34997670 DOI: 10.1111/1744-9987.13793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/11/2021] [Accepted: 01/03/2022] [Indexed: 11/28/2022]
Abstract
COVID-19 has challenged the global healthcare system through rapid proliferation and lack of existing treatment resulting in over 180 million cases and 3.8 million deaths since December 2019. Although pediatric patients only comprise 1-2% of diagnosed cases, their incidence of acute kidney injury ranges from 8.2% to 18.2% compared to 49% in adults. Severe infection, initiated by dysregulated host response, can lead to multiorgan failure. In this review, we focus on the use of various blood filters approved for use in pediatric kidney replacement therapy to mitigate adverse effects of severe illness. Therapeutic effects of these blood filters range from cytokine removal (CytoSorb, HA330, HCO/MCO), endotoxin removal (Toraymyxin, CPFA), both cytokine and endotoxin removal (oXiris), and non-specific removal of proteins (PMMA) that have already been established and can be used to mitigate the various effects of the cytokine storm syndrome in COVID-19.
Collapse
Affiliation(s)
- Rupesh Raina
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, OH.,Department of Nephrology, Akron Children's Hospital, Akron, OH
| | - Sidharth Kumar Sethi
- Pediatric Nephrology, Kidney Institute, Medanta, The Medicity Hospital, Gurgaon, Haryana, India
| | - Ronith Chakraborty
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, OH.,Department of Nephrology, Akron Children's Hospital, Akron, OH
| | - Siddhartha Singh
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, OH.,Department of Nephrology, Akron Children's Hospital, Akron, OH
| | - Sharon Teo
- Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore, Singapore
| | - Amrit Khooblall
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, OH.,Department of Nephrology, Akron Children's Hospital, Akron, OH
| | - Giovanni Montini
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione Ca' Granda IRCCS, Policlinico di Milano, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
| | - Timothy Bunchman
- Pediatric Nephrology & Transplantation, Children's Hospital of Richmond at VCU, Richmond, VA
| | - Rezan Topaloglu
- Department of Pediatric Nephrology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Hui Kim Yap
- Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore, Singapore.,Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Zhang YY, Ning BT. Signaling pathways and intervention therapies in sepsis. Signal Transduct Target Ther 2021; 6:407. [PMID: 34824200 PMCID: PMC8613465 DOI: 10.1038/s41392-021-00816-9] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by dysregulated host systemic inflammatory and immune response to infection. Over decades, advanced understanding of host-microorganism interaction has gradually unmasked the genuine nature of sepsis, guiding toward new definition and novel therapeutic approaches. Diverse clinical manifestations and outcomes among infectious patients have suggested the heterogeneity of immunopathology, while systemic inflammatory responses and deteriorating organ function observed in critically ill patients imply the extensively hyperactivated cascades by the host defense system. From focusing on microorganism pathogenicity, research interests have turned toward the molecular basis of host responses. Though progress has been made regarding recognition and management of clinical sepsis, incidence and mortality rate remain high. Furthermore, clinical trials of therapeutics have failed to obtain promising results. As far as we know, there was no systematic review addressing sepsis-related molecular signaling pathways and intervention therapy in literature. Increasing studies have succeeded to confirm novel functions of involved signaling pathways and comment on efficacy of intervention therapies amid sepsis. However, few of these studies attempt to elucidate the underlining mechanism in progression of sepsis, while other failed to integrate preliminary findings and describe in a broader view. This review focuses on the important signaling pathways, potential molecular mechanism, and pathway-associated therapy in sepsis. Host-derived molecules interacting with activated cells possess pivotal role for sepsis pathogenesis by dynamic regulation of signaling pathways. Cross-talk and functions of these molecules are also discussed in detail. Lastly, potential novel therapeutic strategies precisely targeting on signaling pathways and molecules are mentioned.
Collapse
Affiliation(s)
- Yun-Yu Zhang
- Department of Pediatric Intensive Care Unit, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Bo-Tao Ning
- Department of Pediatric Intensive Care Unit, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| |
Collapse
|
7
|
Zhou Z, Kuang H, Ma Y, Zhang L. Application of extracorporeal therapies in critically ill COVID-19 patients. J Zhejiang Univ Sci B 2021; 22:701-717. [PMID: 34514751 PMCID: PMC8435342 DOI: 10.1631/jzus.b2100344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is a major public health event caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 has spread widely all over the world. A high proportion of patients become severely or critically ill, and suffer high mortality due to respiratory failure and multiple organ dysfunction. Therefore, providing timely and effective treatment for critically ill patients is essential to reduce overall mortality. Convalescent plasma therapy and pharmacological treatments, such as aerosol inhalation of interferon-α (IFN-α), corticosteroids, and tocilizumab, have all been applied in clinical practice; however, their effects remain controversial. Recent studies have shown that extracorporeal therapies might have a potential role in treating critically ill COVID-19 patients. In this review, we examine the application of continuous renal replacement therapy (CRRT), therapeutic plasma exchange (TPE), hemoadsorption (HA), extracorporeal membrane oxygenation (ECMO), and extracorporeal carbon dioxide removal (ECCO2R) in critically ill COVID-19 patients to provide support for the further diagnosis and treatment of COVID-19.
Collapse
Affiliation(s)
- Zhifeng Zhou
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Huang Kuang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
| | - Yuexian Ma
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Ling Zhang
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Cutuli SL, Carelli S, Grieco DL, De Pascale G. Immune Modulation in Critically Ill Septic Patients. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:552. [PMID: 34072649 PMCID: PMC8226671 DOI: 10.3390/medicina57060552] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022]
Abstract
Sepsis is triggered by infection-induced immune alteration and may be theoretically improved by pharmacological and extracorporeal immune modulating therapies. Pharmacological immune modulation may have long lasting clinical effects, that may even worsen patient-related outcomes. On the other hand, extracorporeal immune modulation allows short-term removal of inflammatory mediators from the bloodstream. Although such therapies have been widely used in clinical practice, the role of immune modulation in critically ill septic patients remains unclear and little evidence supports the role of immune modulation in this clinical context. Accordingly, further research should be carried out by an evidence-based and personalized approach in order to improve the management of critically ill septic patients.
Collapse
Affiliation(s)
- Salvatore Lucio Cutuli
- Dipartimento di Scienze dell’ Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (S.C.); (D.L.G.); (G.D.P.)
| | - Simone Carelli
- Dipartimento di Scienze dell’ Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (S.C.); (D.L.G.); (G.D.P.)
| | - Domenico Luca Grieco
- Dipartimento di Scienze dell’ Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (S.C.); (D.L.G.); (G.D.P.)
| | - Gennaro De Pascale
- Dipartimento di Scienze dell’ Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (S.C.); (D.L.G.); (G.D.P.)
- Facoltà di Medicina e Chirurgia “A. Gemelli”, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
9
|
Zhang L, Feng Y, Fu P. Blood purification for sepsis: an overview. PRECISION CLINICAL MEDICINE 2021; 4:45-55. [PMID: 35693122 PMCID: PMC8982546 DOI: 10.1093/pcmedi/pbab005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 02/05/2023] Open
Abstract
Sepsis is a life-threatening organ failure exacerbated by a maladaptive infection response from the host, and is one of the major causes of mortality in the intensive care unit. In recent decades, several extracorporeal blood purification techniques have been developed to manage sepsis by acting on both the infectious agents themselves and the host immune response. This research aims to summarize recent progress on extracorporeal blood purification technologies applied for sepsis, discuss unanswered questions on renal replacement therapy for septic patients, and present a decision-making strategy for practitioners.
Collapse
Affiliation(s)
- Ling Zhang
- Division of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yuying Feng
- Division of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ping Fu
- Division of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Lumlertgul N, Hall A, Camporota L, Crichton S, Ostermann M. Clearance of inflammatory cytokines in patients with septic acute kidney injury during renal replacement therapy using the EMiC2 filter (Clic-AKI study). CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:39. [PMID: 33509215 PMCID: PMC7845048 DOI: 10.1186/s13054-021-03476-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/20/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND The EMiC2 membrane is a medium cut-off haemofilter (45 kiloDalton). Little is known regarding its efficacy in eliminating medium-sized cytokines in sepsis. This study aimed to explore the effects of continuous veno-venous haemodialysis (CVVHD) using the EMiC2 filter on cytokine clearance. METHODS This was a prospective observational study conducted in critically ill patients with sepsis and acute kidney injury requiring kidney replacement therapy. We measured concentrations of 12 cytokines [Interleukin (IL) IL-1β, IL-1α, IL-2, IL-4, IL-6, IL-8, IL-10, interferon (IFN)-γ, tumour necrosis factor (TNF)-α, vascular endothelial growth factor, monocyte chemoattractant protein (MCP)-1, epidermal growth factor (EGF)] in plasma at baseline (T0) and pre- and post-dialyzer at 1, 6, 24, and 48 h after CVVHD initiation and in the effluent fluid at corresponding time points. Outcomes were the effluent and adsorptive clearance rates, mass balances, and changes in serial serum concentrations. RESULTS Twelve patients were included in the final analysis. All cytokines except EGF concentrations declined over 48 h (p < 0.001). The effluent clearance rates were variable and ranged from negligible values for IL-2, IFN-γ, IL-1α, IL-1β, and EGF, to 19.0 ml/min for TNF-α. Negative or minimal adsorption was observed. The effluent and adsorptive clearance rates remained steady over time. The percentage of cytokine removal was low for most cytokines throughout the 48-h period. CONCLUSION EMiC2-CVVHD achieved modest removal of most cytokines and demonstrated small to no adsorptive capacity despite a decline in plasma cytokine concentrations. This suggests that changes in plasma cytokine concentrations may not be solely influenced by extracorporeal removal. TRIAL REGISTRATION NCT03231748, registered on 27th July 2017.
Collapse
Affiliation(s)
- Nuttha Lumlertgul
- Department of Critical Care, Guy's and St Thomas' Hospital, King's College London, NHS Foundation Trust, 249 Westminster Bridge Road, London, SE1 7EH, UK. .,Division of Nephrology and Excellence Centre for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand. .,Critical Care Nephrology Research Unit, Chulalongkorn University, Bangkok, Thailand.
| | - Anna Hall
- Department of Critical Care, Guy's and St Thomas' Hospital, King's College London, NHS Foundation Trust, 249 Westminster Bridge Road, London, SE1 7EH, UK.,Zorgsaam Terneuzen, Rotterdam, The Netherlands
| | - Luigi Camporota
- Department of Critical Care, Guy's and St Thomas' Hospital, King's College London, NHS Foundation Trust, 249 Westminster Bridge Road, London, SE1 7EH, UK
| | - Siobhan Crichton
- Medical Research Council Clinical Trials Unit, University College London, London, UK
| | - Marlies Ostermann
- Department of Critical Care, Guy's and St Thomas' Hospital, King's College London, NHS Foundation Trust, 249 Westminster Bridge Road, London, SE1 7EH, UK
| |
Collapse
|
11
|
Tarragón B, Ye N, Gallagher M, Sen S, Portolés JM, Wang AY. Effect of high cut-off dialysis for acute kidney injury secondary to cast nephropathy in patients with multiple myeloma: a systematic review and meta-analysis. Clin Kidney J 2020; 14:1894-1900. [PMID: 34345412 PMCID: PMC8323139 DOI: 10.1093/ckj/sfaa220] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/18/2020] [Indexed: 12/03/2022] Open
Abstract
Background Acute kidney injury (AKI) caused by cast nephropathy is associated with increased morbidity and mortality among patients with multiple myeloma (MM). High cut-off haemodialysis (HCO-HD) has proven to be effective in the removal of serum light chains but the effect on clinical outcomes, especially renal recovery, remains uncertain. Methods A systematic review and meta-analysis were performed examining all randomized controlled trials (RCTs) and observational studies (OBSs) assessing the effect of HCO-HD on clinical outcomes of patients with MM complicated by cast nephropathy–induced severe AKI. The primary outcome was all-cause mortality at the end of the study. The secondary outcomes included all-cause mortality at 12 months, HD independence and serum kappa and lambda light chain reduction. Pooled analysis was performed using random effects models. Results We identified five studies, comprising two RCTs and three retrospective cohort studies, including 276 patients with a mean follow-up of 18.7 months. The majority of the studies were of suboptimal quality and underpowered. Compared with patients treated with conventional HD, HCO-HD was not associated with a survival benefit at 12 months {five studies, 276 patients, relative risk [RR] 1.02 [95% confidence interval (CI) 0.76–1.35], I2 = 33.9%} or at the end of the studies at an average of 34 months [five studies, 276 patients, RR 1.32 (95% CI 0.71–2.45), I2 = 62.0%]. There was no difference in HD independence at 90 days [two trials, 78 patients, RR 2.23 (95% CI 1.09–4.55)], 6 months [two studies, 188 patients, RR 1.19 (95% CI 0.68–2.06)] or 12 months [two studies, 188 patients, RR 1.14 (95% CI 0.58–2.26)]. Patients receiving HCO dialysis, however, had a greater reduction in serum kappa [two studies, 188 patients, weighted mean difference (WMD) 46.7 (95% CI 38.6–54.7), I2 = 52.0%] and lambda [two studies, 188 patients, WMD 50.3 (95% CI 21.4–79.3), I2 = 95.1%] light chain levels. Conclusion Current evidence from RCTs and OBSs suggests HCO dialysis is able to reduce serum free light chains but makes no significant improvement in all-cause mortality and renal outcomes compared with conventional HD for patients with myeloma cast nephropathy. However, there is a trend towards better renal outcomes with the use of HCO dialysis. The lack of long-term data and the small sample sizes of the included studies limit this analysis. Therefore further large-scale RCTs with longer follow-up are needed to assess the effect of HCO dialysis on clinical outcomes in patients with myeloma cast nephropathy.
Collapse
Affiliation(s)
- Blanca Tarragón
- Department of Nephrology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain.,Renal and Metabolic Division, George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia
| | - Nan Ye
- Renal and Metabolic Division, George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia.,Division of Nephrology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Martin Gallagher
- Renal and Metabolic Division, George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia.,Department of Renal Medicine, Concord Repatriation General Hospital, Concord, NSW, Australia
| | - Shaundeep Sen
- Department of Renal Medicine, Concord Repatriation General Hospital, Concord, NSW, Australia.,Concord Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - Jose Maria Portolés
- Department of Nephrology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain.,REDInREN Instituto Salud Carlos III 016/009/009, Public Health Research Network, Madrid, Spain
| | - Amanda Y Wang
- Renal and Metabolic Division, George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia.,Department of Renal Medicine, Concord Repatriation General Hospital, Concord, NSW, Australia.,Concord Clinical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Raina R, Joshi H, Chakraborty R. Changing the terminology from kidney replacement therapy to kidney support therapy. Ther Apher Dial 2020; 25:437-457. [PMID: 32945598 DOI: 10.1111/1744-9987.13584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/16/2020] [Accepted: 09/12/2020] [Indexed: 11/28/2022]
Abstract
Kidney replacement therapy (KRT) is a common supportive treatment for renal dysfunction, especially acute kidney injury. However, critically ill or immunosuppressed patients with renal dysfunction often have dysfunction in other organs as well. To improve patient outcomes, clinicians began to initiate kidney replacement therapy in situations where nonrenal conditions may lead to acute kidney injury, such as septic shock, hematopoietic stem cell transplantation, veno-occlusive renal disease, cardiopulmonary bypass, chemotherapy, tumor lysis syndrome, hyperammonemia, and various others. In this review, we discuss the use of various modes of kidney replacement therapy in treating renal and nonrenal complications to illustrate why kidney support therapy is a more appropriate terminology than kidney replacement therapy.
Collapse
Affiliation(s)
- Rupesh Raina
- Department of Nephrology, Cleveland Clinic Akron General/Akron Nephrology Associates, Akron, Ohio, USA.,Department of Nephrology, Akron Children's Hospital, Akron, Ohio, USA
| | - Hirva Joshi
- Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Ronith Chakraborty
- Department of Nephrology, Cleveland Clinic Akron General/Akron Nephrology Associates, Akron, Ohio, USA
| |
Collapse
|
13
|
Wei T, Chen Z, Li P, Tang X, Marshall MR, Zhang L, Fu P. Early use of endotoxin absorption by oXiris in abdominal septic shock: A case report. Medicine (Baltimore) 2020; 99:e19632. [PMID: 32664051 PMCID: PMC7360291 DOI: 10.1097/md.0000000000019632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RATIONALE Septic shock leads to multiple organ failure and increases mortality rate. We reported a critical patient with abdominal septic shock, which was the first case successfully treated with continuous renal replacement therapy (CRRT) and a newly designed endotoxin removal device oXiris in mainland China. PATIENT CONCERNS A 51-year-old man developed gastric ulcer perforation after resection of a benign peritoneal tumor and had a second abdominal surgery. His blood pressure decreased to 70/40 mm Hg with oliguria, requiring large doses of noradrenaline and intravenous fluid for resuscitation. The abdominal cavity was not sutured after the second open surgery due to severe abdominal infection and distention. His leukocyte count was over 30109/L, while the blood lactic acid was 12.5 mmol/L and procalcitonin (PCT) was >100 ng/mL. DIAGNOSIS Since the bacterial culture of peritoneal exudate showed positive with Enterobacter aerogenes and Pseudomonas aeruginosa after the second surgery, and the patient had severe low blood pressure, hyoxemia and oliguria, combined with the laboratory tests results, he was diagnosed with Gram-negative related septic shock, acute kidney injury, and multiple organ dysfunction. INTERVENTIONS CRRT with oXiris membrane was performed for 80hours and followed by AN69 ST membranes during the subsequent 27 days. Antibiotics together with other medical treatment were applied to the patient in the meantime. OUTCOMES At the end of 80 hours treatment with oXiris, PCT of the patient had decreased to 14.52 ng/mL and lactic acid decreased to 4.2 mmol/L. The total sequential organ failure assessment (SOFA) score decreased from 15 to 11. Urine output steadily increased to 250 mL/h, and vital signs and blood pressure were stable without noradrenaline. At the end of the 27 days of conventional CRRT, his kidney function had completely recovered with a total sequential organ failure assessment score (SOFA score) of 6. LESSONS oXiris, with its enhanced endotoxin adsorption, appeared to accelerate improvement in organ dysfunction and ultimate survival in our patient. In critical patients with abdominal septic shock, oXiris is an important adjunctive consideration to supplement definitive source control and antimicrobial therapy.
Collapse
Affiliation(s)
- Tiantian Wei
- Department of Nephrology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, China
| | - Zhiwen Chen
- Department of Nephrology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, China
| | - Peiyun Li
- Department of Nephrology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, China
| | - Xin Tang
- Department of Nephrology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, China
| | - Mark R. Marshall
- Department of Renal Medicine, Middlemore Hospital, Auckland 93311, New Zealand
- Medical Affairs, Baxter Healthcare (Asia) Pte Ltd., 189720, Singapore
| | - Ling Zhang
- Department of Nephrology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, China
| | - Ping Fu
- Department of Nephrology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, China
| |
Collapse
|
14
|
Abstract
Sepsis is the primary cause of acute kidney injury in critically ill patients. During the past decades, several extracorporeal blood purification techniques have been developed for sepsis and sepsis-induced acute kidney injury management. These therapies could act on both the infectious agent itself and the host immune response. In this article, we review the available literature discussing the different extracorporeal blood purification techniques, including high-volume hemofiltration, cascade hemofiltration, hemoperfusion, coupled plasma filtration adsorption, plasma exchange, and specific optimized renal replacement therapy membranes.
Collapse
Affiliation(s)
- Thibaut Girardot
- Anesthesiology and Intensive Care Medicine, Edouard Herriot Hospital, Lyon, France; EA 7426 PI3 (Pathophysiology of Injury‑Induced Immunosuppression), Claude Bernard University Lyon 1, Biomérieux, Hospices Civils de Lyon, Lyon, France.
| | - Antoine Schneider
- Intensive Care Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Thomas Rimmelé
- Anesthesiology and Intensive Care Medicine, Edouard Herriot Hospital, Lyon, France; EA 7426 PI3 (Pathophysiology of Injury‑Induced Immunosuppression), Claude Bernard University Lyon 1, Biomérieux, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
15
|
Dialysis modalities for the management of pediatric acute kidney injury. Pediatr Nephrol 2020; 35:753-765. [PMID: 30887109 DOI: 10.1007/s00467-019-04213-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/19/2019] [Accepted: 02/08/2019] [Indexed: 01/11/2023]
Abstract
Acute kidney injury (AKI) is an increasingly frequent complication among hospitalized children. It is associated with high morbidity and mortality, especially in neonates and children requiring dialysis. The different renal replacement therapy (RRT) options for AKI have expanded from peritoneal dialysis (PD) and intermittent hemodialysis (HD) to continuous RRT (CRRT) and hybrid modalities. Recent advances in the provision of RRT in children allow a higher standard of care for increasingly ill and young patients. In the absence of evidence indicating better survival with any dialysis method, the most appropriate dialysis choice for children with AKI is based on the patient's characteristics, on dialytic modality performance, and on the institutional resources and local practice. In this review, the available dialysis modalities for pediatric AKI will be discussed, focusing on indications, advantages, and limitations of each of them.
Collapse
|
16
|
Waldman RA, Grant-Kels JM. Thinking outside the box: Is there a role for extracorporeal blood purification in DRESS syndrome complicated by acute kidney injury? Clin Dermatol 2020; 38:580-583. [PMID: 33280807 DOI: 10.1016/j.clindermatol.2020.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Drug reaction with eosinophilia and systemic clinical manifestations (DRESS syndrome) is a potentially fatal drug reaction that is hallmarked by a hypercytokinemic state that results in organ dysfunction. For this reason, plasmapheresis and therapeutic plasma exchange are being increasingly utilized in DRESS syndrome refractory to systemic corticosteroids to remove the pathogenic cytokines that cause end-organ damage. This contribution proposes a novel approach to DRESS syndrome complicated by acute kidney injury. Specifically, the authors argue that patients with DRESS syndrome complicated by acute kidney injury may benefit from utilization of specific forms of renal replacement therapy that also provide plasmapheresis. This is relevant acute kidney injury that develops in more than one-third of cases of DRESS syndrome with at least 10% of cases progressing to acute renal failure requiring renal replacement therapy. Renal replacement therapy can include intermittent hemodialysis or continuous renal replacement therapy.
Collapse
Affiliation(s)
- Reid A Waldman
- Department of Dermatology, University of Connecticut, School of Medicine, Farmington, Connecticut, USA
| | - Jane M Grant-Kels
- Department of Dermatology, University of Connecticut, School of Medicine, Farmington, Connecticut, USA.
| |
Collapse
|
17
|
Boyarinov G, Zubeyev P, Mokrov K, Voyennov O. Hemofiltration in Patients with Severe Acute Pancreatitis (Review). Sovrem Tekhnologii Med 2020; 12:105-121. [PMID: 34513045 PMCID: PMC8353697 DOI: 10.17691/stm2020.12.1.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Indexed: 11/19/2022] Open
Abstract
Questions regarding the application of extracorporeal detoxification to patients with severe acute pancreatitis have been considered. Hemodialysis, the historically first method of extracorporeal detoxification for such patients, has been also described in the review. Appropriateness of using renal replacement therapy methods and among them continued renal replacement therapy has been shown. Hemofiltration and hemodiafiltration technologies are described in detail including different modes of their application and the possibility of using various types of filters. Available data on hemofiltration for patients with severe acute pancreatitis have been analyzed. Great attention is paid to the unsolved aspects of hemofiltration in severe acute pancreatitis such as determining renal and extrarenal indices; time of starting hemofiltration; selection of volume replacement modes and a buffer system; procedure duration; anticoagulation measures, defining criteria to assess the adequacy of hemofiltration, state severity, and organ dysfunction degree. Further multicenter investigations are necessary to be able to assess the efficacy of the hemofiltration procedures on the basis of the thoroughly worked out and pathogenically grounded protocol using adequate control methods taking into consideration endogenic intoxication phases and intensity of the multiple organ failure syndrome.
Collapse
Affiliation(s)
- G.A. Boyarinov
- Professor, Head of the Department of Anesthesiology and Resuscitation, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - P.S. Zubeyev
- Professor, Head of the Department of Emergency Medical Care, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - K.V. Mokrov
- Head of the Resuscitation and Anesthesiology Unit, City Hospital No.33, 54 Lenin Avenue, Nizhny Novgorod, 603076, Russia
| | - O.V. Voyennov
- Professor, Department of Anesthesiology and Resuscitation, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| |
Collapse
|
18
|
A Double-Blind Randomized Controlled Trial of High Cutoff Versus Standard Hemofiltration in Critically Ill Patients With Acute Kidney Injury. Crit Care Med 2019; 46:e988-e994. [PMID: 30074491 DOI: 10.1097/ccm.0000000000003350] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES In critically ill patients with acute kidney injury receiving vasopressors, high cytokine levels may sustain the shock state. High cutoff hemofiltration achieves greater cytokine removal in ex vivo and in animal models and may reduce the duration of shock but may also increase albumin losses. DESIGN This was a single-center double-blind randomized controlled trial comparing continuous venovenous hemofiltration-high cutoff to continuous venovenous hemofiltration-standard. SETTING Tertiary care hospital in Australia. PATIENTS Vasopressor-dependent patients in acute kidney injury who were admitted to the ICU. INTERVENTIONS Norepinephrine-free time were calculated in critically ill vasopressor-dependent patients in acute kidney injury, randomized to either continuous venovenous hemofiltration-high cutoff or continuous venovenous hemofiltration-standard. MEASUREMENT AND MAIN RESULTS A total of 76 patients were randomized with the following characteristics (continuous venovenous hemofiltration-high cutoff vs continuous venovenous hemofiltration-standard); median age of 65 versus 70 year, percentage of males 47% versus 68%, and median Acute Physiology and Chronic Health Evaluation scores of 25 versus 23.5. The median hours of norepinephrine-free time at day 7 were 32 (0-110.8) for continuous venovenous hemofiltration-high cutoff and 56 hours (0-109.3 hr) (p = 0.520) for continuous venovenous hemofiltration-standard. Inhospital mortality was 55.6% with continuous venovenous hemofiltration-high cutoff versus 34.2% with continuous venovenous hemofiltration-standard (adjusted odds ratio, 2.49; 95% CI, 0.81-7.66; p = 0.191). There was no significant difference in time to cessation of norepinephrine (p = 0.358), time to cessation of hemofiltration (p = 0.563), and filter life (p = 0.21). Serum albumin levels (p = 0.192) were similar and the median dose of IV albumin given was 90 grams (20-212 g) for continuous venovenous hemofiltration-high cutoff and 80 grams (15-132 g) for continuous venovenous hemofiltration-standard (p = 0.252). CONCLUSIONS In critically ill patients with acute kidney injury, continuous venovenous hemofiltration-high cutoff did not reduce the duration of vasopressor support or mortality or change albumin levels compared with continuous venovenous hemofiltration-standard.
Collapse
|
19
|
van Gelder MK, Abrahams AC, Joles JA, Kaysen GA, Gerritsen KGF. Albumin handling in different hemodialysis modalities. Nephrol Dial Transplant 2019; 33:906-913. [PMID: 29106652 DOI: 10.1093/ndt/gfx191] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/20/2017] [Indexed: 11/14/2022] Open
Abstract
Hypoalbuminemia is a major risk factor for morbidity and mortality in dialysis patients. With increasing interest in highly permeable membranes and convective therapies to improve removal of middle molecules, transmembrane albumin loss increases accordingly. Currently, the acceptable upper limit of albumin loss for extracorporeal renal replacement therapies is unknown. In theory, any additional albumin loss should be minimized because it may contribute to hypoalbuminemia and adversely affect the patient's prognosis. However, hypoalbuminemia-associated mortality may be a consequence of inflammation and malnutrition, rather than low albumin levels per se. The purpose of this review is to give an overview of albumin handling with different extracorporeal renal replacement strategies. We conclude that the acceptable upper limit of dialysis-related albumin loss remains unknown. Whether enhanced middle molecule removal outweighs the potential adverse effects of increased albumin loss with novel highly permeable membranes and convective therapies is yet to be determined.
Collapse
Affiliation(s)
- Maaike K van Gelder
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alferso C Abrahams
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - George A Kaysen
- Department of Medicine Division of Nephrology, University of California, Davis, CA, USA.,Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
| | - Karin G F Gerritsen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
20
|
Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int 2019; 96:1083-1099. [PMID: 31443997 DOI: 10.1016/j.kint.2019.05.026] [Citation(s) in RCA: 877] [Impact Index Per Article: 146.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/19/2019] [Accepted: 05/08/2019] [Indexed: 12/16/2022]
Abstract
Sepsis-associated acute kidney injury (S-AKI) is a frequent complication of the critically ill patient and is associated with unacceptable morbidity and mortality. Prevention of S-AKI is difficult because by the time patients seek medical attention, most have already developed acute kidney injury. Thus, early recognition is crucial to provide supportive treatment and limit further insults. Current diagnostic criteria for acute kidney injury has limited early detection; however, novel biomarkers of kidney stress and damage have been recently validated for risk prediction and early diagnosis of acute kidney injury in the setting of sepsis. Recent evidence shows that microvascular dysfunction, inflammation, and metabolic reprogramming are 3 fundamental mechanisms that may play a role in the development of S-AKI. However, more mechanistic studies are needed to better understand the convoluted pathophysiology of S-AKI and to translate these findings into potential treatment strategies and add to the promising pharmacologic approaches being developed and tested in clinical trials.
Collapse
Affiliation(s)
- Sadudee Peerapornratana
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; The Clinical Research, Investigation and Systems Modeling of Acute Illness Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Excellence Center for Critical Care Nephrology, Division of Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Laboratory Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Carlos L Manrique-Caballero
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; The Clinical Research, Investigation and Systems Modeling of Acute Illness Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hernando Gómez
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; The Clinical Research, Investigation and Systems Modeling of Acute Illness Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John A Kellum
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; The Clinical Research, Investigation and Systems Modeling of Acute Illness Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
21
|
Middle molecule clearance with high cut-off dialyzer versus high-flux dialyzer using continuous veno-venous hemodialysis with regional citrate anticoagulation: A prospective randomized controlled trial. PLoS One 2019; 14:e0215823. [PMID: 31026303 PMCID: PMC6485708 DOI: 10.1371/journal.pone.0215823] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/09/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Regional anticoagulation with citrate during renal replacement therapy (RRT) reduces the risk of bleeding, extends dialyzer lifespan and is cost-effective. Therefore, current guidelines recommend its use if patients are not anticoagulated for another reason and if there are no contraindications against citrate. RRT with regional citrate anticoagulation has been established in critically ill patients as continuous veno-venous hemodialysis (CVVHD) to reduce citrate load. However, CVVHD is inferior regarding middle molecule clearance compared to continuous veno-venous hemofiltration (CVVH). The use of a high cut-off dialyzer in CVVHD may thus present an option for middle molecule clearance similar to CVVH. This may allow combining the advantages of both techniques. METHODS In this prospective, randomized, single-blinded single-center-trial, sixty patients with acute renal failure and established indication for renal replacement therapy were randomized 1:1 into two groups. The control group was put on CVVHD using regional citrate anticoagulation and a high-flux dialyzer, while the intervention group was on CVVHD using regional citrate anticoagulation and a high-cut-off dialyzer. The concentrations of urea, creatinine, β2-microglobulin, myoglobin, interleukin 6 and albumin were measured pre- and post-dialyzer 1, 6, 12, 24 and 48 hours after initiating CVVHD. RESULTS Mean plasma clearance for β2-microglobulin was 19.6±5.8 ml/min in the intervention group vs. 12.2±3.6 ml/min in the control group (p<0.001). For myoglobin (8.0±4.5 ml/min vs. 0.2±3.6 ml/min, p<0.001) and IL-6 (1.5±4.3 vs. -2.5±3.5 ml/min, p = 0.002) a higher mean plasma clearance using high-cut-off dialyzer could be detected too, but no difference for urea, creatinine and albumin could be observed concerning this parameter between the two groups. CONCLUSION CVVHD using a high cut-off dialyzer results in more effective middle molecule clearance than that with high-flux dialyzer. TRIAL REGISTRATION German Clinical Trials Register (DRKS00005254, registered 26th November 2013).
Collapse
|
22
|
|
23
|
Doi K, Nishida O, Shigematsu T, Sadahiro T, Itami N, Iseki K, Yuzawa Y, Okada H, Koya D, Kiyomoto H, Shibagaki Y, Matsuda K, Kato A, Hayashi T, Ogawa T, Tsukamoto T, Noiri E, Negi S, Kamei K, Kitayama H, Kashihara N, Moriyama T, Terada Y. The Japanese Clinical Practice Guideline for acute kidney injury 2016. RENAL REPLACEMENT THERAPY 2018. [DOI: 10.1186/s41100-018-0177-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
24
|
Ankawi G, Neri M, Zhang J, Breglia A, Ricci Z, Ronco C. Extracorporeal techniques for the treatment of critically ill patients with sepsis beyond conventional blood purification therapy: the promises and the pitfalls. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:262. [PMID: 30360755 PMCID: PMC6202855 DOI: 10.1186/s13054-018-2181-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
Abstract
Sepsis is one of the leading causes of morbidity and mortality worldwide. It is characterized by a dysregulated immune response to infections that results in life-threatening organ dysfunction and even death. Bacterial cell wall components (endotoxin or lipopolysaccharide), known as pathogen-associated molecular patterns (PAMPs), as well as damage-associated molecular patterns (DAMPs) released by host injured cells, are well-recognized triggers resulting in the elevation of both pro-inflammatory and anti-inflammatory cytokines. Understanding this complex pathophysiology has led to the development of therapeutic strategies aimed at restoring a balanced immune response by eliminating/deactivating these inflammatory mediators. Different extracorporeal techniques have been studied in recent years in the hope of maximizing the effect of renal replacement therapy in modulating the exaggerated host inflammatory response, including the use of high volume hemofiltration (HVHF), high cut-off (HCO) membranes, adsorption alone, and coupled plasma filtration adsorption (CPFA). These strategies are not widely utilized in practice, depending on resources and local expertise. The literature examining their use in septic patients is growing, but the evidence to support their use at this stage is considered of low level. Our aim is to provide a comprehensive overview of the technical aspects, clinical applications, and associated side effects of these techniques.
Collapse
Affiliation(s)
- Ghada Ankawi
- Department of Internal Medicine and Nephrology, King Abdulaziz University, Jeddah, Saudi Arabia. .,International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy.
| | - Mauro Neri
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy.,Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, Vicenza, Italy
| | - Jingxiao Zhang
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy.,Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Andrea Breglia
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy.,Department of Internal Medicine, University of Trieste, Trieste, Italy
| | - Zaccaria Ricci
- Department of Cardiology and Cardiac Surgery, Paediatric Cardiac Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Claudio Ronco
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy.,Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, Vicenza, Italy
| |
Collapse
|
25
|
Cucchiari D, Reverter E, Blasco M, Molina-Andujar A, Carpio A, Sanz M, Escorsell A, Fernández J, Poch E. High cut-off membrane for in-vivo dialysis of free plasma hemoglobin in a patient with massive hemolysis. BMC Nephrol 2018; 19:250. [PMID: 30286730 PMCID: PMC6172805 DOI: 10.1186/s12882-018-1051-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/20/2018] [Indexed: 11/10/2022] Open
Abstract
Background The possibility of clearing Cell-free Plasma Hemoglobin (CPH) from human plasma may appear attractive, especially when considering the noxious effects that CPH has on the immune function and the renal damage caused by its filtration. The existence of the so-called High Cut-Off (HCO) filters, possessing pores as big as 60 kDa, could potentially allow the clearance of the αβ dimers (31.3 kDa), the form in which the α2β2 hemoglobin tetramers (62.6 kDa) physiologically dissociate in plasma. We present herein the first reported case in which such an attempt was made. Case presentation The patient was a 51-year-old man with hemolytic crisis due to glucose-6-phosphate dehydrogenase deficiency, further complicated by pigment-induced nephropathy. He underwent a 48-h CVVHD session, in which a HCO filter was used. The Sieving Coefficient (SC) for CPH was initially 0.08 and decreased to 0.02 after 24 h. This unexpected low SC was due to the initial high concentration of CPH (4.24 g/L). At such concentrations, the α2β2 tetramer poorly dissociates into the αβ dimer; but increases exponentially at concentrations lower than 1 g/L. Conclusions Clearance of CPH through a HCO filter is technically feasible but its performance markedly relies on the initial concentration of CPH. Critically ill patients with smoldering hemolysis, as it happens during septic shock or ECMO treatment, may benefit the most from the use of this membrane in order to clear CPH.
Collapse
Affiliation(s)
- David Cucchiari
- Nephrology and Renal Transplant Unit, Hospital Clínic, Carrer Villaroel 170, 08036, Barcelona, Spain.
| | - Enric Reverter
- Liver Intensive Care Unit, Hepatology. Hospital Clínic, Barcelona, Spain
| | - Miquel Blasco
- Nephrology and Renal Transplant Unit, Hospital Clínic, Carrer Villaroel 170, 08036, Barcelona, Spain
| | - Alicia Molina-Andujar
- Nephrology and Renal Transplant Unit, Hospital Clínic, Carrer Villaroel 170, 08036, Barcelona, Spain
| | - Adriá Carpio
- Liver Intensive Care Unit, Hepatology. Hospital Clínic, Barcelona, Spain
| | - Miquel Sanz
- Liver Intensive Care Unit, Hepatology. Hospital Clínic, Barcelona, Spain
| | - Angels Escorsell
- Liver Intensive Care Unit, Hepatology. Hospital Clínic, Barcelona, Spain
| | - Javier Fernández
- Liver Intensive Care Unit, Hepatology. Hospital Clínic, Barcelona, Spain
| | - Esteban Poch
- Nephrology and Renal Transplant Unit, Hospital Clínic, Carrer Villaroel 170, 08036, Barcelona, Spain
| |
Collapse
|
26
|
Doi K, Nishida O, Shigematsu T, Sadahiro T, Itami N, Iseki K, Yuzawa Y, Okada H, Koya D, Kiyomoto H, Shibagaki Y, Matsuda K, Kato A, Hayashi T, Ogawa T, Tsukamoto T, Noiri E, Negi S, Kamei K, Kitayama H, Kashihara N, Moriyama T, Terada Y. The Japanese clinical practice guideline for acute kidney injury 2016. Clin Exp Nephrol 2018; 22:985-1045. [PMID: 30039479 PMCID: PMC6154171 DOI: 10.1007/s10157-018-1600-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Acute kidney injury (AKI) is a syndrome which has a broad range of etiologic factors depending on different clinical settings. Because AKI has significant impacts on prognosis in any clinical settings, early detection and intervention is necessary to improve the outcomes of AKI patients. This clinical guideline for AKI was developed by a multidisciplinary approach with nephrology, intensive care medicine, blood purification, and pediatrics. Of note, clinical practice for AKI management which was widely performed in Japan was also evaluated with comprehensive literature search.
Collapse
Affiliation(s)
- Kent Doi
- Department of Acute Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Nishida
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | | | - Tomohito Sadahiro
- Department of Emergency and Critical Care Medicine, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
| | - Noritomo Itami
- Department of Surgery, Kidney Center, Nikko Memorial Hospital, Hokkaido, Japan
| | - Kunitoshi Iseki
- Clinical Research Support Center, Tomishiro Central Hospital, Okinawa, Japan
| | - Yukio Yuzawa
- Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Hirokazu Okada
- Department of Nephrology and General Internal Medicine, Saitama Medical University, Saitama, Japan
| | - Daisuke Koya
- Division of Anticipatory Molecular Food Science and Technology, Department of Diabetology and Endocrinology, Kanazawa Medical University, Kanawaza, Ishikawa, Japan
| | - Hideyasu Kiyomoto
- Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yugo Shibagaki
- Division of Nephrology and Hypertension, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Kenichi Matsuda
- Department of Emergency and Critical Care Medicine, University of Yamanashi School of Medicine, Yamanashi, Japan
| | - Akihiko Kato
- Blood Purification Unit, Hamamatsu University Hospital, Hamamatsu, Japan
| | - Terumasa Hayashi
- Department of Kidney Disease and Hypertension, Osaka General Medical Center, Osaka, Japan
| | - Tomonari Ogawa
- Nephrology and Blood Purification, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Tatsuo Tsukamoto
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eisei Noiri
- Department of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - Shigeo Negi
- Department of Nephrology, Wakayama Medical University, Wakayama, Japan
| | - Koichi Kamei
- Division of Nephrology and Rheumatology, National Center for Child Health and Development, Tokyo, Japan
| | | | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Okayama, Japan
| | - Toshiki Moriyama
- Health Care Division, Health and Counseling Center, Osaka University, Osaka, Japan
| | - Yoshio Terada
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan.
| |
Collapse
|
27
|
Doi K, Nishida O, Shigematsu T, Sadahiro T, Itami N, Iseki K, Yuzawa Y, Okada H, Koya D, Kiyomoto H, Shibagaki Y, Matsuda K, Kato A, Hayashi T, Ogawa T, Tsukamoto T, Noiri E, Negi S, Kamei K, Kitayama H, Kashihara N, Moriyama T, Terada Y. The Japanese Clinical Practice Guideline for acute kidney injury 2016. J Intensive Care 2018; 6:48. [PMID: 30123509 PMCID: PMC6088399 DOI: 10.1186/s40560-018-0308-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
Acute kidney injury (AKI) is a syndrome which has a broad range of etiologic factors depending on different clinical settings. Because AKI has significant impacts on prognosis in any clinical settings, early detection and intervention are necessary to improve the outcomes of AKI patients. This clinical guideline for AKI was developed by a multidisciplinary approach with nephrology, intensive care medicine, blood purification, and pediatrics. Of note, clinical practice for AKI management which was widely performed in Japan was also evaluated with comprehensive literature search.
Collapse
Affiliation(s)
- Kent Doi
- Department of Acute Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Nishida
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Aichi Japan
| | | | - Tomohito Sadahiro
- Department of Emergency and Critical Care Medicine, Tokyo Women’s Medical University Yachiyo Medical Center, Chiba, Japan
| | - Noritomo Itami
- Kidney Center, Department of Surgery, Nikko Memorial Hospital, Hokkaido, Japan
| | - Kunitoshi Iseki
- Clinical Research Support Center, Tomishiro Central Hospital, Okinawa, Japan
| | - Yukio Yuzawa
- Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Aichi Japan
| | - Hirokazu Okada
- Department of Nephrology and General Internal Medicine, Saitama Medical University, Saitama, Japan
| | - Daisuke Koya
- Division of Anticipatory Molecular Food Science and Technology, Department of Diabetology and Endocrinology, Kanazawa Medical University, Kanawaza, Ishikawa Japan
| | - Hideyasu Kiyomoto
- Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yugo Shibagaki
- Division of Nephrology and Hypertension, St. Marianna University School of Medicine, Kawasaki, Kanagawa Japan
| | - Kenichi Matsuda
- Department of Emergency and Critical Care Medicine, University of Yamanashi School of Medicine, Yamanashi, Japan
| | - Akihiko Kato
- Blood Purification Unit, Hamamatsu University Hospital, Hamamatsu, Japan
| | - Terumasa Hayashi
- Department of Kidney Disease and Hypertension, Osaka General Medical Center, Osaka, Japan
| | - Tomonari Ogawa
- Nephrology and Blood Purification, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Tatsuo Tsukamoto
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eisei Noiri
- Department of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - Shigeo Negi
- Department of Nephrology, Wakayama Medical University, Wakayama, Japan
| | - Koichi Kamei
- Division of Nephrology and Rheumatology, National Center for Child Health and Development, Tokyo, Japan
| | | | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Okayama, Japan
| | - Toshiki Moriyama
- Health Care Division, Health and Counseling Center, Osaka University, Osaka, Japan
| | - Yoshio Terada
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, 783-8505 Japan
| |
Collapse
|
28
|
Haase M, Bellomo R, Morger S, Baldwin I, Boyce N. High Cut-off Point Membranes in Septic Acute Renal Failure: A Systematic Review. Int J Artif Organs 2018; 30:1031-41. [DOI: 10.1177/039139880703001202] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objectives To review the literature on the experimental, physiological and clinical effects of blood purification with high cut-off (HCO) point membranes in septic acute renal failure (ARF). Study Design MEDLINE and PubMed database search combining relevant terms and integrating data from studies on the use of HCO membranes. Setting and Population Ex vivo studies of endotoxemia, animal studies of bacteremia and clinical studies using HCO membranes in patients with septic ARF. Selection Criteria for Studies: Original data from primary publications. Interventions: HCO membrane-based hemodialysis, hemodiafiltration or hemofiltration. Outcomes: Plasma cytokine clearance, immunological and physiological effects and safety parameters of HCO membranes. Results HCO membranes effectively remove cytokines from blood. Treatment using HCO membranes has beneficial effects on immune cell function and increases survival in animal models of sepsis. Preliminary clinical studies show that HCO membranes decrease plasma cytokine levels and the need for vasopressor therapy. HCO membrane-based blood purification has now been applied in four pilot randomized controlled studies of 70 patients with septic ARF with no reports of serious adverse effects. Limitations Because of substantial heterogeneity, no formal quantitative analysis could be performed. Conclusions The available evidence on HCO blood purification justifies larger randomized controlled trials in patients with septic ARF.
Collapse
Affiliation(s)
- M. Haase
- Intensive Care Unit, Austin Hospital, University of Melbourne - Australia
- Department of Nephrology and Intensive Care, Charité University Medicine, Berlin - Germany
| | - R. Bellomo
- Intensive Care Unit, Austin Hospital, University of Melbourne - Australia
| | - S. Morger
- Department of Nephrology and Intensive Care, Charité University Medicine, Berlin - Germany
| | - I. Baldwin
- Intensive Care Unit, Austin Hospital, University of Melbourne - Australia
| | - N. Boyce
- Australian Red Cross Blood Service, University of Melbourne - Australia
| |
Collapse
|
29
|
Shum HP, Chan KC, Yan WW, Chan TM. Treatment of Acute Kidney Injury Complicating Septic Shock with EMiC2 High-cutoff Hemofilter: Case Series. Indian J Crit Care Med 2017; 21:751-757. [PMID: 29279636 PMCID: PMC5699003 DOI: 10.4103/ijccm.ijccm_338_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Introduction: Extracorporeal blood purification therapies have been proposed to improve outcomes of patients with severe sepsis, with or without accompanying acute kidney injury (AKI), by removal of excessive inflammatory mediators. Materials and Methods: We report our experience with EMiC2 high-cutoff continuous venovenous hemofiltration/hemodialysis (HCO-CVVH/HD) in seven patients with AKI complicating septic shock. Results: The median treatment duration was 71 h, and the procedure was well tolerated. Trough serum albumin level of 20 g/L was observed after 2 h of treatment and none of the patients required albumin supplement. The hospital mortality rate was 29%, which appeared more favorable than the predicted mortality of 60%–78% based on disease severity scores. Circulating levels of interleukin-6 (IL-6), IL-10, and tumor necrosis factor-alpha improved over time. Conclusion: This case series shows that HCO-CVVH/CVVHD using EMiC2 hemofilter may provide good cytokine modulation, when used along with good quality standard sepsis therapy. A further large-scale prospective randomized controlled trial is recommended.
Collapse
Affiliation(s)
- Hoi-Ping Shum
- Department of Intensive Care, Pamela Youde Nethersole Eastern Hospital, Hong Kong SAR, China
| | - King-Chung Chan
- Department of Anesthesia and Intensive Care, Tuen Mun Hospital, Hong Kong SAR, China
| | - Wing-Wa Yan
- Department of Intensive Care, Pamela Youde Nethersole Eastern Hospital, Hong Kong SAR, China
| | - Tak Mao Chan
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| |
Collapse
|
30
|
Łysenko L, Leśnik P, Nelke K, Gerber H. Immune disorders in sepsis and their treatment as a significant problem of modern intensive care. POSTEP HIG MED DOSW 2017; 71:703-712. [PMID: 28894043 DOI: 10.5604/01.3001.0010.3849] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Despite the great advances in the treatment of sepsis over the past 20 years, sepsis remains the main cause of death in intensive care units. In the context of new possibilities of treating sepsis, a comprehensive response of the immune system to the infection, immunosuppression, in particular, has in recent years gained considerable interest. There is vast evidence pointing to the correlation between comorbid immunosuppression and an increased risk of recurrent infections and death. Immune disorders may impact the clinical course of sepsis. This applies in particular to patients with deteriorated clinical response to infections. They usually suffer from comorbidities and conditions accompanied by immunosuppression. Sepsis disrupts innate and adaptive immunity. The key to diagnose the immune disorders in sepsis and undertake targeted immunomodulatory therapy is to define the right biomarkers and laboratory methods, which permit prompt "bedside" diagnosis. Flow cytometry is a laboratory tool that meets these criteria. Two therapeutic methods are currently being suggested to restore the immune homeostasis of sepsis patients. Excessive inflammatory response may be controlled through extracorporeal blood purification techniques, in large part derived from renal replacement therapy. These are such techniques as high-volume haemofiltration, cascade haemofiltration, plasma exchange, coupled plasma filtration and adsorption, high-absorption membranes, high cut-off membranes. The main task of theses techniques is the selective elimination of middle molecular weight molecules, such as cytokines. Pharmacotherapy with the use of such immunostimulants as interleukin 7, granulocyte-macrophage colony-stimulating factor, interferon gamma, PD-1, PD-L1 and CTLA-4 antagonists, intravenous immunoglobulins may help fight immunosuppressive immune disorders.
Collapse
Affiliation(s)
- Lidia Łysenko
- Department of Anaesthesiology and Intensive Therapy, Wroclaw Medical University, Wroclaw, Poland
| | - Patrycja Leśnik
- Department of Anaesthesiology and Intensive Therapy, Wroclaw Medical University, Wroclaw, Poland
| | - Kamil Nelke
- Department of Maxillofacial Surgery, Wroclaw Medical University, Wrocław, Poland
| | - Hanna Gerber
- Department of Maxillofacial Surgery, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
31
|
High Cut-off Membranes in Acute Kidney Injury and Continuous Renal Replacement Therapy. Int J Artif Organs 2017; 40:657-664. [DOI: 10.5301/ijao.5000662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2017] [Indexed: 12/24/2022]
Abstract
Innovation in continuous renal replacement therapies (CRRT) utilized to treat acute kidney injury (AKI) and sepsis, has brought new machines and techniques. Part of these new advances are due to the availability of innovative biomaterials and the construction of membranes with larger pores and wide distribution of pore sizes. This includes the creation of a new generation of high cut-off membranes whose utilization in clinical practice is promising for the wide spectrum of solutes that are removed during extracorporeal therapies. However, the enlargement of pore diameters brings some loss of albumin during treatment and this effect is still under evaluation, since there is a possibility that this is detrimental for the patient. A thorough review of the available clinical literature is reported in this paper with a reappraisal of the potential application of these new technologies.
Collapse
|
32
|
Eichhorn T, Hartmann J, Harm S, Linsberger I, König F, Valicek G, Miestinger G, Hörmann C, Weber V. Clearance of Selected Plasma Cytokines with Continuous Veno-Venous Hemodialysis Using Ultraflux EMiC2 versus Ultraflux AV1000S. Blood Purif 2017; 44:260-266. [PMID: 28988232 DOI: 10.1159/000478965] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/25/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND High cutoff hemofilters might support the restoration of immune homeostasis in systemic inflammation by depleting inflammatory mediators from the circulation. METHODS Interleukin (IL)-6, IL-8, IL-10, and tumor necrosis factor-alpha depletion was assessed in 30 sepsis patients with acute renal failure using continuous veno-venous hemodialysis with high cutoff versus standard filters (CVVHD-HCO vs. CVVHD-STD) over 48 h. RESULTS The transfer of IL-6 and IL-8 was significantly higher for CVVHD-HCO, as shown by increased IL-6 and IL-8 effluent concentrations. The mean plasma cytokine concentrations decreased over time for all cytokines without detectable differences for the treatment modalities. No transfer of albumin was observed for either of the filters. C-reactive protein remained stable over time and did not differ between CVVHD-HCO and CVVHD-STD, while procalcitonin decreased significantly over 48 h for both treatment modalities. CONCLUSION CVVHD-HCO achieved enhanced removal of IL-6 and IL-8 as compared to CVVHD-STD, without differentially reducing plasma cytokine levels.
Collapse
Affiliation(s)
- Tanja Eichhorn
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Donau University Krems, Krems an der Donau, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Busani S, Roat E, Serafini G, Mantovani E, Biagioni E, Girardis M. The Role of Adjunctive Therapies in Septic Shock by Gram Negative MDR/XDR Infections. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2017; 2017:2808203. [PMID: 28775744 PMCID: PMC5523464 DOI: 10.1155/2017/2808203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 12/29/2022]
Abstract
Patients with septic shock by multidrug resistant microorganisms (MDR) are a specific sepsis population with a high mortality risk. The exposure to an initial inappropriate empiric antibiotic therapy has been considered responsible for the increased mortality, although other factors such as immune-paralysis seem to play a pivotal role. Therefore, beyond conventional early antibiotic therapy and fluid resuscitation, this population may benefit from the use of alternative strategies aimed at supporting the immune system. In this review we present an overview of the relationship between MDR infections and immune response and focus on the rationale and the clinical data available on the possible adjunctive immunotherapies, including blood purification techniques and different pharmacological approaches.
Collapse
Affiliation(s)
- Stefano Busani
- Intensive Care Unit, Modena University Hospital, L.go del Pozzo 71, 41100 Modena, Italy
| | - Erika Roat
- Intensive Care Unit, Modena University Hospital, L.go del Pozzo 71, 41100 Modena, Italy
| | - Giulia Serafini
- Intensive Care Unit, Modena University Hospital, L.go del Pozzo 71, 41100 Modena, Italy
| | - Elena Mantovani
- Intensive Care Unit, Modena University Hospital, L.go del Pozzo 71, 41100 Modena, Italy
| | - Emanuela Biagioni
- Intensive Care Unit, Modena University Hospital, L.go del Pozzo 71, 41100 Modena, Italy
| | - Massimo Girardis
- Intensive Care Unit, Modena University Hospital, L.go del Pozzo 71, 41100 Modena, Italy
| |
Collapse
|
34
|
Nusshag C, Weigand MA, Zeier M, Morath C, Brenner T. Issues of Acute Kidney Injury Staging and Management in Sepsis and Critical Illness: A Narrative Review. Int J Mol Sci 2017; 18:E1387. [PMID: 28657585 PMCID: PMC5535880 DOI: 10.3390/ijms18071387] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 06/24/2017] [Accepted: 06/24/2017] [Indexed: 12/19/2022] Open
Abstract
Acute kidney injury (AKI) has a high incidence on intensive care units around the world and is a major complication in critically ill patients suffering from sepsis or septic shock. The short- and long-term complications are thereby devastating and impair the quality of life. Especially in terms of AKI staging, the determination of kidney function and the timing of dialytic AKI management outside of life-threatening indications are ongoing matters of debate. Despite several studies, a major problem remains in distinguishing between beneficial and unnecessary "early" or even harmful renal replacement therapy (RRT). The latter might prolong disease course and renal recovery. AKI scores, however, provide an insufficient outcome-predicting ability and the related estimation of kidney function via serum creatinine or blood urea nitrogen (BUN)/urea is not reliable in AKI and critical illness. Kidney independent alterations of creatinine- and BUN/urea-levels further complicate the situation. This review critically assesses the current AKI staging, issues and pitfalls of the determination of kidney function and RRT timing, as well as the potential harm reflected by unnecessary RRT. A better understanding is mandatory to improve future study designs and avoid unnecessary RRT for higher patient safety and lower health care costs.
Collapse
Affiliation(s)
- Christian Nusshag
- Department of Nephrology, Heidelberg University Hospital, 162, Im Neuenheimer Feld, D-69120 Heidelberg, Germany.
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, 110, Im Neuenheimer Feld, D-69120 Heidelberg, Germany.
| | - Martin Zeier
- Department of Nephrology, Heidelberg University Hospital, 162, Im Neuenheimer Feld, D-69120 Heidelberg, Germany.
| | - Christian Morath
- Department of Nephrology, Heidelberg University Hospital, 162, Im Neuenheimer Feld, D-69120 Heidelberg, Germany.
| | - Thorsten Brenner
- Department of Anesthesiology, Heidelberg University Hospital, 110, Im Neuenheimer Feld, D-69120 Heidelberg, Germany.
| |
Collapse
|
35
|
Bellomo R, Ronco C, Mehta RL, Asfar P, Boisramé-Helms J, Darmon M, Diehl JL, Duranteau J, Hoste EAJ, Olivier JB, Legrand M, Lerolle N, Malbrain MLNG, Mårtensson J, Oudemans-van Straaten HM, Parienti JJ, Payen D, Perinel S, Peters E, Pickkers P, Rondeau E, Schetz M, Vinsonneau C, Wendon J, Zhang L, Laterre PF. Acute kidney injury in the ICU: from injury to recovery: reports from the 5th Paris International Conference. Ann Intensive Care 2017. [PMID: 28474317 DOI: 10.1186/s13613-017-0260-y.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The French Intensive Care Society organized its yearly Paris International Conference in intensive care on June 18-19, 2015. The main purpose of this meeting is to gather the best experts in the field in order to provide the highest quality update on a chosen topic. In 2015, the selected theme was: "Acute Renal Failure in the ICU: from injury to recovery." The conference program covered multiple aspects of renal failure, including epidemiology, diagnosis, treatment and kidney support system, prognosis and recovery together with acute renal failure in specific settings. The present report provides a summary of every presentation including the key message and references and is structured in eight sections: (a) diagnosis and evaluation, (b) old and new diagnosis tools,
Collapse
Affiliation(s)
- Rinaldo Bellomo
- Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia.,Department of ICU, Austin Health, Heidelberg, Australia
| | - Claudio Ronco
- Department of Nephrology, Dialysis and Transplantation, International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
| | - Ravindra L Mehta
- Vice Chair Clinical Research, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Pierre Asfar
- Département de Réanimation Médicale et de Médecine Hyperbare, Centre Hospitalier Universitaire, Angers, France.,Laboratoire de Biologie Neurovasculaire et Mitochondriale Intégrée, CNRS UMR 6214 - INSERM U1083, Université Angers, PRES L'UNAM, Angers, France
| | - Julie Boisramé-Helms
- Service de Réanimation Médicale, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,EA 7293, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de médecine, Université de Strasbourg, Strasbourg, France
| | - Michael Darmon
- Medical-Surgical ICU, Saint-Etienne University Hospital and Jean Monnet University, Saint-Étienne, France
| | - Jean-Luc Diehl
- Medical ICU, AP-HP, Georges Pompidou European Hospital, Paris, France.,INSERM UMR_S1140, Paris Descartes University and Sorbonne Paris Cité, Paris, France
| | - Jacques Duranteau
- AP-HP, Service d'Anesthésie-Réanimation, Hôpitaux Universitaires Paris-Sud, Université Paris-Sud, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Eric A J Hoste
- ICU, Ghent University Hospital, Ghent University, Ghent, Belgium.,Research Foundation-Flanders (FWO), Brussels, Belgium
| | | | - Matthieu Legrand
- Department of Anesthesiology and Critical Care and Burn Unit, Hôpitaux Universitaire St-Louis-Lariboisière, Assistance Publique-Hôpitaux de Paris (AP-HP), University of Paris, Paris, France
| | - Nicolas Lerolle
- Département de Réanimation Médicale et de Médecine Hyperbare, CHU, Angers, France
| | | | - Johan Mårtensson
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia.,Section of Anaesthesia and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Jean-Jacques Parienti
- Department of Infectious Diseases, University Hospital, Caen, France.,Department of Biostatistic and Clinical Research, University Hospital, Caen, France
| | - Didier Payen
- Department of Anesthesia and Critical Care, SAMU, Lariboisière University Hospital, Paris, France
| | - Sophie Perinel
- Medical-Surgical ICU, Saint-Etienne University Hospital, Jean Monnet University Saint-Etienne, Saint-Étienne, France
| | - Esther Peters
- Department of Pharmacology and Toxicology, Radboud university Medical Center, Nijmegen, The Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eric Rondeau
- Urgences néphrologiques et Transplantation rénale, Hôpital Tenon, Université Paris 6, Paris, France
| | - Miet Schetz
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Louvain, Belgium
| | - Christophe Vinsonneau
- Service de Réanimation et Surveillance continue, Centre Hospitalier de BETHUNE, Bethune, France
| | - Julia Wendon
- Kings College Hospital Foundation Trust, London, UK
| | - Ling Zhang
- Department of Nephrology, West China Hospital of Sichuan University, Sichuan, Chengdu, China
| | | |
Collapse
|
36
|
Bellomo R, Ronco C, Mehta RL, Asfar P, Boisramé-Helms J, Darmon M, Diehl JL, Duranteau J, Hoste EAJ, Olivier JB, Legrand M, Lerolle N, Malbrain MLNG, Mårtensson J, Oudemans-van Straaten HM, Parienti JJ, Payen D, Perinel S, Peters E, Pickkers P, Rondeau E, Schetz M, Vinsonneau C, Wendon J, Zhang L, Laterre PF. Acute kidney injury in the ICU: from injury to recovery: reports from the 5th Paris International Conference. Ann Intensive Care 2017; 7:49. [PMID: 28474317 PMCID: PMC5418176 DOI: 10.1186/s13613-017-0260-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
The French Intensive Care Society organized its yearly Paris International Conference in intensive care on June 18-19, 2015. The main purpose of this meeting is to gather the best experts in the field in order to provide the highest quality update on a chosen topic. In 2015, the selected theme was: "Acute Renal Failure in the ICU: from injury to recovery." The conference program covered multiple aspects of renal failure, including epidemiology, diagnosis, treatment and kidney support system, prognosis and recovery together with acute renal failure in specific settings. The present report provides a summary of every presentation including the key message and references and is structured in eight sections: (a) diagnosis and evaluation, (b) old and new diagnosis tools,
Collapse
Affiliation(s)
- Rinaldo Bellomo
- Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia.,Department of ICU, Austin Health, Heidelberg, Australia
| | - Claudio Ronco
- Department of Nephrology, Dialysis and Transplantation, International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
| | - Ravindra L Mehta
- Vice Chair Clinical Research, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Pierre Asfar
- Département de Réanimation Médicale et de Médecine Hyperbare, Centre Hospitalier Universitaire, Angers, France.,Laboratoire de Biologie Neurovasculaire et Mitochondriale Intégrée, CNRS UMR 6214 - INSERM U1083, Université Angers, PRES L'UNAM, Angers, France
| | - Julie Boisramé-Helms
- Service de Réanimation Médicale, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,EA 7293, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de médecine, Université de Strasbourg, Strasbourg, France
| | - Michael Darmon
- Medical-Surgical ICU, Saint-Etienne University Hospital and Jean Monnet University, Saint-Étienne, France
| | - Jean-Luc Diehl
- Medical ICU, AP-HP, Georges Pompidou European Hospital, Paris, France.,INSERM UMR_S1140, Paris Descartes University and Sorbonne Paris Cité, Paris, France
| | - Jacques Duranteau
- AP-HP, Service d'Anesthésie-Réanimation, Hôpitaux Universitaires Paris-Sud, Université Paris-Sud, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Eric A J Hoste
- ICU, Ghent University Hospital, Ghent University, Ghent, Belgium.,Research Foundation-Flanders (FWO), Brussels, Belgium
| | | | - Matthieu Legrand
- Department of Anesthesiology and Critical Care and Burn Unit, Hôpitaux Universitaire St-Louis-Lariboisière, Assistance Publique-Hôpitaux de Paris (AP-HP), University of Paris, Paris, France
| | - Nicolas Lerolle
- Département de Réanimation Médicale et de Médecine Hyperbare, CHU, Angers, France
| | | | - Johan Mårtensson
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia.,Section of Anaesthesia and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Jean-Jacques Parienti
- Department of Infectious Diseases, University Hospital, Caen, France.,Department of Biostatistic and Clinical Research, University Hospital, Caen, France
| | - Didier Payen
- Department of Anesthesia and Critical Care, SAMU, Lariboisière University Hospital, Paris, France
| | - Sophie Perinel
- Medical-Surgical ICU, Saint-Etienne University Hospital, Jean Monnet University Saint-Etienne, Saint-Étienne, France
| | - Esther Peters
- Department of Pharmacology and Toxicology, Radboud university Medical Center, Nijmegen, The Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eric Rondeau
- Urgences néphrologiques et Transplantation rénale, Hôpital Tenon, Université Paris 6, Paris, France
| | - Miet Schetz
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Louvain, Belgium
| | - Christophe Vinsonneau
- Service de Réanimation et Surveillance continue, Centre Hospitalier de BETHUNE, Bethune, France
| | - Julia Wendon
- Kings College Hospital Foundation Trust, London, UK
| | - Ling Zhang
- Department of Nephrology, West China Hospital of Sichuan University, Sichuan, Chengdu, China
| | | |
Collapse
|
37
|
Tanaka A, Inaguma D, Nakamura T, Watanabe Y, Ito E, Kamegai N, Shimogushi H, Murata M, Shinjo H, Koike K, Otsuka Y, Takeda A. Effect of continuous hemodiafiltration using an AN69ST membrane in patients with sepsis. RENAL REPLACEMENT THERAPY 2017. [DOI: 10.1186/s41100-017-0093-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
38
|
Hattori N, Oda S. Cytokine-adsorbing hemofilter: old but new modality for septic acute kidney injury. RENAL REPLACEMENT THERAPY 2016. [DOI: 10.1186/s41100-016-0051-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
39
|
Feng M, Sun T, Zhao Y, Zhang H. Detection of Serum Interleukin-6/10/18 Levels in Sepsis and Its Clinical Significance. J Clin Lab Anal 2016; 30:1037-1043. [PMID: 27184083 DOI: 10.1002/jcla.21977] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/04/2016] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE To explore the clinical significance of serum levels of IL-6/10/18 in sepsis. METHODS Sixty-six patients with sepsis were selected to be the case group. Additionally, 42 healthy adults were selected to be the control group. ELISA was used to measure the serum levels of IL-6/10/18, and ROC was utilized to evaluate the diagnostic values of IL-6/10/18 in sepsis. RESULTS The heart rate, respiratory rate, WBC count and APACHE II score in the sepsis group were significantly higher than those in the control group, and these indexes were increased in turn in the mild sepsis group, severe sepsis group, and septic shock group (all P < 0.05 after correction). The serum IL-6/18 levels in sepsis patients were significantly higher than those in the control group, and both of the levels were increased in turn in the mild sepsis group, severe sepsis group, and septic shock group (both P < 0.05). However, no significant difference was found in serum IL-10 level between groups (P > 0.05). The cut-off points of IL-6 and IL-18 were 109.19 pg/ml (sensitivity: 94.4%; specificity: 83.3%) and 116.01 pg/ml (sensitivity: 77.8%; specificity: 83.3%), respectively. Serum IL-6 levels were positively correlated with the APACHE II score and heart rate (both P < 0.001). CONCLUSION Serum levels of IL-6/8 are up-regulated in sepsis patients. Additionally, IL-6 has a greater sensitivity than IL-18. Serum IL-6 levels were positively correlated with the APACHE II score and heart rate, indicating that IL-6 could be used as a potential biomarker for sepsis.
Collapse
Affiliation(s)
- Mingchen Feng
- Department of Intensive Medicine, Jining NO. 1 People's Hospital, Jining, China
| | - Tingting Sun
- Department of Operation Room, Jining NO.1 People's Hospital, Jining, China
| | - Yaxin Zhao
- Department of Pharmacy, Jining NO.1 People's Hospital, Jining, China
| | - Hui Zhang
- Department of Intensive Medicine, Jining NO. 1 People's Hospital, Jining, China.
| |
Collapse
|
40
|
Yee J. Intensive Care Unit Renal Replacement Therapy: Less Is More (or Better). Adv Chronic Kidney Dis 2016; 23:131-3. [PMID: 27113686 DOI: 10.1053/j.ackd.2016.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Dellepiane S, Marengo M, Cantaluppi V. Detrimental cross-talk between sepsis and acute kidney injury: new pathogenic mechanisms, early biomarkers and targeted therapies. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:61. [PMID: 26976392 PMCID: PMC4792098 DOI: 10.1186/s13054-016-1219-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency medicine 2016. Other selected articles can be found online at http://www.biomedcentral.com/collections/annualupdate2016. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901.
Collapse
Affiliation(s)
- Sergio Dellepiane
- Department of Medical Science, Turin University, AOU Città Della Salute e Della Scienza, Turin, Italy
| | - Marita Marengo
- ASLCN1, S.C. Nefrologia e Dialisi, Dipartimento Area Medica, Cuneo, Italy
| | - Vincenzo Cantaluppi
- Department of Translational Medicine, University of Eastern Piedmont, "Maggiore della Carità" University Hospital, Novara, Italy.
| |
Collapse
|
42
|
Girardot T, Venet F, Rimmelé T. Immunomodulation: The Future for Sepsis? ANNUAL UPDATE IN INTENSIVE CARE AND EMERGENCY MEDICINE 2016. [DOI: 10.1007/978-3-319-27349-5_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
43
|
Forni LG, Ricci Z, Ronco C. Extracorporeal renal replacement therapies in the treatment of sepsis: where are we? Semin Nephrol 2015; 35:55-63. [PMID: 25795499 DOI: 10.1016/j.semnephrol.2015.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Acute kidney injury (AKI) is common among the critically ill, affecting approximately 40% of patients. Sepsis is the cause of AKI in almost 50% of cases of intensive care patients, however, any evidence-based treatment for sepsis-associated AKI is lacking. Furthermore, the underlying pathophysiology of septic AKI is inadequately understood given the disparity between severe functional changes and limited tubular injury. What is clear is that within this complex interplay leading to septic AKI, the inflammatory response plays a pivotal role and hence modulation of this response may translate to improved outcomes. We outline the use of extracorporeal therapies in the treatment of sepsis and septic AKI. We consider the classic aspects of extracorporeal renal replacement therapy including indications, timing, and delivered dose. The various techniques that currently are used to try and achieve immune homeostasis also are outlined. As well as discussing the evidence accumulated to date, we also suggest possibilities for the future treatment of our patients.
Collapse
Affiliation(s)
- Lui G Forni
- Department of Intensive Care Medicine, Surrey Peri-operative Anaesthesia Critical Care Collaborative Research Group, Royal Surrey County Hospital, and Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| | - Zaccaria Ricci
- Department of Paediatric Cardiac Surgery, Bambino Gesu Children's Hospital, Rome, Italy
| | - Claudio Ronco
- International Renal Research Institute, Vicenza, Italy; Department of Nephrology, St Bortolo Hospital, Vicenza, Italy
| |
Collapse
|
44
|
Girndt M, Fiedler R, Martus P, Pawlak M, Storr M, Bohler T, Glomb MA, Liehr K, Henning C, Templin M, Trojanowicz B, Ulrich C, Werner K, Zickler D, Schindler R. High cut-off dialysis in chronic haemodialysis patients. Eur J Clin Invest 2015; 45:1333-40. [PMID: 26519693 DOI: 10.1111/eci.12559] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/26/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Haemodialysis patients suffer from chronic systemic inflammation and high incidence of cardiovascular disease. One cause for this may be the failure of diseased kidneys to eliminate immune mediators. Current haemodialysis treatment achieves insufficient elimination of proteins in the molecular weight range 15-45 kD. Thus, high cut-off dialysis might improve the inflammatory state. DESIGN In this randomized crossover trial, 43 haemodialysis patients were treated for 3 weeks with high cut-off or high-flux dialysis. Inflammatory plasma mediators, monocyte subpopulation distribution and leucocyte gene expression were quantified. RESULTS High cut-off dialysis supplemented by a low-flux filter did not influence the primary end-point, expression density of CD162 on monocytes. Nevertheless, treatment reduced multiple immune mediators in plasma. Such reduction proved - at least for some markers - to be a sustained effect over the interdialytic interval. Thus, for example, soluble TNF-receptor 1 concentration predialysis was reduced from median 13·3 (IQR 8·9-17·2) to 9·7 (IQR 7·5-13·2) ng/mL with high cut-off while remaining constant with high-flux treatment. The expression profile of multiple proinflammatory genes in leucocytes was significantly dampened. Treatment was well tolerated although albumin losses in high cut-off dialysis would be prohibitive against long-term use. CONCLUSIONS The study shows for the first time that a dampening effect of high cut-off dialysis on systemic inflammation is achievable. Earlier studies had failed due to short study duration or insufficient dialysis efficacy. Removal of soluble mediators from the circulation influences cellular activation levels in leucocytes. Continued development of less albumin leaky membranes with similar cytokine elimination is justified.
Collapse
Affiliation(s)
- Matthias Girndt
- Department of Internal Medicine II, Martin-Luther-University Halle, Halle, Germany
| | - Roman Fiedler
- Department of Internal Medicine II, Martin-Luther-University Halle, Halle, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | | | - Markus Storr
- Department of Research and Development, Gambro Dialysatoren GmbH, Hechingen, Germany
| | - Torsten Bohler
- Department of Research and Development, Gambro Dialysatoren GmbH, Hechingen, Germany
| | - Marcus A Glomb
- Institute for Chemistry, Food Chemistry, Martin-Luther-University Halle, Halle, Germany
| | - Kristin Liehr
- Institute for Chemistry, Food Chemistry, Martin-Luther-University Halle, Halle, Germany
| | - Christian Henning
- Institute for Chemistry, Food Chemistry, Martin-Luther-University Halle, Halle, Germany
| | | | - Bogusz Trojanowicz
- Department of Internal Medicine II, Martin-Luther-University Halle, Halle, Germany
| | - Christof Ulrich
- Department of Internal Medicine II, Martin-Luther-University Halle, Halle, Germany
| | - Kristin Werner
- Department of Research and Development, Gambro Dialysatoren GmbH, Hechingen, Germany
| | - Daniel Zickler
- Department of Nephrology and Internal Intensive Care Medicine, Charité-Universitaetsmedizin Berlin, Campus Virchow Clinic, Berlin, Germany
| | - Ralf Schindler
- Department of Nephrology and Internal Intensive Care Medicine, Charité-Universitaetsmedizin Berlin, Campus Virchow Clinic, Berlin, Germany
| |
Collapse
|
45
|
|
46
|
Villa G, Zaragoza JJ, Sharma A, Chelazzi C, Ronco C, De Gaudio AR. High cutoff membrane to reduce systemic inflammation due to differentiation syndrome: a case report. Blood Purif 2014; 38:234-8. [PMID: 25531172 DOI: 10.1159/000369379] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/27/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Differentiation syndrome is a life-threatening complication of therapy that is carried out with agents used for acute promyelocytic leukemia. Its physiopathology comprehends the production of inflammatory mediators by differentiating granulocytes, endothelial and alveolar cells due to stimulation by all-trans retinoic acid and leading to sustained systemic inflammation. METHODS Treatment with high cut-off continuous veno-venous hemodialysis (HCO-CVVHD) was performed to reduce the circulating mediators of systemic inflammation. RESULTS After 52 h of treatment, an important reduction was observed in inflammatory mediators (IL-1β: from 10 to 2 pg/ml; IL-8: from 57 to 40 pg/ml; TNF-α: from 200 to 105 pg/ml; IL-6: from 263 to 91 pg/ml), as well as in anti-inflammatory mediators (IL-10: from 349 to 216 pg/ml). CONCLUSIONS HCO-CVVHD should be explored as a part of treatment in systemic inflammation states other than sepsis (e.g., differentiation syndrome). Furthermore, its immunomodulatory effects could be particularly useful in immunocompromised patient treated with corticosteroids.
Collapse
Affiliation(s)
- Gianluca Villa
- International Renal Research Institute of Vicenza, Vicenza, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Villa G, Zaragoza JJ, Sharma A, Neri M, De Gaudio AR, Ronco C. Cytokine removal with high cut-off membrane: review of literature. Blood Purif 2014; 38:167-73. [PMID: 25471681 DOI: 10.1159/000369155] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During the last decade, blood purification therapies have been proposed as an effective therapy to control the cytokines dysregulation in systemic inflammatory syndromes. Among them, the treatment with high cut-off membranes is characterized by larger pore size and more effective clearance for middle molecular weight molecules (cytokines). In this paper, we performed a thoughtful review of the literature on HCO being used for blood purification indications in all systemic inflammation syndromes. Clinical and experimental studies show that the use of high effluent flows in a pure diffusive treatment effectively removes serum cytokines with a safe profile in albumin clearance. In clinical studies, the removal of these inflammatory mediators is associated with a significant improvement in hemodynamic condition, oxygenation indices, and organ dysfunction.
Collapse
Affiliation(s)
- Gianluca Villa
- International Renal Research Institute of Vicenza, Vicenza, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Connor MJ, Kraft C, Mehta AK, Varkey JB, Lyon GM, Crozier I, Ströher U, Ribner BS, Franch HA. Successful delivery of RRT in Ebola virus disease. J Am Soc Nephrol 2014; 26:31-7. [PMID: 25398785 DOI: 10.1681/asn.2014111057] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AKI has been observed in cases of Ebola virus disease. We describe the protocol for the first known successful delivery of RRT with subsequent renal recovery in a patient with Ebola virus disease treated at Emory University Hospital, in Atlanta, Georgia. Providing RRT in Ebola virus disease is complex and requires meticulous attention to safety for the patient, healthcare workers, and the community. We specifically describe measures to decrease the risk of transmission of Ebola virus disease and report pilot data demonstrating no detectable Ebola virus genetic material in the spent RRT effluent waste. This article also proposes clinical practice guidelines for acute RRT in Ebola virus disease.
Collapse
Affiliation(s)
- Michael J Connor
- Divisions of Pulmonary, Allergy, and Critical Care, Renal Medicine, and
| | - Colleen Kraft
- Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Aneesh K Mehta
- Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jay B Varkey
- Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - G Marshall Lyon
- Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Ian Crozier
- Infectious Diseases Institute, Mulago Hospital Complex, Kampala, Uganda
| | - Ute Ströher
- US Centers for Disease Control and Prevention, Atlanta, Georgia; and
| | - Bruce S Ribner
- Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Harold A Franch
- Renal Medicine, and Research Service, Atlanta Department of Veterans Affairs Medical Center, Decatur, Georgia
| |
Collapse
|
49
|
Oda S, Aibiki M, Ikeda T, Imaizumi H, Endo S, Ochiai R, Kotani J, Shime N, Nishida O, Noguchi T, Matsuda N, Hirasawa H. The Japanese guidelines for the management of sepsis. J Intensive Care 2014; 2:55. [PMID: 25705413 PMCID: PMC4336273 DOI: 10.1186/s40560-014-0055-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 09/16/2014] [Indexed: 02/08/2023] Open
Abstract
This is a guideline for the management of sepsis, developed by the Sepsis Registry Committee of The Japanese Society of Intensive Care Medicine (JSICM) launched in March 2007. This guideline was developed on the basis of evidence-based medicine and focuses on unique treatments in Japan that have not been included in the Surviving Sepsis Campaign guidelines (SSCG), as well as treatments that are viewed differently in Japan and in Western countries. Although the methods in this guideline conform to the 2008 SSCG, the Japanese literature and the results of the Sepsis Registry Survey, which was performed twice by the Sepsis Registry Committee in intensive care units (ICUs) registered with JSICM, are also referred. This is the first and original guideline for sepsis in Japan and is expected to be properly used in daily clinical practice. This article is translated from Japanese, originally published as “The Japanese Guidelines for the Management of Sepsis” in the Journal of the Japanese Society of Intensive Care Medicine (J Jpn Soc Intensive Care Med), 2013; 20:124–73. The original work is at http://dx.doi.org/10.3918/jsicm.20.124.
Collapse
Affiliation(s)
- Shigeto Oda
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba 260-8677 Japan
| | - Mayuki Aibiki
- Department of Emergency Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295 Japan
| | - Toshiaki Ikeda
- Division of Critical Care and Emergency Medicine, Tokyo Medical University Hachioji Medical Center, 1163 Tatemachi, Hachioji, Tokyo 193-0998 Japan
| | - Hitoshi Imaizumi
- Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556 Japan
| | - Shigeatsu Endo
- Department of Emergency Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate 020-0023 Japan
| | - Ryoichi Ochiai
- First Department of Anesthesia, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo 143-8541 Japan
| | - Joji Kotani
- Department of Emergency, Disaster and Critical Care Medicine, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8131 Japan
| | - Nobuaki Shime
- Division of Intensive Care Unit, University Hospital, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566 Japan
| | - Osamu Nishida
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192 Japan
| | - Takayuki Noguchi
- Department of Anesthesiology and Intensive Care Medicine, Oita University School of Medicine, 1-1 Idaigaoka, Hazamacho, Yufu, Oita 879-5593 Japan
| | - Naoyuki Matsuda
- Emergency and Critical Care Medicine, Graduate School of Medicine Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 Japan
| | | | | |
Collapse
|
50
|
Linden K, Stewart IJ, Kreyer SF, Scaravilli V, Cannon JW, Cancio LC, Batchinsky AI, Chung KK. Extracorporeal blood purification in burns: A review. Burns 2014; 40:1071-8. [DOI: 10.1016/j.burns.2014.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/06/2014] [Accepted: 01/20/2014] [Indexed: 11/15/2022]
|