1
|
Ziliotto N, Lencioni S, Cirinciani M, Zanardi A, Alessio M, Soldà G, Da Pozzo E, Asselta R, Caricasole A. Functional characterisation of missense ceruloplasmin variants and real-world prevalence assessment of Aceruloplasminemia using population data. EBioMedicine 2025; 113:105625. [PMID: 40043514 PMCID: PMC11927744 DOI: 10.1016/j.ebiom.2025.105625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Aceruloplasminemia (ACP) is a rare recessive disease caused by loss of ceruloplasmin activity due to pathogenic variants in the ceruloplasmin (CP) gene. ACP causes iron accumulation in various organs, leading to neurodegeneration, anaemia, and diabetes. Estimating ACP prevalence is challenging, particularly as missense variants are not readily identified as pathogenic. METHODS Heterozygous missense variants likely to impact function were mapped in gnomAD and representative examples analysed for effects on CP activity. This knowledge was complemented by prediction of destabilizing effects of potentially pathogenic missense variants and integrated with loss-of-function mutations. Global ACP prevalence was predicted and compared with a more traditional method. FINDINGS Several as yet uncharacterised missense CP variants of pathogenic interest were identified by structure-function in-silico analysis. A representative subset was functionally validated, together with known ACP missense variants. Insights on the relative importance of copper ions coordinating centres in CP and its substrate specificity were discovered. Overall, a destabilizing effect was predicted for 130 missense CP variants. This information, integrated with known ACP missense and loss-of-function CP variants in gnomAD, allowed an estimation of ACP prevalence of 12.6/106. An alternative analysis based on minor allele frequency ≤0.01 resulted in an ACP prevalence as high as 8/106. INTERPRETATION These prevalence estimates for ACP are 20-25-fold higher than previously estimated and underscore the applicability of structure-function based analyses of real-world genetic variability to provide an alternative method for representing the frequency of rare disease variants. FUNDING REACT-EU PON 2014-2021, Kedrion S.p.A.
Collapse
Affiliation(s)
- Nicole Ziliotto
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Sara Lencioni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy; Department of Research & Innovation, Kedrion Biopharma S.p.A, Via di Fondovalle, Loc. Bolognana, Gallicano 55027, Italy
| | - Martina Cirinciani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Alan Zanardi
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS Ospedale San Raffaele, Via Olgettina 60, Milano 20132, Italy
| | - Massimo Alessio
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS Ospedale San Raffaele, Via Olgettina 60, Milano 20132, Italy
| | - Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano 20089, Italy
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano 20089, Italy
| | - Andrea Caricasole
- Department of Research & Innovation, Kedrion Biopharma S.p.A, Via di Fondovalle, Loc. Bolognana, Gallicano 55027, Italy.
| |
Collapse
|
2
|
Dietary Iron Intake in Excess of Requirements Impairs Intestinal Copper Absorption in Sprague Dawley Rat Dams, Causing Copper Deficiency in Suckling Pups. Biomedicines 2021; 9:biomedicines9040338. [PMID: 33801587 PMCID: PMC8065423 DOI: 10.3390/biomedicines9040338] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/13/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022] Open
Abstract
Physiologically relevant iron-copper interactions have been frequently documented. For example, excess enteral iron inhibits copper absorption in laboratory rodents and humans. Whether this also occurs during pregnancy and lactation, when iron supplementation is frequently recommended, is, however, unknown. Here, the hypothesis that high dietary iron will perturb copper homeostasis in pregnant and lactating dams and their pups was tested. We utilized a rat model of iron-deficiency/iron supplementation during pregnancy and lactation to assess this possibility. Rat dams were fed low-iron diets early in pregnancy, and then switched to one of 5 diets with normal (1×) to high iron (20×) until pups were 14 days old. Subsequently, copper and iron homeostasis, and intestinal copper absorption (by oral, intragastric gavage with 64Cu), were assessed. Copper depletion/deficiency occurred in the dams and pups as dietary iron increased, as evidenced by decrements in plasma ceruloplasmin (Cp) and superoxide dismutase 1 (SOD1) activity, depletion of hepatic copper, and liver iron loading. Intestinal copper transport and tissue 64Cu accumulation were lower in dams consuming excess iron, and tissue 64Cu was also low in suckling pups. In some cases, physiological disturbances were noted when dietary iron was only ~3-fold in excess, while for others, effects were observed when dietary iron was 10–20-fold in excess. Excess enteral iron thus antagonizes the absorption of dietary copper, causing copper depletion in dams and their suckling pups. Low milk copper is a likely explanation for copper depletion in the pups, but experimental proof of this awaits future experimentation.
Collapse
|
3
|
Jończy A, Lipiński P, Ogórek M, Starzyński RR, Krzysztofik D, Bednarz A, Krzeptowski W, Szudzik M, Haberkiewicz O, Miłoń A, Grzmil P, Lenartowicz M. Functional iron deficiency in toxic milk mutant mice (tx-J) despite high hepatic ferroportin: a critical role of decreased GPI-ceruloplasmin expression in liver macrophages. Metallomics 2020; 11:1079-1092. [PMID: 31011744 DOI: 10.1039/c9mt00035f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Jackson toxic milk mutant mice (tx-J) carrying a missense mutation in the Atp7b gene are animal models of the Wilson disease. In both the Wilson patients and the tx-J mice, mutations in the ATP7B/Atp7b gene lead to disturbances in copper metabolism. The dysfunction of ATP7B/Atp7b leads to a reduction in the incorporation of copper into apoceruloplasmin; this decreases the ferroxidase activity of ceruloplasmin necessary for the efflux of iron from cells and reduces the release of copper from hepatocytes to the bile; this results in a massive hepatic copper accumulation. A decrease in the ferroxidase activity of ceruloplasmin in the tx-J mice emphasises the practicality of this animal model for the exploration of disturbances in iron balance triggered by dysregulation of copper metabolism. We found that 6-month-old tx-J mutants developed mild anaemia caused by functional iron deficiency. The tx-J mutants showed decreased plasma iron levels with concomitant iron accumulation in hepatocytes and liver macrophages. Hepatic iron retention was accompanied by decreased expression of the membrane form of ceruloplasmin in both liver cell types. Interestingly, in the liver of mutants, we found high levels of ferroportin (an iron exporter) on the surface of liver macrophages despite increased hepatic expression of hepcidin, a peptide inducing internalization and degradation of ferroportin. We conclude that even when the ferroportin expression is high, ceruloplasmin remains a limiting factor in the release of iron to the extracellular environment.
Collapse
Affiliation(s)
- Aneta Jończy
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences Wólka Kosowska, Postepu 36A, 05-552 Magdalenka, Jastrzebiec, Poland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Kenawi M, Rouger E, Island ML, Leroyer P, Robin F, Rémy S, Tesson L, Anegon I, Nay K, Derbré F, Brissot P, Ropert M, Cavey T, Loréal O. Ceruloplasmin deficiency does not induce macrophagic iron overload: lessons from a new rat model of hereditary aceruloplasminemia. FASEB J 2019; 33:13492-13502. [DOI: 10.1096/fj.201901106r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Moussa Kenawi
- INSERM, Univ Rennes, INRA, Platform Analyse Elémentaire et Métabolisme des Métaux, UMR 1241 Institut NuMeCan (Nutrition, Metabolism, and Cancer), Centre Hospitalier Universitaire (CHU) Pontchaillou, Rennes, France
| | - Emmanuel Rouger
- INSERM, Univ Rennes, INRA, Platform Analyse Elémentaire et Métabolisme des Métaux, UMR 1241 Institut NuMeCan (Nutrition, Metabolism, and Cancer), Centre Hospitalier Universitaire (CHU) Pontchaillou, Rennes, France
| | - Marie-Laure Island
- INSERM, Univ Rennes, INRA, Platform Analyse Elémentaire et Métabolisme des Métaux, UMR 1241 Institut NuMeCan (Nutrition, Metabolism, and Cancer), Centre Hospitalier Universitaire (CHU) Pontchaillou, Rennes, France
| | - Patricia Leroyer
- INSERM, Univ Rennes, INRA, Platform Analyse Elémentaire et Métabolisme des Métaux, UMR 1241 Institut NuMeCan (Nutrition, Metabolism, and Cancer), Centre Hospitalier Universitaire (CHU) Pontchaillou, Rennes, France
| | - François Robin
- INSERM, Univ Rennes, INRA, Platform Analyse Elémentaire et Métabolisme des Métaux, UMR 1241 Institut NuMeCan (Nutrition, Metabolism, and Cancer), Centre Hospitalier Universitaire (CHU) Pontchaillou, Rennes, France
| | - Séverine Rémy
- INSERM UMR 1064- Centre de Recherches en Transplantation et Immunologie (CRTI), Transgenic Rats ImmunoPhenomic facility, Nantes, France
| | - Laurent Tesson
- INSERM UMR 1064- Centre de Recherches en Transplantation et Immunologie (CRTI), Transgenic Rats ImmunoPhenomic facility, Nantes, France
| | - Ignacio Anegon
- INSERM UMR 1064- Centre de Recherches en Transplantation et Immunologie (CRTI), Transgenic Rats ImmunoPhenomic facility, Nantes, France
| | - Kévin Nay
- Laboratory Movement, Sport, and Health Sciences (M2S-EA7470), University Rennes 2–Ecole Normale Supérieure (ENS) Rennes, Bruz, France
| | - Frédéric Derbré
- Laboratory Movement, Sport, and Health Sciences (M2S-EA7470), University Rennes 2–Ecole Normale Supérieure (ENS) Rennes, Bruz, France
| | - Pierre Brissot
- INSERM, Univ Rennes, INRA, Platform Analyse Elémentaire et Métabolisme des Métaux, UMR 1241 Institut NuMeCan (Nutrition, Metabolism, and Cancer), Centre Hospitalier Universitaire (CHU) Pontchaillou, Rennes, France
| | - Martine Ropert
- INSERM, Univ Rennes, INRA, Platform Analyse Elémentaire et Métabolisme des Métaux, UMR 1241 Institut NuMeCan (Nutrition, Metabolism, and Cancer), Centre Hospitalier Universitaire (CHU) Pontchaillou, Rennes, France
| | - Thibault Cavey
- INSERM, Univ Rennes, INRA, Platform Analyse Elémentaire et Métabolisme des Métaux, UMR 1241 Institut NuMeCan (Nutrition, Metabolism, and Cancer), Centre Hospitalier Universitaire (CHU) Pontchaillou, Rennes, France
| | - Olivier Loréal
- INSERM, Univ Rennes, INRA, Platform Analyse Elémentaire et Métabolisme des Métaux, UMR 1241 Institut NuMeCan (Nutrition, Metabolism, and Cancer), Centre Hospitalier Universitaire (CHU) Pontchaillou, Rennes, France
| |
Collapse
|
5
|
Mukhopadhyay BP. Insights from molecular dynamics simulation of human ceruloplasmin (ferroxidase enzyme) binding with biogenic monoamines. Bioinformation 2019; 15:750-759. [PMID: 31831958 PMCID: PMC6900326 DOI: 10.6026/97320630015750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 11/23/2022] Open
Abstract
Human ceruloplasmin (hCP) is a multi-copper oxidase with ferroxidase and amine oxidase activities. Molecular dynamics simulation (MDS) and docking analysis of biogenic monoamines with ceruloplasmin explain the role of Asp1025, Glu935, Glu272, Glu232 and Glu230 together with the binding site water molecules (referred as conserved water molecules) in the stabilization of neurotransmitter (Serotonin, Norepinephrine and Epinephrine) molecules within the binding cavity of hCP. Conserved water molecules are found at specific positions interacting with the protein structures that have sequence similarity. The ethylamine side chain nitrogen atom (N1) of neurotransmitter molecules interacts with water molecules in the binding cavity formed by Asp1025, Glu935 and Glu232 residues. These residues form an acidic triad mimicking a substrate binding cavity. The hydroxyl groups attached to the catechol ring of epinephrine and norepinephrine have been stabilized by Asp230 and Asp232 residues. Data suggests that the recognition of biogenic amines mediates through the N+(amine) ...Asp1025-His1026-CuCis-His path. The potential recognition path of biogenic monoamines to trinuclear copper cluster supported by active site water molecules (referred as conserved water molecules) is described in this report.
Collapse
|
6
|
Mukhopadhyay BP. Recognition dynamics of trinuclear copper cluster and associated histidine residues through conserved or semi-conserved water molecules in human Ceruloplasmin: The involvement of aspartic and glutamic acid gates. J Biomol Struct Dyn 2017; 36:3829-3842. [PMID: 29148316 DOI: 10.1080/07391102.2017.1401003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Human Ceruloplasmin belongs to the family of multi-copper oxidases and it is involved in different physiological processes, copper ion transport, iron metabolism, iron homeostasis, and biogenic amine metabolism. MD-simulation studies have indicated the higher hydrophilic susceptibility of the trinuclear copper cluster in native CP compared to its oxygen bound form. The copper (T2/T3) atom Cu3047 of the cluster, which is close to T1 copper center Cu3052 (~13 Å) has a higher affinity for water molecules compared to other copper centers. The water molecules of W3, W4, W5, W9, and W12 conserved water sites are coordinated to Cu3047, where W3, W9, and W12 centers are found to play some crucial role in the stabilization of native trinuclear copper cluster. The hydrogen bonding interaction of Asp169, Glu112, Asp995, and Glu1032 residues with the copper-bound conserved water molecules (W3, W4, W5, W10, and W11) in native CP is observed to be unique. The conformational flexibility of Asp169 and Glu112 and their association with the copper-bound water molecules, but the absence of such interaction in O2-bound simulated structure of the enzyme is indicating some plausible rational on the role of these acidic residues in the gating of O2 molecule in the native trinuclear Cu cluster of CP. The simulation results may shade some new light on the biochemistry/chemistry of CP, specially on the hydration dynamics of the trinuclear copper cluster.
Collapse
|
7
|
Kawabata H. The mechanisms of systemic iron homeostasis and etiology, diagnosis, and treatment of hereditary hemochromatosis. Int J Hematol 2017; 107:31-43. [PMID: 29134618 DOI: 10.1007/s12185-017-2365-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023]
Abstract
Hereditary hemochromatosis (HH) is a group of genetic iron overload disorders that manifest with various symptoms, including hepatic dysfunction, diabetes, and cardiomyopathy. Classic HH type 1, which is common in Caucasians, is caused by bi-allelic mutations of HFE. Severe types of HH are caused by either bi-allelic mutations of HFE2 that encodes hemojuvelin (type 2A) or HAMP that encodes hepcidin (type 2B). HH type 3, which is of intermediate severity, is caused by bi-allelic mutations of TFR2 that encodes transferrin receptor 2. Mutations of SLC40A1 that encodes ferroportin, the only cellular iron exporter, causes either HH type 4A (loss-of-function mutations) or HH type 4B (gain-of-function mutations). Studies on these gene products uncovered a part of the mechanisms of the systemic iron regulation; HFE, hemojuvelin, and TFR2 are involved in iron sensing and stimulating hepcidin expression, and hepcidin downregulates the expression of ferroportin of the target cells. Phlebotomy is the standard treatment for HH, and early initiation of the treatment is essential for preventing irreversible organ damage. However, because of the rarity and difficulty in making the genetic diagnosis, a large proportion of patients with non-HFE HH might have been undiagnosed; therefore, awareness of this disorder is important.
Collapse
Affiliation(s)
- Hiroshi Kawabata
- Department of Hematology and Immunology, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Ishikawa-ken, 920-0293, Japan.
| |
Collapse
|
8
|
Nagata S, Ikegaya N, Ogino S, Uchida S, Itaya M, Momita A, Shinozaki S, Ohura M, Kuriki K, Kono S, Miyajima H, Hishida A. The Resection of Thyroid Cancer Was Associated with the Resolution of Hyporesponsiveness to an Erythropoiesis-stimulating Agent in a Hemodialysis Patient with Aceruloplasminemia. Intern Med 2017; 56:805-810. [PMID: 28381747 PMCID: PMC5457924 DOI: 10.2169/internalmedicine.56.7455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We herein report the case of a hemodialysis patient whose response to an erythropoiesis-stimulating agent (ESA) improved following the resection of thyroid cancer. Her hemoglobin level remained below 7 g/dL, despite the use of ESA. During the search for the causes of her hyporesponsiveness to ESA, papillary thyroid cancer and aceruloplasminemia were found. The existence of other potential causes, such as iron deficiency, infectious disease, severe hyperparathyroidism and malnutrition were ruled out. Following the resection of the thyroid cancer tumor, her hemoglobin level increased to 10.2 g/dL over a period of 4 months. This is the first report to demonstrate the resolution of hyporesponsiveness to ESA following the resection of a malignant tumor.
Collapse
|
9
|
Freestone D, Denoyer D, Jakab M, Leigh Ackland M, Cater MA, Michalczyk A. Ceruloplasmin is regulated by copper and lactational hormones in PMC42-LA mammary epithelial cell culture models. Metallomics 2016; 8:941-50. [PMID: 27426449 DOI: 10.1039/c6mt00086j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ceruloplasmin (Cp) is a multicopper ferroxidase that is considered to be an important source of copper in milk for normal neonatal development. We investigated the expression, subcellular localization and secretion of Cp in PMC42-LA cell culture models representative of resting, lactating and suckled human mammary epithelia. Both secreted Cp (sCp) and plasma membrane associated glycosylphosphatidylinositol-linked Cp (GPI-Cp) were expressed in PMC42-LA cells. In all three epithelial models (resting, lactating and suckled), the expression and secretion of copper-bound, ferroxidase active, Cp (holo-Cp) was dependent on media copper concentration. In low copper (bathocuproinedisulphonic acid/d-penicillamine treated models) there was greater than a 2-fold decrease in holo-Cp expression and secretion, which was mirrored by a 2-fold increase in the expression and secretion of copper-free Cp protein (apo-Cp). Cell surface biotinylation studies revealed that the state of PMC42-LA cell differentiation (functionality), and the level of extracellular copper, had no significant effect on the level of plasma membrane bound GPI-Cp. Quantitative real time PCR analyses determined that there was no significant (P > 0.05) difference in Cp mRNA levels across all copper conditions investigated (0, 5, 50 μM). However, there was a significant (P < 0.05) increase (∼2-fold) in Cp mRNA in both the lactating and suckled models in comparison to the resting model. Furthermore, the Cp mRNA increase in response to PMC42-LA differentiation corresponded with more secreted Cp protein, both apo and holo forms, indicating a link between function and Cp requirement. Our results provide significant insight on the regulation of Cp expression and secretion in lactation and copper incorporation into milk.
Collapse
Affiliation(s)
- David Freestone
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia.
| | | | | | | | | | | |
Collapse
|
10
|
Vroegindeweij LHP, van der Beek EH, Boon AJW, Hoogendoorn M, Kievit JA, Wilson JHP, Langendonk JG. Aceruloplasminemia presents as Type 1 diabetes in non-obese adults: a detailed case series. Diabet Med 2015; 32:993-1000. [PMID: 25661792 DOI: 10.1111/dme.12712] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2015] [Indexed: 11/27/2022]
Abstract
AIM To detect features that might lead to the early diagnosis and treatment of aceruloplasminemia, as initiation of treatment before the onset of neurological symptoms is likely to prevent neurological deterioration. METHODS The PubMed and OMIM databases were searched for published cases of aceruloplasminemia. Diagnostic criteria for aceruloplasminemia were undetectable or very low serum ceruloplasmin, hyperferritinemia and low transferrin saturation. Clinical, biochemical and radiological data on the presentation and follow-up of the cases were extracted and completed through e-mail contact with all authors. RESULTS We present an overview of 55 aceruloplasminemia cases, including three previously unreported cases. Diabetes mellitus was the first symptom related to aceruloplasminemia in 68.5% of the patients, manifesting at a median age of 38.5 years, and often accompanied by microcytic or normocytic anaemia. The combination preceded neurological symptoms in almost 90% of the neurologically symptomatic patients and was found 12.5 years before the onset of neurological symptoms. CONCLUSIONS There is a diagnostic window during which diabetes and anaemia are present although there is an absence of neurological symptoms. Screening for aceruloplasminemia in adult non-obese individuals presenting with antibody-negative, insulin-dependent diabetes mellitus and unexplained anaemia is recommended. The combination of ferritin and transferrin saturation provides a sensitive initial measure for aceruloplasminemia.
Collapse
Affiliation(s)
- L H P Vroegindeweij
- Department of Internal Medicine, Centre for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - E H van der Beek
- Department of Internal Medicine, Centre for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - A J W Boon
- Department of Neurology, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - M Hoogendoorn
- Department of Haematology, Medical Centre Leeuwarden, Leeuwarden, The Netherlands
| | - J A Kievit
- Department of Clinical Genetics, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - J H P Wilson
- Department of Internal Medicine, Centre for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - J G Langendonk
- Department of Internal Medicine, Centre for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
11
|
Braidy N, Poljak A, Marjo C, Rutlidge H, Rich A, Jayasena T, Inestrosa NC, Sachdev P. Metal and complementary molecular bioimaging in Alzheimer's disease. Front Aging Neurosci 2014; 6:138. [PMID: 25076902 PMCID: PMC4098123 DOI: 10.3389/fnagi.2014.00138] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 06/09/2014] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the elderly, affecting over 27 million people worldwide. AD represents a complex neurological disorder which is best understood as the consequence of a number of interconnected genetic and lifestyle variables, which culminate in multiple changes to brain structure and function. These can be observed on a gross anatomical level in brain atrophy, microscopically in extracellular amyloid plaque and neurofibrillary tangle formation, and at a functional level as alterations of metabolic activity. At a molecular level, metal dyshomeostasis is frequently observed in AD due to anomalous binding of metals such as Iron (Fe), Copper (Cu), and Zinc (Zn), or impaired regulation of redox-active metals which can induce the formation of cytotoxic reactive oxygen species and neuronal damage. Metal chelators have been administered therapeutically in transgenic mice models for AD and in clinical human AD studies, with positive outcomes. As a result, neuroimaging of metals in a variety of intact brain cells and tissues is emerging as an important tool for increasing our understanding of the role of metal dysregulation in AD. Several imaging techniques have been used to study the cerebral metallo-architecture in biological specimens to obtain spatially resolved data on chemical elements present in a sample. Hyperspectral techniques, such as particle-induced X-ray emission (PIXE), energy dispersive X-ray spectroscopy (EDS), X-ray fluorescence microscopy (XFM), synchrotron X-ray fluorescence (SXRF), secondary ion mass spectrometry (SIMS), and laser ablation inductively coupled mass spectrometry (LA-ICPMS) can reveal relative intensities and even semi-quantitative concentrations of a large set of elements with differing spatial resolution and detection sensitivities. Other mass spectrometric and spectroscopy imaging techniques such as laser ablation electrospray ionization mass spectrometry (LA ESI-MS), MALDI imaging mass spectrometry (MALDI-IMS), and Fourier transform infrared spectroscopy (FTIR) can be used to correlate changes in elemental distribution with the underlying pathology in AD brain specimens. Taken together, these techniques provide new techniques to probe the pathobiology of AD and pave the way for identifying new therapeutic targets. The current review aims to discuss the advantages and challenges of using these emerging elemental and molecular imaging techniques, and highlight clinical achievements in AD research using bioimaging techniques.
Collapse
Affiliation(s)
- Nady Braidy
- Faculty of Medicine, Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales Sydney, NSW, Australia
| | - Anne Poljak
- Faculty of Medicine, Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales Sydney, NSW, Australia ; Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales Sydney, NSW, Australia ; Faculty of Medicine, School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | - Christopher Marjo
- Solid State and Elemental Analysis Unit, Mark Wainwright Analytical Centre, University of New South Wales Sydney, NSW, Australia
| | - Helen Rutlidge
- Solid State and Elemental Analysis Unit, Mark Wainwright Analytical Centre, University of New South Wales Sydney, NSW, Australia
| | - Anne Rich
- Solid State and Elemental Analysis Unit, Mark Wainwright Analytical Centre, University of New South Wales Sydney, NSW, Australia
| | - Tharusha Jayasena
- Faculty of Medicine, Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales Sydney, NSW, Australia
| | - Nibaldo C Inestrosa
- Faculty of Biological Sciences, Centre for Ageing and Regeneration, P. Catholic University of Chile Santiago, Chile
| | - Perminder Sachdev
- Faculty of Medicine, Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales Sydney, NSW, Australia ; Euroa Centre, Neuropsychiatric Institute, Prince of Wales Hospital Sydney, NSW, Australia
| |
Collapse
|
12
|
Musci G, Polticelli F, Bonaccorsi di Patti MC. Ceruloplasmin-ferroportin system of iron traffic in vertebrates. World J Biol Chem 2014; 5:204-215. [PMID: 24921009 PMCID: PMC4050113 DOI: 10.4331/wjbc.v5.i2.204] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/19/2014] [Indexed: 02/05/2023] Open
Abstract
Safe trafficking of iron across the cell membrane is a delicate process that requires specific protein carriers. While many proteins involved in iron uptake by cells are known, only one cellular iron export protein has been identified in mammals: ferroportin (SLC40A1). Ceruloplasmin is a multicopper enzyme endowed with ferroxidase activity that is found as a soluble isoform in plasma or as a membrane-associated isoform in specific cell types. According to the currently accepted view, ferrous iron transported out of the cell by ferroportin would be safely oxidized by ceruloplasmin to facilitate loading on transferrin. Therefore, the ceruloplasmin-ferroportin system represents the main pathway for cellular iron egress and it is responsible for physiological regulation of cellular iron levels. The most recent findings regarding the structural and functional features of ceruloplasmin and ferroportin and their relationship will be described in this review.
Collapse
|
13
|
Bardou-Jacquet E, Ben Ali Z, Beaumont-Epinette MP, Loreal O, Jouanolle AM, Brissot P. Non-HFE hemochromatosis: pathophysiological and diagnostic aspects. Clin Res Hepatol Gastroenterol 2014; 38:143-54. [PMID: 24321703 DOI: 10.1016/j.clinre.2013.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/04/2013] [Accepted: 11/13/2013] [Indexed: 02/04/2023]
Abstract
Rare genetic iron overload diseases are an evolving field due to major advances in genetics and molecular biology. Genetic iron overload has long been confined to the classical type 1 hemochromatosis related to the HFE C282Y mutation. Breakthroughs in the understanding of iron metabolism biology and molecular mechanisms led to the discovery of new genes and subsequently, new types of hemochromatosis. To date, four types of hemochromatosis have been identified: HFE-related or type1 hemochromatosis, the most frequent form in Caucasians, and four rare types, named type 2 (A and B) hemochromatosis (juvenile hemochromatosis due to hemojuvelin and hepcidin mutation), type 3 hemochromatosis (related to transferrin receptor 2 mutation), and type 4 (A and B) hemochromatosis (ferroportin disease). The diagnosis relies on the comprehension of the involved physiological defect that can now be explored by biological and imaging tools, which allow non-invasive assessment of iron metabolism. A multidisciplinary approach is essential to support the physicians in the diagnosis and management of those rare diseases.
Collapse
Affiliation(s)
- Edouard Bardou-Jacquet
- University Hospital of Rennes, French reference center for rare iron overload diseases of genetic origin, Rennes, France; University of Rennes1, Inserm UMR 991, 35000 Rennes, France; University Hospital of Rennes, Liver disease department, Rennes, France.
| | - Zeineb Ben Ali
- University Hospital of Rennes, French reference center for rare iron overload diseases of genetic origin, Rennes, France; University Hospital of Rennes, Liver disease department, Rennes, France
| | - Marie-Pascale Beaumont-Epinette
- University Hospital of Rennes, French reference center for rare iron overload diseases of genetic origin, Rennes, France; University Hospital of Rennes, Molecular Genetics Department, Rennes, France
| | - Olivier Loreal
- University Hospital of Rennes, French reference center for rare iron overload diseases of genetic origin, Rennes, France; University of Rennes1, Inserm UMR 991, 35000 Rennes, France
| | - Anne-Marie Jouanolle
- University Hospital of Rennes, French reference center for rare iron overload diseases of genetic origin, Rennes, France; University Hospital of Rennes, Molecular Genetics Department, Rennes, France
| | - Pierre Brissot
- University Hospital of Rennes, French reference center for rare iron overload diseases of genetic origin, Rennes, France; University of Rennes1, Inserm UMR 991, 35000 Rennes, France; University Hospital of Rennes, Liver disease department, Rennes, France
| |
Collapse
|
14
|
Multi-copper oxidases and human iron metabolism. Nutrients 2013; 5:2289-313. [PMID: 23807651 PMCID: PMC3738974 DOI: 10.3390/nu5072289] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/29/2013] [Accepted: 06/06/2013] [Indexed: 01/13/2023] Open
Abstract
Multi-copper oxidases (MCOs) are a small group of enzymes that oxidize their substrate with the concomitant reduction of dioxygen to two water molecules. Generally, multi-copper oxidases are promiscuous with regards to their reducing substrates and are capable of performing various functions in different species. To date, three multi-copper oxidases have been detected in humans—ceruloplasmin, hephaestin and zyklopen. Each of these enzymes has a high specificity towards iron with the resulting ferroxidase activity being associated with ferroportin, the only known iron exporter protein in humans. Ferroportin exports iron as Fe2+, but transferrin, the major iron transporter protein of blood, can bind only Fe3+ effectively. Iron oxidation in enterocytes is mediated mainly by hephaestin thus allowing dietary iron to enter the bloodstream. Zyklopen is involved in iron efflux from placental trophoblasts during iron transfer from mother to fetus. Release of iron from the liver relies on ferroportin and the ferroxidase activity of ceruloplasmin which is found in blood in a soluble form. Ceruloplasmin, hephaestin and zyklopen show distinctive expression patterns and have unique mechanisms for regulating their expression. These features of human multi-copper ferroxidases can serve as a basis for the precise control of iron efflux in different tissues. In this manuscript, we review the biochemical and biological properties of the three human MCOs and discuss their potential roles in human iron homeostasis.
Collapse
|
15
|
Abstract
Aceruloplasminemia is an inherited neurodegenerative disorder involving "neurodegeneration with brain iron accumulation," which is caused by genetic defects in the ceruloplasmin gene. Ceruloplasmin is a multicopper oxidase with ferroxidase activity that oxidizes ferrous iron following its transfer to extracellular transferrin. In the central nervous system, a glycosylphosphatidylinositol-linked ceruloplasmin bound to the cell membranes was found to be the major isoform of this protein. Aceruloplasminemia is characterized by diabetes, retinal degeneration, and progressive neurological symptoms, including extrapyramidal symptoms, ataxia, and dementia. Clinical and pathological studies and investigations of cell culture and murine models revealed that there is an iron-mediated cellular radical injury caused by a marked accumulation of iron in the affected parenchymal tissues. The aim of this chapter is to provide an overview of not only the clinical features, genetic and molecular pathogenesis, and treatment of aceruloplasminemia but also the biological and physiological features of iron metabolism.
Collapse
Affiliation(s)
- Satoshi Kono
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| |
Collapse
|
16
|
Mollbrink A, Holmström P, Sjöström M, Hultcrantz R, Eriksson LC, Stål P. Iron-regulatory gene expression during liver regeneration. Scand J Gastroenterol 2012; 47:591-600. [PMID: 22364558 DOI: 10.3109/00365521.2012.661761] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND In rat, the first 18-24 h after partial hepatectomy (PH) are characterized by an acute-phase reaction, after which liver regeneration predominates. Interleukin-6 (IL-6) induces the iron hormone hepcidin, which blocks iron uptake and may compromise iron uptake in the growing liver. The expressions of hepcidin and the iron-regulatory pathway of hepcidin gene expression during the late phase of liver regeneration are unknown. AIM To characterize the expression pattern of hepcidin and the iron-sensing pathway of hepcidin regulation during liver regeneration. METHODS Rats were subjected to PH or sham operation. Liver weights, number of S-phase nuclei, and serum levels of iron and IL-6 were determined. Messenger-RNA levels of hepcidin, ferritin, hemojuvelin, transferrin receptor 1 and 2, HFE, divalent metal transporter 1, ferroportin, and ceruloplasmin were determined with qPCR at different time points. Protein levels of STAT3 and SMAD4 were determined with western blot. RESULTS During the acute-phase response, IL-6 release induced STAT3 protein and hepcidin mRNA, whereas mRNA levels of proteins in the iron-sensing pathway (HFE, hemojuvelin, and transferrin receptor 2) decreased. The mRNA levels of proteins involved in cellular iron uptake were increased and cellular iron export unchanged. During liver regeneration >24 h after PH, gene expressions in the iron-sensing pathway were continuously suppressed and hepcidin mRNA levels declined 3-7 days after surgery. CONCLUSIONS Hepcidin gene expression peaks during the acute-phase response, but a sustained down-regulation of the iron-sensing pathway of hepcidin regulation gradually reduces hepcidin gene expression until regeneration is complete, thereby promoting iron mobilization to the regenerating liver.
Collapse
Affiliation(s)
- Annelie Mollbrink
- Department of Medicine, Karolinska University Hospital Huddinge, Division of Gastroenterology and Hepatology, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
17
|
Agostinis P, Vergendo M, Bizzaro N, Avellini C, Durigon N, Bardus P, Englaro A, Quaglio C, Di Piazza V. Una rara causa di osteonecrosi. ITALIAN JOURNAL OF MEDICINE 2012. [DOI: 10.1016/j.itjm.2011.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
18
|
Deugnier Y, Lainé F, Le Lan C, Bardou-Jacquet E, Jouanolle AM, Brissot P. Hémochromatoses et autres surcharges hépatiques en fer. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/s1155-1976(11)40364-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Harada M, Miyagawa K, Honma Y, Hiura M, Shibata M, Matsuhashi T, Abe S, Harada R, Tabaru A. Excess copper chelating therapy for Wilson disease induces anemia and liver dysfunction. Intern Med 2011; 50:1461-4. [PMID: 21757830 DOI: 10.2169/internalmedicine.50.5209] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 37-year-old man was diagnosed with Wilson disease at the age of 14. His first manifestations were neurological. He was treated with trientine for more than 10 years and suffered from anemia and liver dysfunction. Wilson disease is a genetic disorder characterized by accumulation of copper in the body. Excess copper is toxic, but copper is an essential trace element. Copper-binding ceruloplasmin is important for iron metabolism. Excess copper chelating treatment-induced anemia and iron deposition in the liver was suspected. Proper monitoring of copper status is important for the management of Wilson disease.
Collapse
Affiliation(s)
- Masaru Harada
- The Third Department of Internal Medicine, University of Occupational and Environmental Health, Japan School of Medicine, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kono S, Yoshida K, Tomosugi N, Terada T, Hamaya Y, Kanaoka S, Miyajima H. Biological effects of mutant ceruloplasmin on hepcidin-mediated internalization of ferroportin. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1802:968-975. [PMID: 20655381 DOI: 10.1016/j.bbadis.2010.07.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
Abstract
Ceruloplasmin plays an essential role in cellular iron efflux by oxidizing ferrous iron exported from ferroportin. Ferroportin is posttranslationally regulated through internalization triggered by hepcidin binding. Aceruloplasminemia is an autosomal recessive disorder of iron homeostasis resulting from mutations in the ceruloplasmin gene. The present study investigated the biological effects of glycosylphosphatidylinositol (GPI)-linked ceruloplasmin on the hepcidin-mediated internalization of ferroportin. The prevention of hepcidin-mediated ferroportin internalization was observed in the glioma cells lines expressing endogenous ceruloplasmin as well as in the cells transfected with GPI-linked ceruloplasmin under low levels of hepcidin. A decrease in the extracellular ferrous iron by an iron chelator and incubation with purified ceruloplasmin in the culture medium prevented hepcidin-mediated ferroportin internalization, while the reconstitution of apo-ceruloplasmin was not able to prevent ferroportin internalization. The effect of ceruloplasmin on the ferroportin stability was impaired due to three distinct properties of the mutant ceruloplasmin: namely, a decreased ferroxidase activity, the mislocalization in the endoplasmic reticulum, and the failure of copper incorporation into apo-ceruloplasmin. Patients with aceruloplasminemia exhibited low serum hepcidin levels and a decreased ferroportin protein expression in the liver. The in vivo findings supported the notion that under low levels of hepcidin, mutant ceruloplasmin cannot stabilize ferroportin because of a loss-of-function in the ferroxidase activity, which has been reported to play an important role in the stability of ferroportin. The properties of mutant ceruloplasmin regarding the regulation of ferroportin may therefore provide a therapeutic strategy for aceruloplasminemia patients.
Collapse
Affiliation(s)
- Satoshi Kono
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | | | | | | | | | | | | |
Collapse
|
21
|
Brissot P, Bardou-Jacquet E, Latournerie M, Ropert-Bouchet M, Island M, Loréal O, Jouanolle AM. Surcharges héréditaires en fer. ACTA ACUST UNITED AC 2010; 58:316-23. [DOI: 10.1016/j.patbio.2009.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 10/19/2009] [Indexed: 02/05/2023]
|
22
|
Merle U, Tuma S, Herrmann T, Muntean V, Volkmann M, Gehrke SG, Stremmel W. Evidence for a critical role of ceruloplasmin oxidase activity in iron metabolism of Wilson disease gene knockout mice. J Gastroenterol Hepatol 2010; 25:1144-50. [PMID: 20594231 DOI: 10.1111/j.1440-1746.2009.06173.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Wilson disease is a genetic disorder associated with copper overload due to mutations within the ATP7B gene. Although copper and iron metabolism are closely linked, the influence of mutations of the ATP7B gene on iron homeostasis is unknown. Therefore, the present study was carried out to elucidate iron metabolism in Atp7b(-/-) mice, an animal model of Wilson disease. METHODS Hepatic iron content, serum iron parameters and blood hemoglobin levels of Atp7b(-/-) mice and wild type mice were studied. Hepatic and duodenal expression of iron metabolism-related genes was measured quantitatively by real-time reverse transcription-polymerase chain reaction and post-translational expression of Dmt1 was analyzed by immunoblot. RESULTS Atp7b(-/-) mice displayed copper accumulation (P < 0.001), slightly elevated hepatic iron content (P = NS), and a low serum ceruloplasmin oxidase activity (1.5 +/- 1.9 U/L vs 18.9 +/- 4.0 U/L, P < 0.001) when compared with wild type mice. Serum iron, serum transferrin saturation, and blood hemoglobin levels were significantly lower in Atp7b(-/-) mice compared with controls (121.2 +/- 35.3 microg/dL vs 201.8 +/- 34.9 microg/dL (P < 0.001); 44.0 +/- 12.7% vs 68.0 +/- 8.2% (P < 0.001); and 12.7 +/- 0.2 g/dl vs 15.3 +/- 0.1 g/dl (P < 0.001), respectively). Hepatic mRNA expression of hepcidin, TfR-1, TfR-2, hemojuvelin, and Dmt1 + IRE did not differ significantly between Atp7b(-/-) and wild type mice. In the duodenum of Atp7b(-/-) mice Dmt1 + IRE and hephaestin did not show any differences in their mRNA levels compared with wild type mice, while Dcytb mRNA expression was 1.7-fold increased compared with wild type mice (P = 0.01). CONCLUSION Atp7b(-/-) mice demonstrated decreased serum iron parameters and hemoglobin levels most likely related to a low serum ceruloplasmin oxidase activity and not due to total body iron deficiency.
Collapse
Affiliation(s)
- Uta Merle
- Department of Gastroenterology, University Hospital, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
23
|
Brissot P. Les hémochromatoses. Nouvelle compréhension, nouveaux traitements. ACTA ACUST UNITED AC 2009; 33:859-67. [DOI: 10.1016/j.gcb.2009.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
|
25
|
di Patti MCB, Maio N, Rizzo G, De Francesco G, Persichini T, Colasanti M, Polticelli F, Musci G. Dominant mutants of ceruloplasmin impair the copper loading machinery in aceruloplasminemia. J Biol Chem 2009; 284:4545-54. [PMID: 19095659 DOI: 10.1074/jbc.m805688200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The multicopper oxidase ceruloplasmin plays a key role in iron homeostasis, and its ferroxidase activity is required to stabilize cell surface ferroportin, the only known mammalian iron exporter. Missense mutations causing the rare autosomal neurodegenerative disease aceruloplasminemia were investigated by testing their ability to prevent ferroportin degradation in rat glioma C6 cells silenced for endogenous ceruloplasmin. Most of the mutants did not complement (i.e. did not stabilize ferroportin) because of the irreversible loss of copper binding ability. Mutant R701W, which was found in a heterozygous very young patient with severe neurological problems, was unable to complement per se but did so in the presence of copper-glutathione or when the yeast copper ATPase Ccc2p was co-expressed, indicating that the protein was structurally able to bind copper but that metal loading involving the mammalian copper ATPase ATP7B was impaired. Notably, R701W exerted a dominant negative effect on wild type, and it induced the subcellular relocalization of ATP7B. Our results constitute the first evidence of "functional silencing" of ATP7B as a novel molecular defect in aceruloplasminemia. The possibility to reverse the deleterious effects of some aceruloplasminemia mutations may disclose new possible therapeutic strategies.
Collapse
|
26
|
Abstract
The cross-talk which has taken place in recent years between clinicians and scientists has resulted in a greater understanding of iron metabolism with the discovery of new iron-related genes including the hepcidin gene which plays a critical role in regulating systemic iron homeostasis. Consequently, the distinction between (a) genetic iron-overload disorders including haemochromatosis related to mutations in the HFE, hemojuvelin, transferrin receptor 2 and hepcidin genes and (b) non-haemochromatotic conditions related to mutations in the ferroportin, ceruloplasmin, transferrin and di-metal transporter 1 genes, and (c) acquired iron-overload syndromes has become easier. However, major challenges still remain which include our understanding of the regulation of hepcidin production, the identification of environmental and genetic modifiers of iron burden and organ damage in iron-overload syndromes, especially HFE haemochromatosis, indications regarding the new oral chelator, deferasirox, and the development of new therapeutic tools interacting with the regulation of iron metabolism.
Collapse
Affiliation(s)
- Yves Deugnier
- Service des maladies du Foie, INSERM CIC 0203, Université de Rennes 1 and IFR 140, CHU Pontchaillou, 35033 Rennes, France.
| | | | | |
Collapse
|
27
|
Lull ME, Carkaci-Salli N, Freeman WM, Myers JL, Midgley FM, Thomas NJ, Kimatian SJ, Vrana KE, Undar A. Plasma biomarkers in pediatric patients undergoing cardiopulmonary bypass. Pediatr Res 2008; 63:638-44. [PMID: 18317239 DOI: 10.1203/pdr.0b013e31816e391f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It is critical to identify at-risk patients and minimize the deleterious effects of cardiopulmonary bypass (CPB) procedures in pediatric populations. The present study screened the plasma proteome of pediatric patients undergoing CPB procedures to identify potential clinical biomarkers related to tissue damage, inflammation, or other pathologies. Blood samples were collected at five different time points from 10 children undergoing a CPB procedure. Plasma was isolated and analyzed using two-dimensional differential in-gel electrophoresis and matrix-assisted laser desorption ionization time of flight mass spectrometry. Levels of differentially regulated proteins identified by two-dimensional differential in-gel electrophoresis, and related proteins were then measured in all time points and patients. As well, associated small molecules and ions were measured. The present study identified 13 proteins and protein isoforms altered in expression, including hemopexin, ceruloplasmin, inter-alpha inhibitor H4, and alpha-2-macroglobulin. Immunoblot analysis revealed significant decreases in each of these proteins during the CPB procedure. Significant changes in the levels of copper, iron, Hb, epinephrine, norepinephrine, and serotonin were observed. The potential markers of pathology (inflammation, oxidative stress) identified during this preliminary study may illuminate opportunities for preventative measures and/or treatments during and following CPB procedures in pediatric patients.
Collapse
Affiliation(s)
- Melinda E Lull
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Brissot P, Troadec MB, Bardou-Jacquet E, Le Lan C, Jouanolle AM, Deugnier Y, Loréal O. Current approach to hemochromatosis. Blood Rev 2008; 22:195-210. [PMID: 18430498 DOI: 10.1016/j.blre.2008.03.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iron overload diseases of genetic origin are an ever changing world, due to major advances in genetics and molecular biology. Five major categories are now established: HFE-related or type1 hemochromatosis, frequently found in Caucasians, and four rarer diseases which are type 2 (A and B) hemochromatosis (juvenile hemochromatosis), type 3 hemochromatosis (transferrin receptor 2 hemochromatosis), type 4 (A and B) hemochromatosis (ferroportin disease), and a(hypo)ceruloplasminemia. Increased duodenal iron absorption and enhanced macrophagic iron recycling, both due to an impairment of hepcidin synthesis, account for the development of cellular excess in types 1, 2, 3, and 4B hemochromatosis whereas decreased cellular iron egress is involved in the main form of type 4A) hemochromatosis and in aceruloplasminemia. Non-transferrin bound iron plays an important role in cellular iron excess and damage. The combination of magnetic resonance imaging (for diagnosing visceral iron overload) and of genetic testing has drastically reduced the need for liver biopsy. Phlebotomies remain an essential therapeutic tool but the improved understanding of the intimate mechanisms underlying these diseases paves the road for innovative therapeutic approaches.
Collapse
Affiliation(s)
- Pierre Brissot
- Liver Disease Unit, Liver Research Unit Inserm U-522, IFR 140, University of Rennes1, Hemochromatosis Reference Center, Laboratory of Molecular Genetics, University Hospital Pontchaillou, Rennes, France.
| | | | | | | | | | | | | |
Collapse
|
29
|
Kono S, Suzuki H, Oda T, Shirakawa K, Takahashi Y, Kitagawa M, Miyajima H. Cys-881 is essential for the trafficking and secretion of truncated mutant ceruloplasmin in aceruloplasminemia. J Hepatol 2007; 47:844-50. [PMID: 17637479 DOI: 10.1016/j.jhep.2007.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 05/09/2007] [Accepted: 05/12/2007] [Indexed: 01/30/2023]
Abstract
BACKGROUND/AIMS Aceruloplasminemia is an inherited iron overload disorder caused by a mutation in the ceruloplasmin gene and characterized by iron accumulation in both the liver and brain. The aim of this study was to elucidate the molecular pathogenesis of aceruloplasminemia by a functional analysis of mutant ceruloplasmin. METHODS The effects of nonsense mutations including Y694ter, W858ter and R882ter were studied by the expression in cultured cells. RESULTS A biogenesis study demonstrated that the Y694ter and W858ter mutants showed protein synthesis identical to that of wild type protein, however, the mutants were retained in the endoplasmic reticulum (ER), while R882ter mutant was secreted out. Site-directed mutagenesis analyses suggested that Cys-881 was necessary for the secretion of the truncated ceruloplasmin. The W858ter mutant decreased viability in the transfected cells. The expression and the promoter activity of glucose-regulated protein 78 that is an ER stress sensor protein, were up-regulated in the transfected cells. CONCLUSIONS The truncated mutant containing Cys-881 was able to pass through the ER and was secreted, while the truncated mutant protein without Cys-881 appeared to accumulate in the ER thus leading to ER stress and eventually resulting in cell death.
Collapse
Affiliation(s)
- Satoshi Kono
- First Department of Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan.
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Although progress in imaging and genetics allow for a noninvasive diagnosis of most cases of genetic iron overload, liver pathology remains often useful (1) to assess prognosis by grading fibrosis and seeking for associated lesions and (2) to guide the etiological diagnosis, especially when no molecular marker is available. Then, the type of liver siderosis (parenchymal, mesenchymal or mixed) and its distribution throughout the lobule and the liver are useful means for suggesting its etiology: HLA-linked hemochromatosis gene (HFE) hemochromatosis or other rare genetic hemochromatosis, nonhemochromatotic genetic iron overload (ferroportin disease, aceruloplasminemia), or iron overload secondary to excessive iron supply, inflammatory syndrome, noncirrhotic chronic liver diseases including dysmetabolic iron overload syndrome, cirrhosis, and blood disorders.
Collapse
Affiliation(s)
- Yves Deugnier
- Liver Unit and CIC INSERM 0203, Pontchaillou University Hospital, Rennes 35033, France.
| | | |
Collapse
|
31
|
Kohgo Y, Ikuta K, Ohtake T, Torimoto Y, Kato J. Iron overload and cofactors with special reference to alcohol, hepatitis C virus infection and steatosis/insulin resistance. World J Gastroenterol 2007; 13:4699-706. [PMID: 17729391 PMCID: PMC4611191 DOI: 10.3748/wjg.v13.i35.4699] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There are several cofactors which affect body iron metabolism and accelerate iron overload. Alcohol and hepatic viral infections are the most typical examples for clarifying the role of cofactors in iron overload. In these conditions, iron is deposited in hepatocytes and Kupffer cells and reactive oxygen species (ROS) produced through Fenton reaction have key role to facilitate cellular uptake of transferrin-bound iron. Furthermore, hepcidin, antimicrobial peptide produced mainly in the liver is also responsible for intestinal iron absorption and reticuloendothelial iron release. In patients with ceruloplasmin deficiency, anemia and secondary iron overload in liver and neurodegeneration are reported. Furthermore, there is accumulating evidence that fatty acid accumulation without alcohol and obesity itself modifies iron overload states. Ineffective erythropoiesis is also an important factor to accelerate iron overload, which is associated with diseases such as thalassemia and myelodysplastic syndrome. When this condition persists, the dietary iron absorption is increased due to the increment of bone marrow erythropoiesis and tissue iron overload will thereafter occurs. In porphyria cutanea tarda, iron is secondarily accumulated in the liver.
Collapse
Affiliation(s)
- Yutaka Kohgo
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical College, Midorigaoka-higashi 2-1, Asahikawa 078-8510, Japan.
| | | | | | | | | |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Recent papers on disorders of the liver and biliary tract which clarify their pathogenesis and attendant morphologic changes are highlighted. RECENT FINDINGS The concept of 'bystander hepatitis' was cited in studies showing hepatic infiltration of CD8-positive T cells in the setting of extrahepatic infections such as influenza virus and severe acute respiratory syndrome. Diabetic liver lesions include glycogenic hepatopathy (in which poor diabetic control leads to swollen, glycogen-filled hepatocytes without fat, steatohepatitis or fibrosis) and diabetic hepatosclerosis in which there is diffuse perisinusoidal fibrosis (type IV collagen) without zonal predilection. Ground-glass hepatocellular inclusions (positive with periodic acid-Schiff stain for glycogen) were reported in three separate series of patients who were hepatitis B virus-negative, often transplant recipients, immunosuppressed and on multiple medications. A Banff consensus paper expertly compared and contrasted the histologic features which characterize the various causes of late liver allograft dysfunction. SUMMARY Informative papers emerged this past year concerning collateral damage to the liver in extrahepatic infections, diabetic lesions and causes of liver dysfunction after transplantation, among other topics.
Collapse
Affiliation(s)
- Jay H Lefkowitch
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA.
| |
Collapse
|