1
|
Yao X, Xu K, Tao N, Cheng S, Chen H, Zhang D, Yang M, Tan M, Yu H, Chen P, Zhan Z, He S, Li R, Wang C, Wu D, Ren J. ZNF148 inhibits HBV replication by downregulating RXRα transcription. Virol J 2024; 21:35. [PMID: 38297280 PMCID: PMC10832224 DOI: 10.1186/s12985-024-02291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Progressive hepatitis B virus (HBV) infection can result in cirrhosis, hepatocellular cancer, and chronic hepatitis. While antiviral drugs that are now on the market are efficient in controlling HBV infection, finding a functional cure is still quite difficult. Identifying host factors involved in regulating the HBV life cycle will contribute to the development of new antiviral strategies. Zinc finger proteins have a significant function in HBV replication, according to earlier studies. Zinc finger protein 148 (ZNF148), a zinc finger transcription factor, regulates the expression of various genes by specifically binding to GC-rich sequences within promoter regions. The function of ZNF148 in HBV replication was investigated in this study. METHODS HepG2-Na+/taurocholate cotransporting polypeptide (HepG2-NTCP) cells and Huh7 cells were used to evaluate the function of ZNF148 in vitro. Northern blotting and real-time PCR were used to quantify the amount of viral RNA. Southern blotting and real-time PCR were used to quantify the amount of viral DNA. Viral protein levels were elevated, according to the Western blot results. Dual-luciferase reporter assays were used to examine the transcriptional activity of viral promoters. ZNF148's impact on HBV in vivo was investigated using an established rcccDNA mouse model. RESULTS ZNF148 overexpression significantly decreased the levels of HBV RNAs and HBV core DNA in HBV-infected HepG2-NTCP cells and Huh7 cells expressing prcccDNA. Silencing ZNF148 exhibited the opposite effects in both cell lines. Furthermore, ZNF148 inhibited the activity of HBV ENII/Cp and the transcriptional activity of cccDNA. Mechanistic studies revealed that ZNF148 attenuated retinoid X receptor alpha (RXRα) expression by binding to the RXRα promoter sequence. RXRα binding site mutation or RXRα overexpression abolished the suppressive effect of ZNF148 on HBV replication. The inhibitory effect of ZNF148 was also observed in the rcccDNA mouse model. CONCLUSIONS ZNF148 inhibited HBV replication by downregulating RXRα transcription. Our findings reveal that ZNF148 may be a new target for anti-HBV strategies.
Collapse
Affiliation(s)
- Xinyan Yao
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chong Yi Building, 1 YiXueYuan Road, Yuzhong District, Chongqing, 400016, China
| | - Kexin Xu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chong Yi Building, 1 YiXueYuan Road, Yuzhong District, Chongqing, 400016, China
| | - Nana Tao
- Department of Clinical Laboratory, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Shengtao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chong Yi Building, 1 YiXueYuan Road, Yuzhong District, Chongqing, 400016, China
| | - Huajian Chen
- Department of Clinical Laboratory, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Dapeng Zhang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chong Yi Building, 1 YiXueYuan Road, Yuzhong District, Chongqing, 400016, China
| | - Minli Yang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chong Yi Building, 1 YiXueYuan Road, Yuzhong District, Chongqing, 400016, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chong Yi Building, 1 YiXueYuan Road, Yuzhong District, Chongqing, 400016, China
| | - Haibo Yu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chong Yi Building, 1 YiXueYuan Road, Yuzhong District, Chongqing, 400016, China
| | - Peng Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chong Yi Building, 1 YiXueYuan Road, Yuzhong District, Chongqing, 400016, China
| | - Zongzhu Zhan
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chong Yi Building, 1 YiXueYuan Road, Yuzhong District, Chongqing, 400016, China
| | - Siyi He
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chong Yi Building, 1 YiXueYuan Road, Yuzhong District, Chongqing, 400016, China
| | - Ranran Li
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chong Yi Building, 1 YiXueYuan Road, Yuzhong District, Chongqing, 400016, China
| | - Chunduo Wang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chong Yi Building, 1 YiXueYuan Road, Yuzhong District, Chongqing, 400016, China
| | - Daiqing Wu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chong Yi Building, 1 YiXueYuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Jihua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chong Yi Building, 1 YiXueYuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
2
|
Zou C, Zan X, Jia Z, Zheng L, Gu Y, Liu F, Han Y, Xu C, Wu A, Zhi Q. Crosstalk between alternative splicing and inflammatory bowel disease: Basic mechanisms, biotechnological progresses and future perspectives. Clin Transl Med 2023; 13:e1479. [PMID: 37983927 PMCID: PMC10659771 DOI: 10.1002/ctm2.1479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/07/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Alternative splicing (AS) is an omnipresent regulatory mechanism of gene expression that enables the generation of diverse splice isoforms from a single gene. Recently, AS events have gained considerable momentum in the pathogenesis of inflammatory bowel disease (IBD). METHODS Our review has summarized the complex process of RNA splicing, and firstly highlighted the potential involved molecules that target aberrant splicing events in IBD. The quantitative transcriptome analyses such as microarrays, next-generation sequencing (NGS) for AS events in IBD have been also discussed. RESULTS Available evidence suggests that some abnormal splicing RNAs can lead to multiple intestinal disorders during the onset of IBD as well as the progression to colitis-associated cancer (CAC), including gut microbiota perturbations, intestinal barrier dysfunctions, innate/adaptive immune dysregulations, pro-fibrosis activation and some other risk factors. Moreover, current data show that the advanced technologies, including microarrays and NGS, have been pioneeringly employed to screen the AS candidates and elucidate the potential regulatory mechanisms of IBD. Besides, other biotechnological progresses such as the applications of third-generation sequencing (TGS), single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST), will be desired with great expectations. CONCLUSIONS To our knowledge, the current review is the first one to evaluate the potential regulatory mechanisms of AS events in IBD. The expanding list of aberrantly spliced genes in IBD along with the developed technologies provide us new clues to how IBD develops, and how these important AS events can be explored for future treatment.
Collapse
Affiliation(s)
- Chentao Zou
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xinquan Zan
- Department of General SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zhenyu Jia
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Lu Zheng
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yijie Gu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Fei Liu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Ye Han
- Department of General SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Chunfang Xu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Airong Wu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Qiaoming Zhi
- Department of General SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
3
|
Genomic profiling of the transcription factor Zfp148 and its impact on the p53 pathway. Sci Rep 2020; 10:14156. [PMID: 32843651 PMCID: PMC7447789 DOI: 10.1038/s41598-020-70824-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
Recent data suggest that the transcription factor Zfp148 represses activation of the tumor suppressor p53 in mice and that therapeutic targeting of the human orthologue ZNF148 could activate the p53 pathway without causing detrimental side effects. We have previously shown that Zfp148 deficiency promotes p53-dependent proliferation arrest of mouse embryonic fibroblasts (MEFs), but the underlying mechanism is not clear. Here, we showed that Zfp148 deficiency downregulated cell cycle genes in MEFs in a p53-dependent manner. Proliferation arrest of Zfp148-deficient cells required increased expression of ARF, a potent activator of the p53 pathway. Chromatin immunoprecipitation showed that Zfp148 bound to the ARF promoter, suggesting that Zfp148 represses ARF transcription. However, Zfp148 preferentially bound to promoters of other transcription factors, indicating that deletion of Zfp148 may have pleiotropic effects that activate ARF and p53 indirectly. In line with this, we found no evidence of genetic interaction between TP53 and ZNF148 in CRISPR and siRNA screen data from hundreds of human cancer cell lines. We conclude that Zfp148 deficiency, by increasing ARF transcription, downregulates cell cycle genes and cell proliferation in a p53-dependent manner. However, the lack of genetic interaction between ZNF148 and TP53 in human cancer cells suggests that therapeutic targeting of ZNF148 may not increase p53 activity in humans.
Collapse
|
4
|
Nilton A, Sayin VI, Zou ZV, Sayin SI, Bondjers C, Gul N, Agren P, Fogelstrand P, Nilsson O, Bergo MO, Lindahl P. Targeting Zfp148 activates p53 and reduces tumor initiation in the gut. Oncotarget 2018; 7:56183-56192. [PMID: 27487143 PMCID: PMC5302905 DOI: 10.18632/oncotarget.10899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/13/2016] [Indexed: 12/30/2022] Open
Abstract
The transcription factor Zinc finger protein 148 (Zfp148, ZBP-89, BFCOL, BERF1, htβ) interacts physically with the tumor suppressor p53, but the significance of this interaction is not known. We recently showed that knockout of Zfp148 in mice leads to ectopic activation of p53 in some tissues and cultured fibroblasts, suggesting that Zfp148 represses p53 activity. Here we hypothesize that targeting Zfp148 would unleash p53 activity and protect against cancer development, and test this idea in the APCMin/+ mouse model of intestinal adenomas. Loss of one copy of Zfp148 markedly reduced tumor numbers and tumor-associated intestinal bleedings, and improved survival. Furthermore, after activation of β-catenin-the initiating event in colorectal cancer-Zfp148 deficiency activated p53 and induced apoptosis in intestinal explants of APCMin/+ mice. The anti-tumor effect of targeting Zfp148 depended on p53, as Zfp148 deficiency did not affect tumor numbers in APCMin/+ mice lacking one or both copies of Trp53. The results suggest that Zfp148 controls the fate of newly transformed intestinal tumor cells by repressing p53 and that targeting Zfp148 might be useful in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Anna Nilton
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden
| | - Volkan I Sayin
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden.,Department of Biochemistry, Institute of Biomedicine, Gothenburg, Sweden
| | - Zhiyuan V Zou
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden
| | - Sama I Sayin
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden
| | - Cecilia Bondjers
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden
| | - Nadia Gul
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden
| | - Pia Agren
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden
| | - Per Fogelstrand
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden
| | - Ola Nilsson
- Sahlgrenska Cancer Center, Institute of Biomedicine, Department of Pathology and Genetics, Gothenburg, Sweden
| | - Martin O Bergo
- Sahlgrenska Cancer Center, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Per Lindahl
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden.,Department of Biochemistry, Institute of Biomedicine, Gothenburg, Sweden
| |
Collapse
|
5
|
ZBP-89 function in colonic stem cells and during butyrate-induced senescence. Oncotarget 2017; 8:94330-94344. [PMID: 29212231 PMCID: PMC5706877 DOI: 10.18632/oncotarget.21698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/08/2017] [Indexed: 01/29/2023] Open
Abstract
ZBP-89 (Zfp148, ZNF148) is a Kruppel-type zinc-finger family transcription factor that binds to GC-rich DNA elements. Earlier studies in cell lines demonstrated that ZBP-89 cooperates with Wnt β-catenin signaling by inducing β-catenin gene expression. Since β-catenin levels are normally highest at the crypt base, we examined whether ZBP-89 is required for stem cell maintenance. Lineage-tracing using a Zfp148CreERT2 transgenic line demonstrated expression in both intestine and colonic stem cells. Deleting the Zfp148 locus in the colon using the Cdx2NLSCreERT2 transgene, reduced the size and number of polyps formed in the Apc-deleted mice. Since colon polyps form in the presence of butyrate, a short chain fatty acid that suppresses cell growth, we examined the direct effect of butyrate on colon organoid survival. Butyrate induced senescence of colon organoids carrying the Apc deletion, only when Zfp148 was deleted. Using quantitative PCR and chromatin immunoprecipitation, we determined that butyrate treatment of colon cell lines suppressed ZNF148 gene expression, inducing CDKN2a (p16Ink4a ) gene expression. Collectively, Zfp148 mRNA is expressed in CBCs, and is required for stem cell maintenance and colonic transformation. Butyrate induces colonic cell senescence in part through suppression of ZBP-89 gene expression and its subsequent occupancy of the CDKN2A promoter.
Collapse
|
6
|
GSK-3β phosphorylation-dependent degradation of ZNF281 by β-TrCP2 suppresses colorectal cancer progression. Oncotarget 2017; 8:88599-88612. [PMID: 29179460 PMCID: PMC5687630 DOI: 10.18632/oncotarget.20100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/13/2017] [Indexed: 01/06/2023] Open
Abstract
Zinc finger protein 281 (ZNF281) has been recently shown to be critical for CRC progression. However, the immediate upstream regulators of ZNF281 remain unclear. Here we reported that the E3 ligase the β-transducin repeat-containing protein 2 (β-TrCP2) governs the ubiquitination and degradation of ZNF281. In human CRC specimens, endogenous β-TrCP2 were inversely correlated with ZNF281. Beta-TrCP2 reversed the phenotype of CRC cell with overexpressed ZNF281. Moreover, we found that glycogen synthase kinase 3β (GSK-3β), not GSK-α, could bind to and phosphorylate ZNF281 at one consensus motif (TSGEHS; phosphorylation site is shown in italics), which promotes the interaction of ZNF281 with β-TrCP2, not β-TrCP1, and leads to the subsequent ubiquitination and degradation of phosphorylated ZNF281. A mutant of ZNF281 (ZNF281-S638A) is much more stable than wild-type ZNF281 because ZNF281-S638A mutant abolishes the phosphorylation by GSK-3β and can not be ubiquitinated and degraded by β-TrCP2. Conversely, ZNF281 transcriptionally repressed the expression of β-TrCP2, indicating a negative feedback loop between ZNF281 and β-TrCP2 in CRC cells. These findings suggest that the turnover of ZNF281 by β-TrCP2 might provide a potentially novel treatment for patients with CRC.
Collapse
|
7
|
Fang J, Jia J, Makowski M, Xu M, Wang Z, Zhang T, Hoskins JW, Choi J, Han Y, Zhang M, Thomas J, Kovacs M, Collins I, Dzyadyk M, Thompson A, O'Neill M, Das S, Lan Q, Koster R, Stolzenberg-Solomon RS, Kraft P, Wolpin BM, Jansen PWTC, Olson S, McGlynn KA, Kanetsky PA, Chatterjee N, Barrett JH, Dunning AM, Taylor JC, Newton-Bishop JA, Bishop DT, Andresson T, Petersen GM, Amos CI, Iles MM, Nathanson KL, Landi MT, Vermeulen M, Brown KM, Amundadottir LT. Functional characterization of a multi-cancer risk locus on chr5p15.33 reveals regulation of TERT by ZNF148. Nat Commun 2017; 8:15034. [PMID: 28447668 PMCID: PMC5414179 DOI: 10.1038/ncomms15034] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/23/2017] [Indexed: 12/13/2022] Open
Abstract
Genome wide association studies (GWAS) have mapped multiple independent cancer susceptibility loci to chr5p15.33. Here, we show that fine-mapping of pancreatic and testicular cancer GWAS within one of these loci (Region 2 in CLPTM1L) focuses the signal to nine highly correlated SNPs. Of these, rs36115365-C associated with increased pancreatic and testicular but decreased lung cancer and melanoma risk, and exhibited preferred protein-binding and enhanced regulatory activity. Transcriptional gene silencing of this regulatory element repressed TERT expression in an allele-specific manner. Proteomic analysis identifies allele-preferred binding of Zinc finger protein 148 (ZNF148) to rs36115365-C, further supported by binding of purified recombinant ZNF148. Knockdown of ZNF148 results in reduced TERT expression, telomerase activity and telomere length. Our results indicate that the association with chr5p15.33-Region 2 may be explained by rs36115365, a variant influencing TERT expression via ZNF148 in a manner consistent with elevated TERT in carriers of the C allele.
Collapse
Affiliation(s)
- Jun Fang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jinping Jia
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Matthew Makowski
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen 6500 HB, The Netherlands
| | - Mai Xu
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Zhaoming Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Tongwu Zhang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jason W. Hoskins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jiyeon Choi
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Younghun Han
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756, USA
| | - Mingfeng Zhang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Janelle Thomas
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michael Kovacs
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Irene Collins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Marta Dzyadyk
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Abbey Thompson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Maura O'Neill
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Sudipto Das
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Qi Lan
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Roelof Koster
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Rachael S. Stolzenberg-Solomon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Pascal W. T. C. Jansen
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen 6500 HB, The Netherlands
| | - Sara Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York City, New York 10065, USA
| | - Katherine A. McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Peter A. Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Nilanjan Chatterjee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jennifer H. Barrett
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - Alison M. Dunning
- Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - John C. Taylor
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - Julia A. Newton-Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - D. Timothy Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Gloria M. Petersen
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Christopher I. Amos
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756, USA
| | - Mark M. Iles
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - Katherine L. Nathanson
- Translational Medicine and Human Genetics, Department of Medicine and Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michiel Vermeulen
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen 6500 HB, The Netherlands
| | - Kevin M. Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Laufey T. Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
8
|
Loss of One Copy of Zfp148 Reduces Lesional Macrophage Proliferation and Atherosclerosis in Mice by Activating p53. Circ Res 2014; 115:781-9. [DOI: 10.1161/circresaha.115.304992] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rationale:
Cell proliferation and cell cycle control mechanisms are thought to play central roles in the pathogenesis of atherosclerosis. The transcription factor Zinc finger protein 148 (Zfp148) was shown recently to maintain cell proliferation under oxidative conditions by suppressing p53, a checkpoint protein that arrests proliferation in response to various stressors. It is established that inactivation of p53 accelerates atherosclerosis, but whether increased p53 activation confers protection against the disease remains to be determined.
Objective:
We aimed to test the hypothesis that
Zfp148
deficiency reduces atherosclerosis by unleashing p53 activity.
Methods and Results:
Mice harboring a gene-trap mutation in the
Zfp148
locus (
Zfp148
gt/+
) were bred onto the apolipoprotein E (
Apoe
)
–/–
genetic background and fed a high-fat or chow diet. Loss of 1 copy of
Zfp148
markedly reduced atherosclerosis without affecting lipid metabolism. Bone marrow transplantation experiments revealed that the effector cell is of hematopoietic origin. Peritoneal macrophages and atherosclerotic lesions from
Zfp148
gt/+
Apoe
–/–
mice showed increased levels of phosphorylated p53 compared with controls, and atherosclerotic lesions contained fewer proliferating macrophages.
Zfp148
gt/+
Apoe
–/–
mice were further crossed with p53-null mice (
Trp53
–/–
[the gene encoding p53]). There was no difference in atherosclerosis between
Zfp148
gt/+
Apoe
–/–
mice and controls on a
Trp53
+/–
genetic background, and there was no difference in levels of phosphorylated p53 or cell proliferation.
Conclusions:
Zfp148
deficiency increases p53 activity and protects against atherosclerosis by causing proliferation arrest of lesional macrophages, suggesting that drugs targeting macrophage proliferation may be useful in the treatment of atherosclerosis.
Collapse
|
9
|
Hahn S, Hermeking H. ZNF281/ZBP-99: a new player in epithelial-mesenchymal transition, stemness, and cancer. J Mol Med (Berl) 2014; 92:571-81. [PMID: 24838609 DOI: 10.1007/s00109-014-1160-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/04/2014] [Accepted: 04/25/2014] [Indexed: 12/16/2022]
Abstract
Epithelial-mesenchymal transition (EMT) represents an important mechanism during development and wound healing, and its deregulation has been implicated in metastasis. Recently, the Krüppel-type zinc-finger transcription factor ZNF281 has been characterized as an EMT-inducing transcription factor (EMT-TF). Expression of ZNF281 is induced by the EMT-TF SNAIL and inhibited by the tumor suppressive microRNA miR-34a, which mediates repression of ZNF281 by the p53 tumor suppressor. Therefore, SNAIL, miR-34a and ZNF281 form a feed-forward regulatory loop, which controls EMT. Deregulation of this circuitry by mutational and epigenetic alterations in the p53/miR-34a axis promotes colorectal cancer (CRC) progression and metastasis formation. As ZNF281 physically interacts with the transcription factors NANOG, OCT4, SOX2, and c-MYC, it has been implicated in the regulation of pluripotency, stemness, and cancer. Accordingly, ectopic ZNF281 expression in CRC lines induces the stemness markers LGR5 and CD133 and promotes sphere formation, suggesting that the elevated expression of ZNF281 detected in cancer may enhance tumor stem cell formation and/or function. Here, we review the functional and organismal studies of ZNF281/ZBP-99 and its close relative ZBP-89/ZFP148 reported so far. Taken together, ZNF281 related biology has the potential to be translated into cancer diagnostic, prognostic, and therapeutic approaches.
Collapse
Affiliation(s)
- Stefanie Hahn
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Thalkirchner Strasse 36, 80337, Munich, Germany
| | | |
Collapse
|
10
|
Zinc finger protein 148 is dispensable for primitive and definitive hematopoiesis in mice. PLoS One 2013; 8:e70022. [PMID: 23936136 PMCID: PMC3729454 DOI: 10.1371/journal.pone.0070022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/19/2013] [Indexed: 11/19/2022] Open
Abstract
Hematopoiesis is regulated by transcription factors that induce cell fate and differentiation in hematopoietic stem cells into fully differentiated hematopoietic cell types. The transcription factor zinc finger protein 148 (Zfp148) interacts with the hematopoietic transcription factor Gata1 and has been implicated to play an important role in primitive and definitive hematopoiesis in zebra fish and mouse chimeras. We have recently created a gene-trap knockout mouse model deficient for Zfp148, opening up for analyses of hematopoiesis in a conventional loss-of-function model in vivo. Here, we show that Zfp148-deficient neonatal and adult mice have normal or slightly increased levels of hemoglobin, hematocrit, platelets and white blood cells, compared to wild type controls. Hematopoietic lineages in bone marrow, thymus and spleen from Zfp148gt/gt mice were further investigated by flow cytometry. There were no differences in T-cells (CD4 and CD8 single positive cells, CD4 and CD8 double negative/positive cells) in either organ. However, the fraction of CD69- and B220-positive cells among lymphocytes in spleen was slightly lower at postnatal day 14 in Zfp148gt/gt mice compared to wild type mice. Our results demonstrate that Zfp148-deficient mice generate normal mature hematopoietic populations thus challenging earlier studies indicating that Zfp148 plays a critical role during hematopoietic development.
Collapse
|
11
|
Essien B, Grasberger H, Romain RD, Law DJ, Veniaminova NA, Saqui-Salces M, El-Zaatari M, Tessier A, Hayes MM, Yang AC, Merchant JL. ZBP-89 regulates expression of tryptophan hydroxylase I and mucosal defense against Salmonella typhimurium in mice. Gastroenterology 2013; 144:1466-77, 1477.e1-9. [PMID: 23395646 PMCID: PMC3665710 DOI: 10.1053/j.gastro.2013.01.057] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS ZBP-89 (also ZNF148 or Zfp148) is a butyrate-inducible zinc finger transcription factor that binds to GC-rich DNA elements. Deletion of the N-terminal domain is sufficient to increase mucosal susceptibility to chemical injury and inflammation. We investigated whether conditional deletion of ZBP-89 from the intestinal and colonic epithelium of mice increases their susceptibility to pathogens such as Salmonella typhimurium. METHODS We generated mice with a conditional null allele of Zfp148 (ZBP-89(FL/FL)) using homologous recombination to flank Zfp148 with LoxP sites (ZBP-89(FL/FL)), and then bred the resulting mice with those that express VillinCre. We used microarray analysis to compare gene expression patterns in colonic mucosa between ZBP-89(ΔInt) and C57BL/6 wild-type mice (controls). Mice were gavaged with 2 isogenic strains of S. typhimurium after administration of streptomycin. RESULTS Microarray analysis revealed that the colonic mucosa of ZBP-89(ΔInt) mice had reduced levels of tryptophan hydroxylase 1 (Tph1) messenger RNA, encoding the rate-limiting enzyme in enterochromaffin cell serotonin (5-hydroxytryptamine [5HT]) biosynthesis. DNA affinity precipitation demonstrated direct binding of ZBP-89 to the mouse Tph1 promoter, which was required for its basal and butyrate-inducible expression. ZBP-89(ΔInt) mice did not increase mucosal levels of 5HT in response to S. typhimurium infection, and succumbed to the infection 2 days before control mice. The ΔhilA isogenic mutant of S. typhimurium lacks this butyrate-regulated locus and stimulated, rather than suppressed, expression of Tph1 approximately 50-fold in control, but not ZBP-89(ΔInt), mice, correlating with fecal levels of butyrate. CONCLUSIONS ZBP-89 is required for butyrate-induced expression of the Tph1 gene and subsequent production of 5HT in response to bacterial infection in mice. Reductions in epithelial ZBP-89 increase susceptibility to colitis and sepsis after infection with S. typhimurium, partly because of reduced induction of 5HT production in response to butyrate and decreased secretion of antimicrobial peptides.
Collapse
Affiliation(s)
- Bryan Essien
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Helmut Grasberger
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Rachael D. Romain
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - David J. Law
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Natalia A. Veniaminova
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Milena Saqui-Salces
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Mohamad El-Zaatari
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Arthur Tessier
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Michael M. Hayes
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Alexander C. Yang
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Juanita L. Merchant
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
12
|
Gao XH, Liu QZ, Chang W, Xu XD, Du Y, Han Y, Liu Y, Yu ZQ, Zuo ZG, Xing JJ, Cao G, Fu CG. Expression of ZNF148 in different developing stages of colorectal cancer and its prognostic value: a large Chinese study based on tissue microarray. Cancer 2013; 119:2212-22. [PMID: 23576061 DOI: 10.1002/cncr.28052] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/24/2012] [Accepted: 02/25/2013] [Indexed: 12/26/2022]
Abstract
BACKGROUND It has been speculated that zinc finger protein 148 (ZNF148) is a tumor suppressor. However, to the authors' knowledge, little is known about the clinical significance of ZNF148 expression in patients with colorectal cancer (CRC). The objective of the current study was to clarify the association between ZNF148 expression and the postoperative prognosis of patients with CRC. METHODS Tissue microarrays containing 56 normal mucosa, 51 adenoma, 742 CRC (TNM stage I-IV), 16 familial adenomatous polyposis, and 21 metastatic CRC specimens were examined immunohistochemically for ZNF148 expression. RESULTS Expression of ZNF148 was found to increase consecutively from normal mucosa to stage I CRC, and then decreased consecutively from stage I to stage IV CRC. Lower expression of ZNF148 in tumors was found to be significantly associated with lymph node metastases, advanced TNM disease stage, poor differentiation, higher rate of disease recurrence, worse overall survival (OS), and shorter disease-free survival. High expression of ZNF148 was also associated with improved OS (P = .025) and disease-free survival (P = .042) in patients with stages II to III CRC. On multivariate Cox analysis, lower ZNF148 expression in tumors, advanced TNM stage, colon cancer, and elevated serum carbohydrate antigen 19-9 (CA19-9) were found to be significant factors for a worse OS. In 16 patients with familial adenomatous polyposis, ZNF148 expression was upregulated at steps toward carcinogenesis. In 21 patients with metastatic CRC, although ZNF148 expression was higher in primary tumors compared with adjacent mucosa, its expression in metastatic tumors was significantly lower than that in primary tumors. CONCLUSIONS Although ZNF148 expression is related to colorectal carcinogenesis, high ZNF148 expression in patients with CRC appears to be inversely associated with malignant phenotypes and may serve as a significant prognostic factor after surgery for patients with CRC.
Collapse
Affiliation(s)
- Xian-Hua Gao
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sayin VI, Nilton A, Ibrahim MX, Ågren P, Larsson E, Petit MM, Hultén LM, Ståhlman M, Johansson BR, Bergo MO, Lindahl P. Zfp148 deficiency causes lung maturation defects and lethality in newborn mice that are rescued by deletion of p53 or antioxidant treatment. PLoS One 2013; 8:e55720. [PMID: 23405202 PMCID: PMC3566028 DOI: 10.1371/journal.pone.0055720] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/29/2012] [Indexed: 12/18/2022] Open
Abstract
The transcription factor Zfp148 (Zbp-89, BFCOL, BERF1, htβ) interacts physically with the tumor suppressor p53 and is implicated in cell cycle control, but the physiological role of Zfp148 remains unknown. Here we show that Zfp148 deficiency leads to respiratory distress and lethality in newborn mice. Zfp148 deficiency prevented structural maturation of the prenatal lung without affecting type II cell differentiation or surfactant production. BrdU analyses revealed that Zfp148 deficiency caused proliferation arrest of pulmonary cells at E18.5–19.5. Similarly, Zfp148-deficient fibroblasts exhibited proliferative arrest that was dependent on p53, raising the possibility that cell stress is part of the underlying mechanism. Indeed, Zfp148 deficiency lowered the threshold for activation of p53 under oxidative conditions. Moreover, both in vivo and cellular phenotypes were rescued on Trp53+/− or Trp53−/− backgrounds and by antioxidant treatment. Thus, Zfp148 prevents respiratory distress and lethality in newborn mice by attenuating oxidative stress–dependent p53-activity during the saccular stage of lung development. Our results establish Zfp148 as a novel player in mammalian lung maturation and demonstrate that Zfp148 is critical for cell cycle progression in vivo.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antioxidants/pharmacology
- Apoptosis
- Blotting, Southern
- Blotting, Western
- Cell Cycle
- Cell Proliferation
- Cells, Cultured
- DNA-Binding Proteins/physiology
- Embryo, Mammalian/cytology
- Embryo, Mammalian/drug effects
- Embryo, Mammalian/metabolism
- Female
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Gene Deletion
- Genes, Lethal
- Immunoenzyme Techniques
- Lung/drug effects
- Lung/embryology
- Lung/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Oxidative Stress/drug effects
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Respiratory Tract Diseases/genetics
- Respiratory Tract Diseases/pathology
- Respiratory Tract Diseases/prevention & control
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/physiology
- Tumor Suppressor Protein p53/deficiency
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Volkan I. Sayin
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Biochemistry, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anna Nilton
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Mohamed X. Ibrahim
- Sahlgrenska Cancer Center, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Pia Ågren
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Erik Larsson
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Biochemistry, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Marleen M. Petit
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lillemor Mattsson Hultén
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Marcus Ståhlman
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Bengt R. Johansson
- Department of Biochemistry, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Martin O. Bergo
- Sahlgrenska Cancer Center, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Per Lindahl
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Biochemistry, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
14
|
Berndt BE, Zhang M, Owyang SY, Cole TS, Wang TW, Luther J, Veniaminova NA, Merchant JL, Chen CC, Huffnagle GB, Kao JY. Butyrate increases IL-23 production by stimulated dendritic cells. Am J Physiol Gastrointest Liver Physiol 2012; 303:G1384-92. [PMID: 23086919 PMCID: PMC3532546 DOI: 10.1152/ajpgi.00540.2011] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gut microbiota is essential for the maintenance of intestinal immune homeostasis and is responsible for breaking down dietary fiber into short-chain fatty acids (SCFAs). Butyrate, the most abundant bioactive SCFA in the gut, is a histone deacetylase inhibitor (HDACi), a class of drug that has potent immunomodulatory properties. This characteristic of butyrate, along with our previous discovery that conventional dendritic cells (DCs) are required for the development of experimental colitis, led us to speculate that butyrate may modulate DC function to regulate gut mucosal homeostasis. We found that butyrate, in addition to suppressing LPS-induced bone marrow-derived DC maturation and inhibiting DC IL-12 production, significantly induced IL-23 expression. The upregulation of mRNA subunit IL-23p19 at the pretranslational level was consistent with the role of HDACi on the epigenetic modification of gene expression. Furthermore, the mechanism of IL-23p19 upregulation was independent of Stat3 and ZBP89. Coculture of splenocytes with LPS-stimulated DCs pretreated with or without butyrate was performed and showed a significant induction of IL-17 and IL-10. We demonstrated further the effect of butyrate in vivo using dextran sulfate sodium (DSS)-induced colitis and found that the addition of butyrate in the drinking water of mice worsened DSS-colitis. This is in contrast to the daily intraperitoneal butyrate injection of DSS-treated mice, which mildly improved disease severity. Our study highlights a novel effect of butyrate in upregulating IL-23 production of activated DCs and demonstrates a difference in the host response to the oral vs. systemic route of butyrate administration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Natalia A. Veniaminova
- 3Department of Molecular and Integrative Physiology, University of Michigan Health System, Ann Arbor, Michigan;
| | - Juanita L. Merchant
- Divisions of 1 Gastroenterology and ,3Department of Molecular and Integrative Physiology, University of Michigan Health System, Ann Arbor, Michigan;
| | - Chun-Chia Chen
- 4Department of Medicine, Division of Gastroenterology, Taipei Veterans General Hospital and National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Gary B. Huffnagle
- 2Pulmonary and Critical Care Medicine, Department of Internal Medicine and
| | | |
Collapse
|
15
|
Zhang CZY, Cao Y, Yun JP, Chen GG, Lai PBS. Increased expression of ZBP-89 and its prognostic significance in hepatocellular carcinoma. Histopathology 2012; 60:1114-24. [PMID: 22372401 DOI: 10.1111/j.1365-2559.2011.04136.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AIMS ZBP-89 plays a role in cell growth and death. Its expression in hepatocellular carcinoma (HCC) is not well documented. This study aimed to analyse ZBP-89 expression in HCC. METHODS AND RESULTS We examined ZBP-89 expression in five HCC cell lines and 182 HCC tissue samples by reverse transcription-polymerase chain reaction (RT-PCR), Western blot analysis and immunofluorescence staining. Our results showed that the expression of ZBP-89 was higher in HCC than adjacent non-tumour liver, at both mRNA and protein levels. ZBP-89 was localized in the nucleus in most HCC tissue samples, but was found in the cytoplasm in 11.5% of cases. Patient survival in those tumours showing high ZBP-89 expression was better than in those with low expression. High ZBP-89 expression tended to be more common in World Health Organization (WHO) grade I than grades II-IV HCC. There was a significant association between HBV positivity and high ZBP-89 expression. Colony formation was reduced dramatically in those HCC cell lines in which ZBP-89 overexpression was demonstrated; this appeared to correlate with increased apoptosis, inferred by finding elevated levels of cleaved poly(ADP-ribose)polymerases (PARP), the probable mechanisms for which may involve increased p53 or p21 expression. CONCLUSIONS ZBP-89 has anti-tumour properties and is a potential biomarker for prognosis of HCC.
Collapse
Affiliation(s)
- Chris Z Y Zhang
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong
| | | | | | | | | |
Collapse
|
16
|
Promoter cloning and characterization of the human programmed cell death protein 4 (pdcd4) gene: evidence for ZBP-89 and Sp-binding motifs as essential Pdcd4 regulators. Biosci Rep 2012; 32:281-97. [DOI: 10.1042/bsr20110045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pdcd4 (programmed cell death protein 4) is an important novel tumour suppressor inhibiting transformation, translation, invasion and intravasation, and its expression is down-regulated in several cancers. However, little is known about the transcriptional regulation and the promoter of this important tumour suppressor. So far the following is the first comprehensive study to describe the regulation of Pdcd4 transcription by ZBP-89 (zinc-finger-binding protein 89), besides characterizing the gene promoter. We identified the transcriptional start sites of the human pdcd4 promoter, a functional CCAAT-box, and the basal promoter region. Within this basal region, computer-based analysis revealed several potential binding sites for ZBPs, especially for Sp (specificity protein) family members and ZBP-89. We identified four Sp1/Sp3/Sp4-binding elements to be indispensable for basal promoter activity. However, overexpression of Sp1 and Sp3 was not sufficient to enhance Pdcd4 protein expression. Analysis in different solid cancer cell lines showed a significant correlation between pdcd4 and zbp-89 mRNA amounts. In contrast with Sp transcription factors, overexpression of ZBP-89 led to an enhanced expression of Pdcd4 mRNA and protein. Additionally, specific knockdown of ZBP-89 resulted in a decreased pdcd4 gene expression. Reporter gene analysis showed a significant up-regulation of basal promoter activity by co-transfection with ZBP-89, which could be abolished by mithramycin treatment. Predicted binding of ZBP-89 to the basal promoter was confirmed by EMSA (electrophoretic mobility-shift assay) data and supershift analysis for ZBP-89. Taken together, data for the first time implicate ZBP-89 as a regulator of Pdcd4 by binding to the basal promoter either alone or by interacting with Sp family members.
Collapse
|
17
|
Zhang CZY, Chen GG, Merchant JL, Lai PBS. Interaction between ZBP-89 and p53 mutants and its contribution to effects of HDACi on hepatocellular carcinoma. Cell Cycle 2012; 11:322-34. [PMID: 22214764 DOI: 10.4161/cc.11.2.18758] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ZBP-89, a zinc finger transcription factor, participates in histone deacetylases inhibitors (HDACi)-mediated growth arrest and apoptosis in cancer cells. p53 mutants may interact with ZBP-89 that transcriptionally regulates p21(Waf1) (p21). However, this interaction and its consequence in cancer treatments are poorly understood. In this study, we demonstrate that ZBP‑89 is essentially required in HDACi-mediated p21 upregulation in hepetocellular carcinoma (HCC). Overexpression of ZBP-89 protein enhanced the lethal effectiveness of Trichostatin A (TSA). p53 mutant p53(G245D), but not p53(R249S), directly bound to ZBP-89 and prevented its translocation from cytoplasm to nucleus. Furthermore, p53(G245D) was shown to have a similar pattern of subcellular localization to ZBP-89 in tissues of HCC patients in Hong Kong. Functionally, the cytoplasmic accumulation of ZBP-89 by p53(G245D) significantly abrogated the induction of p21 caused by sodium butyrate (NaB) treatment and protected cells from TSA-induced death. The activations of several apoptotic proteins, such as Bid and PARP, were involved in p53(G245D)-mediated protection. Moreover, the resistance to HDACi in p53(G245D)-expressing cells was reversed by overexpression of ZBP-89. Taken together, these data suggest a potential mechanism via which mutant p53 enables tumor cells to resist chemotherapy and, therefore, establish a plausible link between mutant p53 binding to ZBP-89 and a decreased chemosensitivity of HCC cells.
Collapse
Affiliation(s)
- Chris Z Y Zhang
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT Hong Kong
| | | | | | | |
Collapse
|
18
|
To AKY, Chen GG, Chan UPF, Ye C, Yun JP, Ho RLK, Tessier A, Merchant JL, Lai PBS. ZBP-89 enhances Bak expression and causes apoptosis in hepatocellular carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:222-30. [PMID: 20850481 DOI: 10.1016/j.bbamcr.2010.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 08/30/2010] [Accepted: 09/09/2010] [Indexed: 11/27/2022]
Abstract
ZBP-89 can enhance tumor cells to death stimuli. However, the molecular mechanism leading to the inhibitory effect of ZBP-89 is unknown. In this study, 4 liver cell lines were used to screen for the target of ZBP-89 on cell death pathway. The identified Bak was further analyzed for its role in ZBP-89-mediated apoptosis. The result showed that ZBP-89 significantly and time-dependently induced apoptosis. It significantly upregulated the level of pro-apoptotic Bak. ZBP-89 targeted a region between -457 and -407 of human Bak promoter to stimulate Bak expression based on the findings of Bak promoter luciferase report gene assay and electrophoretic mobility shift assay. ZBP-89-induced Bak increase and ZBP-89-mediated apoptosis were markedly suppressed by Bak siRNA, confirming that Bak was specifically targeted by ZBP-89 to facilitate apoptosis. In conclusion, this study demonstrated that ZBP-89 significantly induced apoptosis of HCC cells via promoting Bak level.
Collapse
Affiliation(s)
- Ann K Y To
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhang CZY, Chen GG, Lai PBS. Transcription factor ZBP-89 in cancer growth and apoptosis. Biochim Biophys Acta Rev Cancer 2010; 1806:36-41. [PMID: 20230874 DOI: 10.1016/j.bbcan.2010.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 02/25/2010] [Accepted: 03/08/2010] [Indexed: 11/30/2022]
Abstract
ZBP-89, a Krüppel-type zinc-finger transcription factor that binds to GC-rich sequences, is involved in the regulation of cell growth and cell death. It maps to chromosome 3q21 and is composed of 794 residues. Having bifunctional regulatory domains, ZBP-89 may function as a transcriptional activator or repressor of variety of genes such as p16 and vimentin. ZBP-89 arrests cell proliferation through its interactions with p53 and p21(waf1). It is able to stabilize p53 through directly binding and enhance p53 transcriptional activity by retaining it in the nucleus. In addition, ZBP-89 potentiates in butyrate-induced endogenous p21(waf1) up-regulation. ZBP-89 is usually over-expressed in human cancer cells, where it can efficiently induce apoptosis through p53-dependent and -independent mechanisms. Moreover, ZBP-89 is capable of enhancing killing effects of several anti-cancer drugs. Therefore, ZBP-89 may be served as a potential target in cancer therapy.
Collapse
Affiliation(s)
- Chris Z Y Zhang
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong
| | | | | |
Collapse
|
20
|
Chen GG, Chan UPF, Bai LC, Fung KY, Tessier A, To AKY, Merchant JL, Lai PBS. ZBP-89 reduces the cell death threshold in hepatocellular carcinoma cells by increasing caspase-6 and S phase cell cycle arrest. Cancer Lett 2009; 283:52-8. [PMID: 19362768 DOI: 10.1016/j.canlet.2009.03.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 03/15/2009] [Accepted: 03/16/2009] [Indexed: 12/01/2022]
Abstract
ZBP-89 inhibits the some tumor cells but its role in HCC is unknown. We investigated effect of ZBP-89 on cell death of 5 HCC cell lines with different status of p53. We found that ZBP-89 significantly induced cell death of all HCC cells particularly those with wild-type p53. The inhibition was well correlated with the induction of caspase-6 activity. The inhibition of caspase-6 abolished the effect of ZBP-89. ZBP-89 reduced the cells in G2-M but increased them in S phase. With the changes in caspase-6 and cell cycle, ZBP-89 greatly enhanced the killing effectiveness of 5-fluorouracil or staurosporine in HCC cells.
Collapse
Affiliation(s)
- George G Chen
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Bai L, Merchant JL. A role for CITED2, a CBP/p300 interacting protein, in colon cancer cell invasion. FEBS Lett 2007; 581:5904-10. [PMID: 18054336 DOI: 10.1016/j.febslet.2007.11.072] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 11/22/2007] [Indexed: 12/18/2022]
Abstract
A thorough understanding of histone acetyltransferase CBP/p300-mediated regulation of gene expression and cell growth is essential to identify mechanisms relevant to the development of histone deacetylase (HDAC) inhibitor-based preventive and therapeutic strategies. We found that knockdown of CBP/p300 interacting coactivator with glutamic acid/aspartic acid-rich tail 2 (CITED2) increased colon cancer cell invasiveness in vitro. Gene expression profiling revealed that CITED2 knockdown induced matrix metalloproteinase-13 (MMP-13) gene expression in colon cancer cells. Butyrate, a naturally occurring HDAC inhibitor, induced CITED2 expression and downregulated MMP-13 expression in RKO cells. Additionally, ectopic expression of CITED2 arrested RKO cell growth. Thus, CITED2 regulates colon cancer invasion and might be a target for HDAC inhibitor-based intervention of colon cancer.
Collapse
Affiliation(s)
- Longchuan Bai
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | | |
Collapse
|
22
|
Bai L, Merchant JL. ATM phosphorylates ZBP-89 at Ser202 to potentiate p21waf1 induction by butyrate. Biochem Biophys Res Commun 2007; 359:817-21. [PMID: 17560543 PMCID: PMC1994773 DOI: 10.1016/j.bbrc.2007.05.197] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2007] [Accepted: 05/30/2007] [Indexed: 10/23/2022]
Abstract
Histone deacetylase inhibitors (HDACi) induce growth arrest and differentiation, particularly in the colon where they are potential chemotherapeutic agents. A key mediator of HDACi action is the cyclin dependent kinase (CDK) inhibitor p21(waf1). HDACi treatment of colonic cells promotes the formation of an ATM/ZBP-89/p300 complex on p21(waf1) proximal promoter, and this multi-molecular complex plays an important role in HDACi induction of p21(waf1) expression in vitro and mucosal protection in vivo. Here we found that ZBP-89 is phosphorylated by ATM kinase in vitro and in vivo. Disruption of the ATM phosphorylation motif (202)SQ within the zinc finger domain of ZBP-89 attenuated its ability to enhance p21(waf1) activation by butyrate. Moreover, disruption of the ATM phosphorylation site abrogated the ability of ZBP-89 to potentiate butyrate induction of endogenous p21(waf1) expression. These results demonstrate that ATM phosphorylation of ZBP-89 contributes to HDACi induction of p21(waf1) gene expression.
Collapse
Affiliation(s)
- Longchuan Bai
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Juanita L. Merchant
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Corresponding Author: Juanita L. Merchant, M.D., Ph.D., 2051 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, Phone: (734) 647-2944, Fax: (734) 763-4686, E-mail:
| |
Collapse
|
23
|
Malo MS, Biswas S, Abedrapo MA, Yeh L, Chen A, Hodin RA. The pro-inflammatory cytokines, IL-1beta and TNF-alpha, inhibit intestinal alkaline phosphatase gene expression. DNA Cell Biol 2007; 25:684-95. [PMID: 17233117 DOI: 10.1089/dna.2006.25.684] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
High levels of the pro-inflammatory cytokines, interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha), are present in the gut mucosa of patients suffering form various diseases, most notably inflammatory bowel diseases (IBD). Since the inflammatory milieu can cause important alterations in epithelial cell function, we examined the cytokine effects on the expression of the enterocyte differentiation marker, intestinal alkaline phosphatase (IAP), a protein that detoxifies bacterial lipopolysaccharides (LPS) and limits fat absorption. Sodium butyrate (NaBu), a short-chain fatty acid and histone deacetylase (HDAC) inhibitor, was used to induce IAP expression in HT-29 cells and the cells were also treated +/- the cytokines. Northern blots confirmed IAP induction by NaBu, however, pretreatment (6 h) with either cytokine showed a dose-dependent inhibition of IAP expression. IAP Western analyses and alkaline phosphatase enzyme assays corroborated the Northern data and confirmed that the cytokines inhibit IAP induction. Transient transfections with a reporter plasmid carrying the human IAP promoter showed significant inhibition of NaBu-induced IAP gene activation by the cytokines (100 and 60% inhibition with IL-1beta and TNF-alpha, respectively). Western analyses showed that NaBu induced H4 and H3 histone acetylation, and pretreatment with IL-1beta or TNF-alpha did not change this global acetylation pattern. In contrast, chromatin immunoprecipitation showed that local histone acetylation of the IAP promoter region was specifically inhibited by either cytokine. We conclude that IL-1beta and TNF-alpha inhibit NaBu-induced IAP gene expression, likely by blocking the histone acetylation within its promoter. Cytokine-mediated IAP gene silencing may have important implications for gut epithelial function in the setting of intestinal inflammatory conditions.
Collapse
Affiliation(s)
- Madhu S Malo
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|