1
|
Amiot J, Gubeljak L, Fontaine A, Smith D, Mortemousque I, Parodi N, Mauillon J, Kasper E, Baert-Desurmont S, Tinat J, Houdayer C. New RPS20 gene variant in colorectal cancer diagnosis: insight from a large series of patients. Fam Cancer 2025; 24:22. [PMID: 39920491 DOI: 10.1007/s10689-025-00446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025]
Abstract
Germline pathogenic variants of the RPS20 (ribosomal protein S20) gene are suspected to be involved in the predisposition to familial colorectal cancer (CRC) with no DNA mismatch repair deficiency. RPS20 pathogenic variants are very rare with only five reported cases in the literature. We report in this work the retrospective germline analysis of RPS20 for 1035 consecutive patients with a personal and/or familial history suggestive of hereditary predisposition to CRC. Within this series, a pathogenic variant in known CRC genes was found in 15% of cases and we describe one RPS20 loss-of-function variant (NM_001146227.1:c.115_116del, p.(Leu39Aspfs*33)). This frameshift is the first reported de novo variant in CRC, it was identified in in a female patient diagnosed with rectal cancer at the age of 35, 11 adenomatous polyps in 5 years and breast cancer at the age of 43. RPS20 has an intriguing role in oncogenesis, acting as an oncogene or tumour suppressor depending on the context, and is also involved in Diamond-Blackfan anemia via gain of function or dominant negative variants. This is therefore a complex gene for genetic counselling and, given the rarity of RPS20 pathogenic variants, we emphasise the need to collect data to clarify the phenotypic spectrum of RPS20-associated cancers and thus improve management.
Collapse
Affiliation(s)
- Julie Amiot
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, Rouen, F-76000, France.
- Department of Genetics, Univ Rouen Normandie, Normandie Univ, CHU Rouen, FHU-G4 Génomique, ERN GENTURIS, Rouen, F-76000, France.
- Department of Genetics, Rouen Normandy University Hospital, Inserm U1245 Cancer and Brain Genomics, FHU- G4 Génomique UFR Santé, 22 Boulevard Gambetta, Rouen Cedex, 76183, France.
| | - Lara Gubeljak
- Department of Genetics, Univ Rouen Normandie, Normandie Univ, CHU Rouen, FHU-G4 Génomique, ERN GENTURIS, Rouen, F-76000, France
| | - Agathe Fontaine
- Department of Medical Genetics, CHU Bordeaux, Bordeaux, F-33000, France
| | - Denis Smith
- Department of Digestive Oncology, CHU Bordeaux, Bordeaux, F-33000, France
| | | | - Nathalie Parodi
- Department of Genetics, Univ Rouen Normandie, Normandie Univ, CHU Rouen, FHU-G4 Génomique, ERN GENTURIS, Rouen, F-76000, France
| | - Jacques Mauillon
- Department of Genetics, Univ Rouen Normandie, Normandie Univ, CHU Rouen, FHU-G4 Génomique, ERN GENTURIS, Rouen, F-76000, France
| | - Edwige Kasper
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, Rouen, F-76000, France
- Department of Genetics, Univ Rouen Normandie, Normandie Univ, CHU Rouen, FHU-G4 Génomique, ERN GENTURIS, Rouen, F-76000, France
| | - Stéphanie Baert-Desurmont
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, Rouen, F-76000, France
- Department of Genetics, Univ Rouen Normandie, Normandie Univ, CHU Rouen, FHU-G4 Génomique, ERN GENTURIS, Rouen, F-76000, France
| | - Julie Tinat
- Department of Medical Genetics, CHU Bordeaux, Bordeaux, F-33000, France
| | - Claude Houdayer
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, Rouen, F-76000, France
- Department of Genetics, Univ Rouen Normandie, Normandie Univ, CHU Rouen, FHU-G4 Génomique, ERN GENTURIS, Rouen, F-76000, France
| |
Collapse
|
2
|
La Vecchia M, Sala G, Sculco M, Aspesi A, Dianzani I. Genetics, diet, microbiota, and metabolome: partners in crime for colon carcinogenesis. Clin Exp Med 2024; 24:248. [PMID: 39470880 PMCID: PMC11522171 DOI: 10.1007/s10238-024-01505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/15/2024] [Indexed: 11/01/2024]
Abstract
Colorectal cancer (CRC) ranks among the most prevalent malignant tumors worldwide, with a multifactorial etiology encompassing genetic, environmental, and life-style factors, as well as the intestinal microbiota and its metabolome. These risk factors often work together in specific groups of patients, influencing how CRC develops and progresses. Importantly, alterations in the gut microbiota act as a critical nexus in this interplay, significantly affecting susceptibility to CRC. This review highlights recent insights into unmodifiable and modifiable risk factors for CRC and how they might interact with the gut microbiota and its metabolome. Understanding the mechanisms of these interactions will help us develop targeted, precision-medicine strategies that can adjust the composition of the gut microbiota to meet individual health needs, preventing or treating CRC more effectively.
Collapse
Affiliation(s)
- Marta La Vecchia
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Gloria Sala
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Marika Sculco
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Anna Aspesi
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Irma Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy.
| |
Collapse
|
3
|
Tian Y, Babaylova ES, Gopanenko AV, Tupikin AE, Kabilov MR, Malygin AA. Deficiency of the ribosomal protein uS10 (RPS20) reorganizes human cells translatome according to the abundance, CDS length and GC content of mRNAs. Open Biol 2024; 14:230366. [PMID: 38290548 PMCID: PMC10827436 DOI: 10.1098/rsob.230366] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Ribosomal protein uS10, a product of the RPS20 gene, is an essential constituent of the small (40S) subunit of the human ribosome. Disruptive mutations in its gene are associated with a predisposition to hereditary colorectal carcinoma. Here, using HEK293T cells, we show that a deficiency of this protein leads to a decrease in the level of ribosomes (ribosomal shortage). RNA sequencing of the total and polysome-associated mRNA samples reveals hundreds of genes differentially expressed in the transcriptome (t)DEGs and translatome (p)DEGs under conditions of uS10 deficiency. We demonstrate that the (t)DEG and (p)DEG sets partially overlap, determine genes with altered translational efficiency (TE) and identify cellular processes affected by uS10 deficiency-induced ribosomal shortage. We reveal that translated mRNAs of upregulated (p)DEGs and genes with altered TE in uS10-deficient cells are generally more abundant and that their GC contents are significantly lower than those of the respective downregulated sets. We also observed that upregulated (p)DEGs have longer coding sequences. Based on our findings, we propose a combinatorial model describing the process of reorganization of mRNA translation under conditions of ribosomal shortage. Our results reveal rules according to which ribosomal shortage reorganizes the transcriptome and translatome repertoires of actively proliferating cells.
Collapse
Affiliation(s)
- Yueming Tian
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena S. Babaylova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexander V. Gopanenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexey E. Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Marsel R. Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexey A. Malygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Fernández-Castillejo S, Roig B, Melé M, Serrano S, Salvat M, Querol M, Brunet J, Pineda M, Cisneros A, Parada D, Badia J, Borràs J, Rodríguez-Balada M, Gumà J. Opportunistic genetic screening increases the diagnostic yield and is medically valuable for care of patients and their relatives with hereditary cancer. J Med Genet 2023; 61:69-77. [PMID: 37591735 PMCID: PMC10803988 DOI: 10.1136/jmg-2023-109389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/23/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Multigene panel testing by next-generation sequencing (MGP-NGS) enables the detection of germline pathogenic or likely pathogenic variants (PVs/LPVs) in genes beyond those associated with a certain cancer phenotype. Opportunistic genetic screening based on MGP-NGS in patients with suspicion of hereditary cancer reveals these incidental findings (IFs). METHODS MGP-NGS was performed in patients who fulfilled the clinical criteria to undergo genetic testing according to the Catalan Health Service guidelines. Variants were classified following the American College of Medical Genetics and Genomics-Association for Molecular Pathology guidelines and the Cancer Variant Interpretation Group UK guidelines. RESULTS IFs were identified in 10 (1.22%) of the 817 patients who underwent MGP-NGS. The mean age at cancer diagnosis was 49.4±9.5 years. Three IFs (30.0%) were detected in PMS2, two (20.0%) in ATM and TP53 and one (10.0%) in MSH6, NTHL1 and VHL. Seven (70.0%) IFs were single-nucleotide substitutions, two (20.0%) were deletions and one (10.0%) was a duplication. Three (30.0) IFs were located in intronic regions, three (30.3%) were nonsense, two (20.0%) were frameshift and two (20.0%) were missense variations. Six (60.0%) IFs were classified as PVs and four (40.0%) as LPVs. CONCLUSIONS Opportunistic genetic screening increased the diagnostic yield by 1.22% in our cohort. Most of the identified IFs were present in clinically actionable genes (n=7; 70.0%), providing these families with an opportunity to join cancer early detection programmes, as well as secondary cancer prevention. IFs might facilitate the diagnosis of asymptomatic individuals and the early management of cancer once it develops.
Collapse
Affiliation(s)
- Sara Fernández-Castillejo
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus (HUSJR), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain. Universitat Rovira i Virgili (URV), Reus, Spain
| | - Bàrbara Roig
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus (HUSJR), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain. Universitat Rovira i Virgili (URV), Reus, Spain
| | - Mireia Melé
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus (HUSJR), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain. Universitat Rovira i Virgili (URV), Reus, Spain
| | - Sara Serrano
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus (HUSJR), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain. Universitat Rovira i Virgili (URV), Reus, Spain
| | - Mònica Salvat
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus (HUSJR), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain. Universitat Rovira i Virgili (URV), Reus, Spain
| | - Montserrat Querol
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus (HUSJR), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain. Universitat Rovira i Virgili (URV), Reus, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and Biomedical Research Centre Network for Oncology (CIBERONC), L'Hospitalet de Llobregat, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology-IDIBGI, Girona, Spain
| | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and Biomedical Research Centre Network for Oncology (CIBERONC), L'Hospitalet de Llobregat, Spain
| | - Adela Cisneros
- Hematology Department, ICO and Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - David Parada
- Pathology Molecular Unit, Department of Pathology, Hospital Universitari Sant Joan de Reus (HUSJR), Spain. Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain. Universitat Rovira i Virgili (URV), Reus, Spain
| | - Joan Badia
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus (HUSJR), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain. Universitat Rovira i Virgili (URV), Reus, Spain
| | - Joan Borràs
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus (HUSJR), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain. Universitat Rovira i Virgili (URV), Reus, Spain
| | - Marta Rodríguez-Balada
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus (HUSJR), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain. Universitat Rovira i Virgili (URV), Reus, Spain
| | - Josep Gumà
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus (HUSJR), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain. Universitat Rovira i Virgili (URV), Reus, Spain
| |
Collapse
|
5
|
Dolan M, St. John N, Zaidi F, Doyle F, Fasullo M. High-throughput screening of the Saccharomyces cerevisiae genome for 2-amino-3-methylimidazo [4,5-f] quinoline resistance identifies colon cancer-associated genes. G3 (BETHESDA, MD.) 2023; 13:jkad219. [PMID: 37738679 PMCID: PMC11025384 DOI: 10.1093/g3journal/jkad219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 10/25/2022] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Heterocyclic aromatic amines (HAAs) are potent carcinogenic agents found in charred meats and cigarette smoke. However, few eukaryotic resistance genes have been identified. We used Saccharomyces cerevisiae (budding yeast) to identify genes that confer resistance to 2-amino-3-methylimidazo[4,5-f] quinoline (IQ). CYP1A2 and NAT2 activate IQ to become a mutagenic nitrenium compound. Deletion libraries expressing human CYP1A2 and NAT2 or no human genes were exposed to either 400 or 800 µM IQ for 5 or 10 generations. DNA barcodes were sequenced using the Illumina HiSeq 2500 platform and statistical significance was determined for exactly matched barcodes. We identified 424 ORFs, including 337 genes of known function, in duplicate screens of the "humanized" collection for IQ resistance; resistance was further validated for a select group of 51 genes by growth curves, competitive growth, or trypan blue assays. Screens of the library not expressing human genes identified 143 ORFs conferring resistance to IQ per se. Ribosomal protein and protein modification genes were identified as IQ resistance genes in both the original and "humanized" libraries, while nitrogen metabolism, DNA repair, and growth control genes were also prominent in the "humanized" library. Protein complexes identified included the casein kinase 2 (CK2) and histone chaperone (HIR) complex. Among DNA Repair and checkpoint genes, we identified those that function in postreplication repair (RAD18, UBC13, REV7), base excision repair (NTG1), and checkpoint signaling (CHK1, PSY2). These studies underscore the role of ribosomal protein genes in conferring IQ resistance, and illuminate DNA repair pathways for conferring resistance to activated IQ.
Collapse
Affiliation(s)
- Michael Dolan
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| | - Nick St. John
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| | - Faizan Zaidi
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| | - Francis Doyle
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| | - Michael Fasullo
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| |
Collapse
|
6
|
Zhu LH, Dong J, Li WL, Kou ZY, Yang J. Genotype-Phenotype Correlations in Autosomal Dominant and Recessive APC Mutation-Negative Colorectal Adenomatous Polyposis. Dig Dis Sci 2023:10.1007/s10620-023-07890-9. [PMID: 36862359 DOI: 10.1007/s10620-023-07890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
The most prevalent type of intestinal polyposis, colorectal adenomatous polyposis (CAP), is regarded as a precancerous lesion of colorectal cancer with obvious genetic characteristics. Early screening and intervention can significantly improve patients' survival and prognosis. The adenomatous polyposis coli (APC) mutation is believed to be the primary cause of CAP. There is, however, a subset of CAP with undetectable pathogenic mutations in APC, known as APC (-)/CAP. The genetic predisposition to APC (-)/CAP has largely been associated with germline mutations in some susceptible genes, including the human mutY homologue (MUTYH) gene and the Nth-like DNA glycosylase 1 (NTHL1) gene, and DNA mismatch repair (MMR) can cause autosomal recessive APC (-)/CAP. Furthermore, autosomal dominant APC (-)/CAP could occur as a result of DNA polymerase epsilon (POLE)/DNA polymerase delta 1 (POLD1), axis inhibition protein 2 (AXIN2), and dual oxidase 2 (DUOX2) mutations. The clinical phenotypes of these pathogenic mutations vary greatly depending on their genetic characteristics. Therefore, in this study, we present a comprehensive review of the association between autosomal recessive and dominant APC (-)/CAP genotypes and clinical phenotypes and conclude that APC (-)/CAP is a disease caused by multiple genes with different phenotypes and interaction exists in the pathogenic genes.
Collapse
Affiliation(s)
- Li-Hua Zhu
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, China
| | - Jian Dong
- Department of Internal Medicine-Oncology, Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China
| | - Wen-Liang Li
- Colorectal Cancer Clinical Research Center, Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China
| | - Zhi-Yong Kou
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, China
| | - Jun Yang
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, China.
| |
Collapse
|
7
|
Weatherill CB, Burke SA, Haskins CG, Berry DK, Homer JP, Demeure MJ, Darabi S. Six case reports of NTHL1-associated tumor syndrome further support it as a multi-tumor predisposition syndrome. Clin Genet 2023; 103:231-235. [PMID: 36196035 DOI: 10.1111/cge.14242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 01/20/2023]
Abstract
NTHL1-associated tumor syndrome (NATS) is an autosomal recessive condition characterized by an increased risk for colorectal polyposis and colorectal cancer (CRC). Only 46 case reports have been previously published. In a retrospective review, we analyzed the clinical histories of six patients found to have NATS after genetic counseling and testing. NATS appears to be associated with an increased risk for colorectal polyposis, CRC, female breast cancer, meningiomas, and endometrial cancer. Although research is limited, prior publications have reported a multi-tumor predisposition for individuals with biallelic pathogenic or likely pathogenic variants in NTHL1. Additional data are necessary to further define the cancer risks so affected individuals can be appropriately managed.
Collapse
Affiliation(s)
| | - Sarah A Burke
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Carolyn G Haskins
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Darcy K Berry
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Jeanne P Homer
- Hoag Family Cancer Institute, Newport Beach, California, USA
| | - Michael J Demeure
- Hoag Family Cancer Institute, Newport Beach, California, USA
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Sourat Darabi
- Hoag Family Cancer Institute, Newport Beach, California, USA
| |
Collapse
|
8
|
Hendriks WJAJ, van Cruchten RTP, Pulido R. Hereditable variants of classical protein tyrosine phosphatase genes: Will they prove innocent or guilty? Front Cell Dev Biol 2023; 10:1051311. [PMID: 36755664 PMCID: PMC9900141 DOI: 10.3389/fcell.2022.1051311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Protein tyrosine phosphatases, together with protein tyrosine kinases, control many molecular signaling steps that control life at cellular and organismal levels. Impairing alterations in the genes encoding the involved proteins is expected to profoundly affect the quality of life-if compatible with life at all. Here, we review the current knowledge on the effects of germline variants that have been reported for genes encoding a subset of the protein tyrosine phosphatase superfamily; that of the thirty seven classical members. The conclusion must be that the newest genome research tools produced an avalanche of data that suggest 'guilt by association' for individual genes to specific disorders. Future research should face the challenge to investigate these accusations thoroughly and convincingly, to reach a mature genotype-phenotype map for this intriguing protein family.
Collapse
Affiliation(s)
- Wiljan J. A. J. Hendriks
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen, The Netherlands,*Correspondence: Wiljan J. A. J. Hendriks,
| | | | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
9
|
Genetic Predisposition to Colorectal Cancer: How Many and Which Genes to Test? Int J Mol Sci 2023; 24:ijms24032137. [PMID: 36768460 PMCID: PMC9916931 DOI: 10.3390/ijms24032137] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Colorectal cancer is one of the most common tumors, and genetic predisposition is one of the key risk factors in the development of this malignancy. Lynch syndrome and familial adenomatous polyposis are the best-known genetic diseases associated with hereditary colorectal cancer. However, some other genetic disorders confer an increased risk of colorectal cancer, such as Li-Fraumeni syndrome (TP53 gene), MUTYH-associated polyposis (MUTYH gene), Peutz-Jeghers syndrome (STK11 gene), Cowden syndrome (PTEN gene), and juvenile polyposis syndrome (BMPR1A and SMAD4 genes). Moreover, the recent advances in molecular techniques, in particular Next-Generation Sequencing, have led to the identification of many new genes involved in the predisposition to colorectal cancers, such as RPS20, POLE, POLD1, AXIN2, NTHL1, MSH3, RNF43 and GREM1. In this review, we summarized the past and more recent findings in the field of cancer predisposition genes, with insights into the role of the encoded proteins and into the associated genetic disorders. Furthermore, we discussed the possible clinical utility of genetic testing in terms of prevention protocols and therapeutic approaches.
Collapse
|
10
|
Liu F, Liang Y, Sun R, Yang W, Liang Z, Gu J, Zhao F, Tang D. Astragalus mongholicus Bunge and Curcuma aromatica Salisb. inhibits liver metastasis of colon cancer by regulating EMT via the CXCL8/CXCR2 axis and PI3K/AKT/mTOR signaling pathway. Chin Med 2022; 17:91. [PMID: 35922850 PMCID: PMC9351103 DOI: 10.1186/s13020-022-00641-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND One of the most challenging aspects of colon cancer (CC) prognosis and treatment is liver-tropic metastasis. Astragalus mongholicus Bunge-Curcuma aromatica Salisb. (AC) is a typical medication combination for the therapy of many malignancies. Our previous studies found that AC intervention inhibits liver metastasis of colon cancer (LMCC). Nevertheless, the comprehensive anti-metastasis mechanisms of AC have not been uncovered. METHODS In bioinformatics analysis, RNA-seq data of CC and LMCC patients were collected from TCGA and GEO databases, and differentially expressed genes (DEGs) were identified. The biological processes and signaling pathways involved in DEGs were enriched by GO and KEGG. The protein-protein interaction (PPI) network of DEGs was established and visualized using the Cytocape software, followed by screening Hub genes in the PPI network using Degree value as the criterion. Subsequently, the expression and survival relevance of Hub gene in COAD patients were verified. In the experimental study, the effects of AC on the inhibition of colon cancer growth and liver metastasis were comprehensively evaluated by cellular and animal models. Finally, based on the results of bioinformatics analysis, the possible mechanisms of AC inhibition of colon cancer EMT and liver metastasis were explored by in vivo and in vitro pharmacological experiments. RESULTS In this study, we obtained 2386 DEGs relevant to LMCC from the COAD (colon adenocarcinoma) and GSE38174 datasets. Results of GO gene function and KEGG signaling pathway enrichment analysis suggested that cellular EMT (Epithelial-mesenchymal transition) biological processes, Cytokine-cytokine receptor interaction and PI3K/Akt signaling pathways might be closely related to LMCC mechanism. We then screened for CXCL8, the core hub gene with the highest centrality within the PPI network of DEGs, and discovered that CXCL8 expression was negatively correlated with the prognosis of COAD patients. In vitro and in vivo experimental evidence presented that AC significantly inhibited colon cancer cell proliferation, migration and invasion ability, and suppressed tumor growth and liver metastasis in colon cancer orthotopic transplantation mice models. Concomitantly, AC significantly reduced CXCL8 expression levels in cell supernatants and serum. Moreover, AC reduced the expression and transcription of genes related to the PI3K/AKT pathway while suppressing the EMT process in colon cancer cells and model mice. CONCLUSIONS In summary, our research predicted the potential targets and pathways of LMCC, and experimentally demonstrated that AC might inhibit the growth and liver metastasis in colon cancer by regulating EMT via the CXCL8/CXCR2 axis and PI3K/AKT/mTOR signaling pathway, which may facilitate the discovery of mechanisms and new therapeutic strategies for LMCC.
Collapse
Affiliation(s)
- Fuyan Liu
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Liang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruolan Sun
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weicheng Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhongqing Liang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junfei Gu
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fan Zhao
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Decai Tang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
11
|
Djursby M, Hansen TVO, Wadt KAW, Madsen MB, Berchtold LA, Lautrup CK, Markholt S, Jensen UB, Krogh LN, Lundsgaard M, Gerdes AM, Nilbert M, Therkildsen C. Clinical implications of genetic testing in familial intermediate and late-onset colorectal cancer. Hum Genet 2022; 141:1925-1933. [PMID: 35904628 DOI: 10.1007/s00439-022-02470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/23/2022] [Indexed: 11/04/2022]
Abstract
The genetic background of familial, late-onset colorectal cancer (CRC) (i.e., onset > age 50 years) has not been studied as thoroughly as other subgroups of familial CRC, and the proportion of families with a germline genetic predisposition to CRC remains to be defined. To define the contribution of known or suggested CRC predisposition genes to familial late-onset CRC, we analyzed 32 well-established or candidate CRC predisposition genes in 75 families with late-onset CRC. We identified pathogenic or likely pathogenic variants in five patients in MSH6 (n = 1), MUTYH (monoallelic; n = 2) and NTHL1 (monoallelic; n = 2). In addition, we identified a number of variants of unknown significance in particular in the lower penetrant Lynch syndrome-associated mismatch repair (MMR) gene MSH6 (n = 6). In conclusion, screening using a comprehensive cancer gene panel in families with accumulation of late-onset CRC appears not to have a significant clinical value due to the low level of high-risk pathogenic variants detected. Our data suggest that only patients with abnormal MMR immunohistochemistry (IHC) or microsatellite instability (MSI) analyses, suggestive of Lynch syndrome, or a family history indicating another cancer predisposition syndrome should be prioritized for such genetic evaluations. Variants in MSH6 and MUTYH have previously been proposed to be involved in digenic or oligogenic hereditary predisposition to CRC. Accumulation of variants in MSH6 and monoallelic, pathogenic variants in MUTYH in our study indicates that digenic or oligogenic inheritance might be involved in late-onset CRC and warrants further studies of complex types of inheritance.
Collapse
Affiliation(s)
- Malene Djursby
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| | - Thomas van Overeem Hansen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karin A W Wadt
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Majbritt Busk Madsen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lukas Adrian Berchtold
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Charlotte Kvist Lautrup
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| | - Sara Markholt
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Uffe Birk Jensen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Malene Lundsgaard
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| | - Anne Marie Gerdes
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mef Nilbert
- Clinical Research Centre, Copenhagen University Hospital, Amager and Hvidovre Hospital, Copenhagen, Denmark.,Institute of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Christina Therkildsen
- Clinical Research Centre, Copenhagen University Hospital, Amager and Hvidovre Hospital, Copenhagen, Denmark.,HNPCC Register, Gastro Unit, Copenhagen University Hospital, Amager and Hvidovre Hospital, Copenhagen, Denmark
| |
Collapse
|
12
|
Elhamamsy AR, Metge BJ, Alsheikh HA, Shevde LA, Samant RS. Ribosome Biogenesis: A Central Player in Cancer Metastasis and Therapeutic Resistance. Cancer Res 2022; 82:2344-2353. [PMID: 35303060 PMCID: PMC9256764 DOI: 10.1158/0008-5472.can-21-4087] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 01/07/2023]
Abstract
Ribosomes are a complex ensemble of rRNA and ribosomal proteins that function as mRNA translation machines. Ribosome biogenesis is a multistep process that begins in the nucleolus and concludes in the cytoplasm. The process is tightly controlled by multiple checkpoint and surveillance pathways. Perturbations in these checkpoints and pathways can lead to hyperactivation of ribosome biogenesis. Emerging evidence suggests that cancer cells harbor a specialized class of ribosomes (onco-ribosomes) that facilitates the oncogenic translation program, modulates cellular functions, and promotes metabolic rewiring. Mutations in ribosomal proteins, rRNA processing, and ribosome assembly factors result in ribosomopathies that are associated with an increased risk of developing malignancies. Recent studies have linked mutations in ribosomal proteins and aberrant ribosomes with poor prognosis, highlighting ribosome-targeted therapy as a promising approach for treating patients with cancer. Here, we summarize various aspects of dysregulation of ribosome biogenesis and the impact of resultant onco-ribosomes on malignant tumor behavior, therapeutic resistance, and clinical outcome. Ribosome biogenesis is a promising therapeutic target, and understanding the important determinants of this process will allow for improved and perhaps selective therapeutic strategies to target ribosome biosynthesis.
Collapse
Affiliation(s)
- Amr R. Elhamamsy
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Brandon J. Metge
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Heba A. Alsheikh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lalita A. Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama.,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rajeev S. Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama.,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama.,Birmingham VA Medical Center, Birmingham, Alabama.,Corresponding Author: Rajeev S. Samant, The University of Alabama at Birmingham, WTI 320E, 1824 6th Avenue South, Birmingham, AL 35233. Phone: 205-975-6262; E-mail:
| |
Collapse
|
13
|
Changes in the Transcriptome Caused by Mutations in the Ribosomal Protein uS10 Associated with a Predisposition to Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23116174. [PMID: 35682850 PMCID: PMC9181716 DOI: 10.3390/ijms23116174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023] Open
Abstract
A number of mutations in the RPS20 gene encoding the ribosomal protein uS10 have been found to be associated with a predisposition to hereditary non-polyposis colorectal carcinoma (CRC). We transfected HEK293T cells with constructs carrying the uS10 minigene with mutations identical to those mentioned above and examined the effects of the produced proteins on the cellular transcriptome. We showed that uS10 with mutations p.V50SfsX23 or p.L61EfsX11 cannot be incorporated into 40S ribosomal subunits, while the protein with the missense mutation p.V54L functionally replaces the respective endogenous protein in the 40S subunit assembly and the translation process. The comparison of RNA-seq data obtained from cells producing aberrant forms of uS10 with data for those producing the wild-type protein revealed overlapping sets of upregulated and downregulated differently expressed genes (DEGs) related to several pathways. Among the limited number of upregulated DEGs, there were genes directly associated with the progression of CRC, e.g., PPM1D and PIGN. Our findings indicate that the accumulation of the mutant forms of uS10 triggers a cascade of cellular events, similar to that which is triggered when the cell responds to a large number of erroneous proteins, suggesting that this may increase the risk of cancer.
Collapse
|
14
|
Mighton C, Lerner‐Ellis J. Principles of molecular testing for hereditary cancer. Genes Chromosomes Cancer 2022; 61:356-381. [DOI: 10.1002/gcc.23048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Chloe Mighton
- Laboratory Medicine and Pathology, Mount Sinai Hospital, Sinai Health Toronto ON Canada
- Lunenfeld Tanenbaum Research Institute, Sinai Health Toronto ON Canada
- Genomics Health Services Research Program Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto Toronto ON Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health University of Toronto Toronto ON Canada
| | - Jordan Lerner‐Ellis
- Laboratory Medicine and Pathology, Mount Sinai Hospital, Sinai Health Toronto ON Canada
- Lunenfeld Tanenbaum Research Institute, Sinai Health Toronto ON Canada
- Department of Laboratory Medicine and Pathobiology University of Toronto Toronto ON Canada
| |
Collapse
|
15
|
Carvalhal S, Bader I, Rooimans MA, Oostra AB, Balk JA, Feichtinger RG, Beichler C, Speicher MR, van Hagen JM, Waisfisz Q, van Haelst M, Bruijn M, Tavares A, Mayr JA, Wolthuis RMF, Oliveira RA, de Lange J. Biallelic BUB1 mutations cause microcephaly, developmental delay, and variable effects on cohesion and chromosome segregation. SCIENCE ADVANCES 2022; 8:eabk0114. [PMID: 35044816 PMCID: PMC8769543 DOI: 10.1126/sciadv.abk0114] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/24/2021] [Indexed: 05/14/2023]
Abstract
Budding uninhibited by benzimidazoles (BUB1) contributes to multiple mitotic processes. Here, we describe the first two patients with biallelic BUB1 germline mutations, who both display microcephaly, intellectual disability, and several patient-specific features. The identified mutations cause variable degrees of reduced total protein level and kinase activity, leading to distinct mitotic defects. Both patients’ cells show prolonged mitosis duration, chromosome segregation errors, and an overall functional spindle assembly checkpoint. However, while BUB1 levels mostly affect BUBR1 kinetochore recruitment, impaired kinase activity prohibits centromeric recruitment of Aurora B, SGO1, and TOP2A, correlating with anaphase bridges, aneuploidy, and defective sister chromatid cohesion. We do not observe accelerated cohesion fatigue. We hypothesize that unresolved DNA catenanes increase cohesion strength, with concomitant increase in anaphase bridges. In conclusion, BUB1 mutations cause a neurodevelopmental disorder, with clinical and cellular phenotypes that partially resemble previously described syndromes, including autosomal recessive primary microcephaly, mosaic variegated aneuploidy, and cohesinopathies.
Collapse
Affiliation(s)
- Sara Carvalhal
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156 Oeiras, Portugal
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
- Centre for Biomedical Research, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Ingrid Bader
- Unit of Clinical Genetics, Paracelsus Medical University, Salzburg, Austria
| | - Martin A. Rooimans
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Anneke B. Oostra
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Jesper A. Balk
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - René G. Feichtinger
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Christine Beichler
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Michael R. Speicher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Johanna M. van Hagen
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Quinten Waisfisz
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Mieke van Haelst
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Martijn Bruijn
- Northwest Clinics, Wilhelminalaan 12, 1815 JD Alkmaar, Netherlands
| | - Alexandra Tavares
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156 Oeiras, Portugal
| | - Johannes A. Mayr
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Rob M. F. Wolthuis
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Raquel A. Oliveira
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156 Oeiras, Portugal
| | - Job de Lange
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| |
Collapse
|
16
|
Long JM, Powers JM, Katona BW. Evaluation of Classic, Attenuated, and Oligopolyposis of the Colon. Gastrointest Endosc Clin N Am 2022; 32:95-112. [PMID: 34798989 PMCID: PMC8607742 DOI: 10.1016/j.giec.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The goal of this review is to provide an overview of evaluating patients with adenomatous polyposis of the colon, including elements such as generating a differential diagnosis, referral considerations for genetic testing, genetic testing options, and expected outcomes from genetic testing in these individuals. In more recent years, adenomatous colonic polyposis has evolved beyond the more robustly characterized familial adenomatous polyposis (FAP) and MUTYH-associated polyposis (MAP) now encompassing more newly described genes and associated syndromes. Technological innovation, from whole-exome sequencing to multigene panel testing, has dramatically increased the amount of genotypic and phenotypic data amassed in adenomatous polyposis cohorts, which has contributed greatly to informing diagnosis and clinical management of affected individuals and their families.
Collapse
Affiliation(s)
- Jessica M. Long
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jacquelyn M. Powers
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bryson W. Katona
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
17
|
Carroll BL, Zahn KE, Hanley JP, Wallace SS, Dragon JA, Doublié S. Caught in motion: human NTHL1 undergoes interdomain rearrangement necessary for catalysis. Nucleic Acids Res 2021; 49:13165-13178. [PMID: 34871433 PMCID: PMC8682792 DOI: 10.1093/nar/gkab1162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/02/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023] Open
Abstract
Base excision repair (BER) is the main pathway protecting cells from the continuous damage to DNA inflicted by reactive oxygen species. BER is initiated by DNA glycosylases, each of which repairs a particular class of base damage. NTHL1, a bifunctional DNA glycosylase, possesses both glycolytic and β-lytic activities with a preference for oxidized pyrimidine substrates. Defects in human NTHL1 drive a class of polyposis colorectal cancer. We report the first X-ray crystal structure of hNTHL1, revealing an open conformation not previously observed in the bacterial orthologs. In this conformation, the six-helical barrel domain comprising the helix-hairpin-helix (HhH) DNA binding motif is tipped away from the iron sulphur cluster-containing domain, requiring a conformational change to assemble a catalytic site upon DNA binding. We found that the flexibility of hNTHL1 and its ability to adopt an open configuration can be attributed to an interdomain linker. Swapping the human linker sequence for that of Escherichia coli yielded a protein chimera that crystallized in a closed conformation and had a reduced activity on lesion-containing DNA. This large scale interdomain rearrangement during catalysis is unprecedented for a HhH superfamily DNA glycosylase and provides important insight into the molecular mechanism of hNTHL1.
Collapse
Affiliation(s)
- Brittany L Carroll
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Karl E Zahn
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - John P Hanley
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Susan S Wallace
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Julie A Dragon
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
18
|
Wang C, Chen D, Pan C, Wang C. Research progress of Bub3 gene in malignant tumors. Cell Biol Int 2021; 46:673-682. [PMID: 34882895 PMCID: PMC9303375 DOI: 10.1002/cbin.11740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/28/2021] [Accepted: 12/04/2021] [Indexed: 12/09/2022]
Abstract
The spindle assembly checkpoint (SAC) is a highly conserved monitoring system that ensures a fidelity of chromosome segregation during mitosis. Bub3, a mitotic Checkpoint Protein, is a member of the Bub protein family, and an important factor in the SAC. Abnormal expression of Bub3 results in mitotic defects, defective spindle gate function, chromosomal instability and the development of aneuploidy cells. Aneuploidy is a state of abnormal karyotype that has long been considered as a marker of tumorigenesis. Karyotypic heterogeneity in tumor cells, known as "chromosomal instability" (CIN), can be used to distinguish cancerous cells from their normal tissue counterpart. In this review, we summarize the expression and clinical significance of Bub3 in a variety of tumors and suggest that it has potential in the treatment of cancer. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chenyang Wang
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.,1997-09, Woman, Han, Breast cancer
| | - Dating Chen
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chenglong Pan
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chunyan Wang
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.,1974-07, Woman, Han, Breast cancer
| |
Collapse
|
19
|
Jelsig AM, Karstensen JG, Jespersen N, Ketabi Z, Lautrup C, Rønlund K, Sunde L, Wadt K, Thorlacius-Ussing O, Qvist N. Danish guidelines for management of non-APC-associated hereditary polyposis syndromes. Hered Cancer Clin Pract 2021; 19:41. [PMID: 34620187 PMCID: PMC8499431 DOI: 10.1186/s13053-021-00197-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Hereditary Polyposis Syndromes are a group of rare, inherited syndromes characterized by the presence of histopathologically specific or numerous intestinal polyps and an increased risk of cancer. Some polyposis syndromes have been known for decades, but the development in genetic technologies has allowed the identification of new syndromes.. The diagnosis entails surveillance from an early age, but universal guideline on how to manage and surveille these new syndromes are lacking. This paper represents a condensed version of the recent guideline (2020) from a working group appointed by the Danish Society of Medical Genetics and the Danish Society of Surgery on recommendations for the surveillance of patients with hereditary polyposis syndromes, including rare polyposis syndromes.
Collapse
Affiliation(s)
- Anne Marie Jelsig
- Department of Clinical Genetics, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark.
| | - John Gásdal Karstensen
- Danish Polyposis Registry, Gastrounit, Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Niels Jespersen
- Danish Polyposis Registry, Gastrounit, Hvidovre Hospital, Hvidovre, Denmark
| | - Zohreh Ketabi
- Department of Gynecology and Obstetrics, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Charlotte Lautrup
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| | - Karina Rønlund
- Department of Clinical Genetics, University Hospital of Southern Denmark, Vejle Hospital, Vejle, Denmark
| | - Lone Sunde
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| | - Karin Wadt
- Department of Clinical Genetics, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Ole Thorlacius-Ussing
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Niels Qvist
- Research Unit for Surgery, Odense University Hospital, Odense, Denmark
- University of Southern Denmark, Odense, Denmark
| |
Collapse
|
20
|
Olkinuora AP, Peltomäki PT, Aaltonen LA, Rajamäki K. From APC to the genetics of hereditary and familial colon cancer syndromes. Hum Mol Genet 2021; 30:R206-R224. [PMID: 34329396 PMCID: PMC8490010 DOI: 10.1093/hmg/ddab208] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/12/2022] Open
Abstract
Hereditary colorectal cancer (CRC) syndromes attributable to high penetrance mutations represent 9-26% of young-onset CRC cases. The clinical significance of many of these mutations is understood well enough to be used in diagnostics and as an aid in patient care. However, despite the advances made in the field, a significant proportion of familial and early-onset cases remains molecularly uncharacterized and extensive work is still needed to fully understand the genetic nature of CRC susceptibility. With the emergence of next-generation sequencing and associated methods, several predisposition loci have been unraveled, but validation is incomplete. Individuals with cancer-predisposing mutations are currently enrolled in life-long surveillance, but with the development of new treatments, such as cancer vaccinations, this might change in the not so distant future for at least some individuals. For individuals without a known cause for their disease susceptibility, prevention and therapy options are less precise. Herein, we review the progress achieved in the last three decades with a focus on how CRC predisposition genes were discovered. Furthermore, we discuss the clinical implications of these discoveries and anticipate what to expect in the next decade.
Collapse
Affiliation(s)
- Alisa P Olkinuora
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
| | - Päivi T Peltomäki
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, 00014 Helsinki, Finland
| | - Kristiina Rajamäki
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
21
|
Sugai T, Osakabe M, Habano W, Tanaka Y, Eizuka M, Sugimoto R, Yanagawa N, Matsumoto T, Suzuki H. A genome-wide analysis of the molecular alterations occurring in the adenomatous and carcinomatous components of the same tumor based on the adenoma-carcinoma sequence. Pathol Int 2021; 71:582-593. [PMID: 34263942 PMCID: PMC8518074 DOI: 10.1111/pin.13129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022]
Abstract
Identification of molecular alterations occurring in the adenomatous and carcinomatous components within the same tumor would greatly enhance understanding of the neoplastic progression of colorectal cancer. We examined somatic copy number alterations (SCNAs) and mRNA expression at the corresponding loci involved in the adenoma–carcinoma sequence in the isolated adenomatous and cancer glands of the same tumor in 15 cases of microsatellite‐stable “carcinoma in adenoma,” using genome‐wide SNP and global gene expression arrays. Multiple copy‐neutral loss of heterozygosity events were detected at 4q13.2, 15q15.1, and 14q24.3 in the adenomatous component and at 4q13.2, 15q15.1, and 14q24.3 in the carcinomatous component. There were significant differences in the copy number (CN) gain frequencies at 20q11.21–q13.33, 8q13.3, 8p23.1, and 8q21.2–q22.2 between the adenomatous and carcinomatous components. Finally, we found a high frequency of five genotypes involving CN gain with upregulated expression of the corresponding gene (RPS21, MIR3654, RSP20, SNORD54, or ASPH) in the carcinomatous component, whereas none of these genotypes were detected in the adenomatous component. This finding is interesting in that CN gain with upregulated gene expression may enhance gene function and play a crucial role in the progression of an adenoma into a carcinomatous lesion.
Collapse
Affiliation(s)
- Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun'yahabachou, Japan
| | - Mitsumasa Osakabe
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun'yahabachou, Japan
| | - Wataru Habano
- Department of Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University, Shiwagun'yahabachou, Japan
| | - Yoshihito Tanaka
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun'yahabachou, Japan
| | - Makoto Eizuka
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun'yahabachou, Japan
| | - Ryo Sugimoto
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun'yahabachou, Japan
| | - Naoki Yanagawa
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun'yahabachou, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, Shiwagun'yahabachou, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, School of Medicine, Sapporo Medical University, Cyuuouku, Sapporo, Japan
| |
Collapse
|
22
|
Thompson BA, Snow AK, Koptiuch C, Kohlmann WK, Mooney R, Johnson S, Huff CD, Yu Y, Teerlink CC, Feng BJ, Neklason DW, Cannon-Albright LA, Tavtigian SV. A novel ribosomal protein S20 variant in a family with unexplained colorectal cancer and polyposis. Clin Genet 2021; 97:943-944. [PMID: 32424863 DOI: 10.1111/cge.13757] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Bryony A Thompson
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA.,Department of Pathology, Royal Melbourne Hospital, Melbourne, Australia.,Department of Clinical Pathology, University of Melbourne, Melbourne, Australia
| | - Angela K Snow
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Cathryn Koptiuch
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Wendy K Kohlmann
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Ryan Mooney
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Sara Johnson
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Chad D Huff
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yao Yu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Craig C Teerlink
- Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Bing-Jian Feng
- Department of Dermatology, University of Utah, Salt Lake City, Utah, USA
| | - Deborah W Neklason
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA.,Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Lisa A Cannon-Albright
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA.,Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,Research and Development Service, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Sean V Tavtigian
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA.,Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
23
|
Daca Alvarez M, Quintana I, Terradas M, Mur P, Balaguer F, Valle L. The Inherited and Familial Component of Early-Onset Colorectal Cancer. Cells 2021; 10:cells10030710. [PMID: 33806975 PMCID: PMC8005051 DOI: 10.3390/cells10030710] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
Early-onset colorectal cancer (EOCRC), defined as that diagnosed before the age of 50, accounts for 10–12% of all new colorectal cancer (CRC) diagnoses. Epidemiological data indicate that EOCRC incidence is increasing, despite the observed heterogeneity among countries. Although the cause for such increase remains obscure, ≈13% (range: 9–26%) of EOCRC patients carry pathogenic germline variants in known cancer predisposition genes, including 2.5% of patients with germline pathogenic variants in hereditary cancer genes traditionally not associated with CRC predisposition. Approximately 28% of EOCRC patients have family history of the disease. This article recapitulates current evidence on the inherited syndromes that predispose to EOCRC and its familial component. The evidence gathered support that all patients diagnosed with an EOCRC should be referred to a specialized genetic counseling service and offered somatic and germline pancancer multigene panel testing. The identification of a germline pathogenic variant in a known hereditary cancer gene has relevant implications for the clinical management of the patient and his/her relatives, and it may guide surgical and therapeutic decisions. The relative high prevalence of hereditary cancer syndromes and familial component among EOCRC patients supports further research that helps understand the genetic background, either monogenic or polygenic, behind this increasingly common disease.
Collapse
Affiliation(s)
- Maria Daca Alvarez
- Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain;
| | - Isabel Quintana
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (M.T.); (P.M.)
| | - Mariona Terradas
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (M.T.); (P.M.)
| | - Pilar Mur
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (M.T.); (P.M.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Francesc Balaguer
- Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
- Correspondence: (F.B.); (L.V.); Tel.: +34-932275400 (ext. 5418) (F.B.); +34-93-260-7145 (L.V.)
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (M.T.); (P.M.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence: (F.B.); (L.V.); Tel.: +34-932275400 (ext. 5418) (F.B.); +34-93-260-7145 (L.V.)
| |
Collapse
|
24
|
Boulouard F, Kasper E, Buisine MP, Lienard G, Vasseur S, Manase S, Bahuau M, Barouk Simonet E, Bubien V, Coulet F, Cusin V, Dhooge M, Golmard L, Goussot V, Hamzaoui N, Lacaze E, Lejeune S, Mauillon J, Beaumont MP, Pinson S, Tlemsani C, Toulas C, Rey JM, Uhrhammer N, Bougeard G, Frebourg T, Houdayer C, Baert-Desurmont S. Further delineation of the NTHL1 associated syndrome: A report from the French Oncogenetic Consortium. Clin Genet 2021; 99:662-672. [PMID: 33454955 DOI: 10.1111/cge.13925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/21/2020] [Accepted: 01/10/2021] [Indexed: 12/13/2022]
Abstract
Biallelic pathogenic variants in the NTHL1 (Nth like DNA glycosylase 1) gene cause a recently identified autosomal recessive hereditary cancer syndrome predisposing to adenomatous polyposis and colorectal cancer. Half of biallelic carriers also display multiple colonic or extra-colonic primary tumors, mainly breast, endometrium, urothelium, and brain tumors. Published data designate NTHL1 as an important contributor to hereditary cancers but also underline the scarcity of available informations. Thanks to the French oncogenetic consortium (Groupe Génétique et Cancer), we collected NTHL1 variants from 7765 patients attending for hereditary colorectal cancer or polyposis (n = 3936) or other hereditary cancers (n = 3829). Here, we describe 10 patients with pathogenic biallelic NTHL1 germline variants, that is, the second largest NTHL1 series. All carriers were from the "colorectal cancer or polyposis" series. All nine biallelic carriers who underwent colonoscopy presented adenomatous polyps. For digestive cancers, average age at diagnosis was 56.2 and we reported colorectal, duodenal, caecal, and pancreatic cancers. Extra-digestive malignancies included sarcoma, basal cell carcinoma, breast cancer, urothelial carcinoma, and melanoma. Although tumor risks remain to be precisely defined, these novel data support NTHL1 inclusion in diagnostic panel testing. Colonic surveillance should be conducted based on MUTYH recommendations while extra-colonic surveillance has to be defined.
Collapse
Affiliation(s)
- Flavie Boulouard
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France.,Comprehensive Cancer Center François Baclesse, Laboratory of Cancer Biology and Genetics, Caen, France
| | - Edwige Kasper
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Marie-Pierre Buisine
- Department of Biochemistry and Molecular Biology, Lille University Hospital Center, UMR 1277 Inserm-9020 CNRS, Lille University, Lille, France
| | - Gwendoline Lienard
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Stéphanie Vasseur
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Sandrine Manase
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Michel Bahuau
- Medical genetics Department, Henri Mondor Hospital, Créteil, France
| | | | | | - Florence Coulet
- Department of Genetics, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris, France
| | - Véronica Cusin
- Department of Genetics, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris, France
| | - Marion Dhooge
- Gastroenterology Unit, Cochin University Hospital, Paris Descartes University, Paris, France
| | - Lisa Golmard
- Institut Curie, Department of Genetics and Paris Sciences, Lettres Research University, Paris, France
| | - Vincent Goussot
- Department of Tumor Biology and Pathology, Georges-François Leclerc Center, Dijon, France
| | - Nadim Hamzaoui
- Department of Oncogenetics, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Elodie Lacaze
- Department of Genetics, Le Havre General Hospital, Normandy Centre for Genomic and Personalized Medicine, Le Havre, France
| | - Sophie Lejeune
- Genetic Pathology Biology Department, Lille University Hospital Center, Jeanne de Flandre Hospital, Lille, France
| | - Jacques Mauillon
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | | | - Stéphane Pinson
- Genetics Department, Hospices Civils de LYON (HCL), University Hospital, East Pathology Center, Bron, France
| | - Camille Tlemsani
- Department of Oncogenetics, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Christine Toulas
- Oncogenetic Laboratory, Cancer University Institute Toulouse Oncopole, Toulouse, France
| | - Jean-Marc Rey
- Department of Pathology and Oncobiology, Montpellier University Hospital, Montpellier, France
| | - Nancy Uhrhammer
- Centre Jean Perrin, Oncogenetics and Clermont Auvergne University, INSERM U1240, Clermont-Ferrand, France
| | - Gaëlle Bougeard
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Thierry Frebourg
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Claude Houdayer
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Stéphanie Baert-Desurmont
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| |
Collapse
|
25
|
Stürznickel J, Rolvien T, Delsmann A, Butscheidt S, Barvencik F, Mundlos S, Schinke T, Kornak U, Amling M, Oheim R. Clinical Phenotype and Relevance of LRP5 and LRP6 Variants in Patients With Early-Onset Osteoporosis (EOOP). J Bone Miner Res 2021; 36:271-282. [PMID: 33118644 DOI: 10.1002/jbmr.4197] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Reduced bone mineral density (BMD; ie, Z-score ≤-2.0) occurring at a young age (ie, premenopausal women and men <50 years) in the absence of secondary osteoporosis is considered early-onset osteoporosis (EOOP). Mutations affecting the WNT signaling pathway are of special interest because of their key role in bone mass regulation. Here, we analyzed the effects of relevant LRP5 and LRP6 variants on the clinical phenotype, bone turnover, BMD, and bone microarchitecture. After exclusion of secondary osteoporosis, EOOP patients (n = 372) were genotyped by gene panel sequencing, and segregation analysis of variants in LRP5/LRP6 was performed. The clinical assessment included the evaluation of bone turnover parameters, BMD by dual-energy X-ray absorptiometry, and microarchitecture via high-resolution peripheral quantitative computed tomography (HR-pQCT). In 50 individuals (31 EOOP index patients, 19 family members), relevant variants affecting LRP5 or LRP6 were detected (42 LRP5 and 8 LRP6 variants), including 10 novel variants. Seventeen variants were classified as disease causing, 14 were variants of unknown significance, and 19 were BMD-associated single-nucleotide polymorphisms (SNPs). One patient harbored compound heterozygous LRP5 mutations causing osteoporosis-pseudoglioma syndrome. Fractures were reported in 37 of 50 individuals, consisting of vertebral (18 of 50) and peripheral (29 of 50) fractures. Low bone formation was revealed in all individuals. A Z-score ≤-2.0 was detected in 31 of 50 individuals, and values at the spine were significantly lower than those at the hip (-2.1 ± 1.3 versus -1.6 ± 0.8; p = .003). HR-pQCT analysis (n = 34) showed impaired microarchitecture in trabecular and cortical compartments. Significant differences regarding the clinical phenotype were detectable between index patients and family members but not between different variant classes. Relevant variants in LRP5 and LRP6 contribute to EOOP in a substantial number of individuals, leading to a high number of fractures, low bone formation, reduced Z-scores, and impaired microarchitecture. This detailed skeletal characterization improves the interpretation of known and novel LRP5 and LRP6 variants. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Julian Stürznickel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alena Delsmann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian Butscheidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Barvencik
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Mundlos
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.,Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
26
|
Mikaeel RR, Symonds EL, Kimber J, Smith E, Horsnell M, Uylaki W, Tapia Rico G, Hewett PJ, Yong J, Tonkin D, Jesudason D, Poplawski NK, Ruszkiewicz AR, Drew PA, Hardingham JE, Wong S, Frank O, Tomita Y, Patel D, Vatandoust S, Townsend AR, Roder D, Young GP, Parry S, Tomlinson IP, Wittert G, Wattchow D, Worthley DL, Brooks WJ, Price TJ, Young JP. Young-onset colorectal cancer is associated with a personal history of type 2 diabetes. Asia Pac J Clin Oncol 2021; 17:131-138. [PMID: 32885561 DOI: 10.1111/ajco.13428] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/20/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is rising in incidence in young adults, and this observation is currently unexplained. We investigated whether having a personal history of type 2 diabetes mellitus (T2D) was a potential risk factor for young-onset colorectal cancer (YOCRC). METHODS The South Australian Young Onset (SAYO) CRC study is a series of young adults with CRC below age 55. Ninety unrelated YOCRC cases were recruited to the study. Personal history and detailed family history of T2D were obtained at face-to-face interview and confirmed from medical records. Whole exome sequencing was conducted on germline DNA from each CRC case. Controls for personal history studies of T2D were 240 patients with proven clear colonoscopies and no known CRC predispositions. RESULTS The median age of YOCRC cases was 44 years (18-54) and of controls was 45 years (18-54), and 53% of both cases and controls were females (P = 0.99). Left-sided (distal) CRC was seen in 67/89 (75%) of cases. A personal history of T2D was confirmed in 17/90 (19%) YOCRC patients compared with controls (12/240, 5%; P < 0.001; odds ratio = 4.4; 95% confidence interval, 2.0-9.7). YOCRC patients frequently reported at least one first-degree relative with T2D (32/85, 38%). Ten of 87 (12%) of YOCRC cases had CRC-related pathogenic germline variants, however, no pathogenic variants in familial diabetes-associated genes were seen. CONCLUSIONS Though the mechanism remains unclear, our observations suggest that there is enrichment for personal history of T2D in YOCRC patients. IMPACT A diagnosis of T2D could therefore potentially identify a subset of young adults at increased risk for CRC and in whom early screening might be appropriate.
Collapse
Affiliation(s)
- Reger R Mikaeel
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- SAHMRI Colorectal Node, Basil Hetzel Institute, Woodville South, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Biology Department, College of Science, University of Duhok, Duhok, Kurdistan, Iraq
| | - Erin L Symonds
- Bowel Health Service, Flinders Medical Centre, Bedford Park, South Australia, Australia
- Flinders Centre for Innovation in Cancer, Flinders University, Bedford Park, South Australia, Australia
| | - James Kimber
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Eric Smith
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- University of Adelaide Department of Surgery, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Mehgan Horsnell
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Wendy Uylaki
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Department of Gastroenterology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Gonzalo Tapia Rico
- Department of Medical Oncology, Royal Adelaide Hospital, Adelaide, Australia
| | - Peter J Hewett
- University of Adelaide Department of Surgery, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Jonathan Yong
- University of Adelaide Department of Surgery, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Darren Tonkin
- University of Adelaide Department of Surgery, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - David Jesudason
- Department of Endocrinology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Nicola K Poplawski
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Discipline of Paediatrics, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew R Ruszkiewicz
- Division of Anatomical Pathology, SA Pathology, Adelaide, South Australia, Australia
- Centre for Cancer Biology, University of South Australia, Adelaide, South Australia, Australia
| | - Paul A Drew
- University of Adelaide Department of Surgery, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Jenny E Hardingham
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- SAHMRI Colorectal Node, Basil Hetzel Institute, Woodville South, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Stephanie Wong
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia
| | - Oliver Frank
- Discipline of General Practice, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Yoko Tomita
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Dainik Patel
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Department of Medical Oncology, Lyell McEwin Hospital, Elizabeth Vale, South Australia, Australia
| | - Sina Vatandoust
- Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Amanda R Townsend
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - David Roder
- Cancer Epidemiology and Population Health, University of South Australia, Adelaide, South Australia, Australia
| | - Graeme P Young
- Flinders Centre for Innovation in Cancer, Flinders University, Bedford Park, South Australia, Australia
| | - Susan Parry
- New Zealand Familial GI Cancer Service, Auckland City Hospital, Auckland, New Zealand
- National Bowel Screening Programme, Ministry of Health, New Zealand
| | - Ian P Tomlinson
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Gary Wittert
- Discipline of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - David Wattchow
- Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Daniel L Worthley
- South Australian Health & Medical Research Institute & School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - William J Brooks
- Adelaide Medical Solutions, Adelaide Health Solutions, Woodville, South Australia, Australia
| | - Timothy J Price
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Joanne P Young
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- SAHMRI Colorectal Node, Basil Hetzel Institute, Woodville South, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
27
|
Deshmukh AL, Porro A, Mohiuddin M, Lanni S, Panigrahi GB, Caron MC, Masson JY, Sartori AA, Pearson CE. FAN1, a DNA Repair Nuclease, as a Modifier of Repeat Expansion Disorders. J Huntingtons Dis 2021; 10:95-122. [PMID: 33579867 PMCID: PMC7990447 DOI: 10.3233/jhd-200448] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FAN1 encodes a DNA repair nuclease. Genetic deficiencies, copy number variants, and single nucleotide variants of FAN1 have been linked to karyomegalic interstitial nephritis, 15q13.3 microdeletion/microduplication syndrome (autism, schizophrenia, and epilepsy), cancer, and most recently repeat expansion diseases. For seven CAG repeat expansion diseases (Huntington's disease (HD) and certain spinocerebellar ataxias), modification of age of onset is linked to variants of specific DNA repair proteins. FAN1 variants are the strongest modifiers. Non-coding disease-delaying FAN1 variants and coding disease-hastening variants (p.R507H and p.R377W) are known, where the former may lead to increased FAN1 levels and the latter have unknown effects upon FAN1 functions. Current thoughts are that ongoing repeat expansions in disease-vulnerable tissues, as individuals age, promote disease onset. Fan1 is required to suppress against high levels of ongoing somatic CAG and CGG repeat expansions in tissues of HD and FMR1 transgenic mice respectively, in addition to participating in DNA interstrand crosslink repair. FAN1 is also a modifier of autism, schizophrenia, and epilepsy. Coupled with the association of these diseases with repeat expansions, this suggests a common mechanism, by which FAN1 modifies repeat diseases. Yet how any of the FAN1 variants modify disease is unknown. Here, we review FAN1 variants, associated clinical effects, protein structure, and the enzyme's attributed functional roles. We highlight how variants may alter its activities in DNA damage response and/or repeat instability. A thorough awareness of the FAN1 gene and FAN1 protein functions will reveal if and how it may be targeted for clinical benefit.
Collapse
Affiliation(s)
- Amit L. Deshmukh
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Antonio Porro
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Mohiuddin Mohiuddin
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Stella Lanni
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Gagan B. Panigrahi
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Marie-Christine Caron
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Quebec, Canada
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, Quebec, Canada
| | - Jean-Yves Masson
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Quebec, Canada
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, Quebec, Canada
| | | | - Christopher E. Pearson
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- University of Toronto, Program of Molecular Genetics, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Yuan X, Dai M, Xu D. Telomere-related Markers for Cancer. Curr Top Med Chem 2020; 20:410-432. [PMID: 31903880 PMCID: PMC7475940 DOI: 10.2174/1568026620666200106145340] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/03/2019] [Accepted: 12/14/2019] [Indexed: 02/06/2023]
Abstract
Telomeres are structurally nucleoprotein complexes at termini of linear chromosomes and essential to chromosome stability/integrity. In normal human cells, telomere length erodes progressively with each round of cell divisions, which serves as an important barrier to uncontrolled proliferation and malignant transformation. In sharp contrast, telomere maintenance is a key feature of human malignant cells and required for their infinite proliferation and maintenance of other cancer hallmarks as well. Thus, a telomere-based anti-cancer strategy has long been suggested. However, clinically efficient and specific drugs targeting cancer telomere-maintenance have still been in their infancy thus far. To achieve this goal, it is highly necessary to elucidate how exactly cancer cells maintain functional telomeres. In the last two decades, numerous studies have provided profound mechanistic insights, and the identified mechanisms include the aberrant activation of telomerase or the alternative lengthening of telomere pathway responsible for telomere elongation, dysregulation and mutation of telomere-associated factors, and other telomere homeostasis-related signaling nodes. In the present review, these various strategies employed by malignant cells to regulate their telomere length, structure and function have been summarized, and potential implications of these findings in the rational development of telomere-based cancer therapy and other clinical applications for precision oncology have been discussed.
Collapse
Affiliation(s)
- Xiaotian Yuan
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, China
| | - Mingkai Dai
- Central Research Laboratory, Shandong University Second Hospital, Jinan, 250033, China.,Karolinska Institute Collaborative Laboratory for Cancer and Stem Cell Research, Shandong University Second Hospital, Jinan, 250033, China
| | - Dawei Xu
- Karolinska Institute Collaborative Laboratory for Cancer and Stem Cell Research, Shandong University Second Hospital, Jinan, 250033, China.,Department of Medicine, Division of Hematology, Center for Molecular Medicine (CMM) and Bioclinicum, Karolinska Institute and Karolinska University Hospital Solna, Solna 171 64, Sweden
| |
Collapse
|
29
|
Cannon‐Albright LA, Teerlink CC, Stevens J, Snow AK, Thompson BA, Bell R, Nguyen KN, Sargent NR, Kohlmann WK, Neklason DW, Tavtigian SV. FANCM c5791C>T stopgain mutation (rs144567652) is a familial colorectal cancer risk factor. Mol Genet Genomic Med 2020; 8:e1532. [PMID: 33118316 PMCID: PMC7767553 DOI: 10.1002/mgg3.1532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/09/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022] Open
Abstract
PURPOSE While familial aggregation of colorectal cancer (CRC) is recognized, the majority of the germline predisposition factors remain unidentified, and many high-risk CRC pedigrees remain unexplained by known risk variants. Fanconi Anemia genes have been recognized to be associated with cancer risk. Notably, FANCM (OMIM 609644) variants have been reported to confer risk for CRC and breast cancer. METHODS Exome sequencing of CRC-affected cousins in a set of 47 independent extended high-risk CRC pedigrees identified a candidate set of rare, shared variants. Variants were tested for association with risk in 744 Utah CRC cases and 1525 controls, and for segregation with CRC in affected relatives. RESULTS A FANCM stopgain variant was observed in two CRC-affected cousin pairs, each from an independent Utah high-risk pedigree, and yielded a nonsignificant, but elevated OR = 2.05 in a set of Utah cases and controls. Segregation of the variant to other related CRC-affected cases was observed in the two extended pedigrees. CONCLUSION A rare stopgain variant in FANCM (rs144567652) that is recognized as a breast cancer predisposition variant, and that has previously been proposed, but not confirmed, as a CRC predisposition variant, is validated here as a risk factor for familial CRC.
Collapse
Affiliation(s)
- Lisa A. Cannon‐Albright
- Division of EpidemiologyDepartment of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUTUSA
- Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUTUSA
| | - Craig C. Teerlink
- Division of EpidemiologyDepartment of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUTUSA
| | - Jeffrey Stevens
- Division of EpidemiologyDepartment of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUTUSA
| | - Angela K. Snow
- Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUTUSA
| | - Bryony A. Thompson
- Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUTUSA
- Department of PathologyRoyal Melbourne HospitalMelbourneAustralia
| | - Russell Bell
- Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUTUSA
| | - Kim N. Nguyen
- Division of EpidemiologyDepartment of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUTUSA
| | | | | | - Deborah W. Neklason
- Division of EpidemiologyDepartment of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUTUSA
- Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUTUSA
| | - Sean V. Tavtigian
- Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUTUSA
- Department of Oncological SciencesUniversity of Utah School of MedicineSalt Lake CityUTUSA
| |
Collapse
|
30
|
Venturi G, Montanaro L. How Altered Ribosome Production Can Cause or Contribute to Human Disease: The Spectrum of Ribosomopathies. Cells 2020; 9:E2300. [PMID: 33076379 PMCID: PMC7602531 DOI: 10.3390/cells9102300] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022] Open
Abstract
A number of different defects in the process of ribosome production can lead to a diversified spectrum of disorders that are collectively identified as ribosomopathies. The specific factors involved may either play a role only in ribosome biogenesis or have additional extra-ribosomal functions, making it difficult to ascribe the pathogenesis of the disease specifically to an altered ribosome biogenesis, even if the latter is clearly affected. We reviewed the available literature in the field from this point of view with the aim of distinguishing, among ribosomopathies, the ones due to specific alterations in the process of ribosome production from those characterized by a multifactorial pathogenesis.
Collapse
Affiliation(s)
- Giulia Venturi
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Center for Applied Biomedical Research, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Lorenzo Montanaro
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Center for Applied Biomedical Research, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy
| |
Collapse
|
31
|
Dhooge M, Baert-Desurmont S, Corsini C, Caron O, Andrieu N, Berthet P, Bonadona V, Cohen-Haguenauer O, De Pauw A, Delnatte C, Dussart S, Lasset C, Leroux D, Maugard C, Moretta-Serra J, Popovici C, Buecher B, Colas C, Noguès C. National recommendations of the French Genetics and Cancer Group - Unicancer on the modalities of multi-genes panel analyses in hereditary predispositions to tumors of the digestive tract. Eur J Med Genet 2020; 63:104080. [PMID: 33039684 DOI: 10.1016/j.ejmg.2020.104080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
In case of suspected hereditary predisposition to digestive cancers, next-generation sequencing can analyze simultaneously several genes associated with an increased risk of developing these tumors. Thus, "Gastro Intestinal" (GI) gene panels are commonly used in French molecular genetic laboratories. Lack of international recommendations led to disparities in the composition of these panels and in the management of patients. To harmonize practices, the Genetics and Cancer Group (GGC)-Unicancer set up a working group who carried out a review of the literature for 31 genes of interest in this context and established a list of genes for which the estimated risks associated with pathogenic variant seemed sufficiently reliable and high for clinical use. Pancreatic cancer susceptibility genes have been excluded. This expertise defined a panel of 14 genes of confirmed clinical interest and relevant for genetic counseling: APC, BMPR1A, CDH1, EPCAM, MLH1, MSH2, MSH6, MUTYH, PMS2, POLD1, POLE, PTEN, SMAD4 and STK11. The reasons for the exclusion of the others 23 genes have been discussed. The paucity of estimates of the associated tumor risks led to the exclusion of genes, in particular CTNNA1, MSH3 and NTHL1, despite their implication in the molecular pathways involved in the pathophysiology of GI cancers. A regular update of the literature is planned to up-grade this panel of genes in case of new data on candidate genes. Genetic and epidemiological studies and international collaborations are needed to better estimate the risks associated with the pathogenic variants of these genes either selected or not in the current panel.
Collapse
Affiliation(s)
- Marion Dhooge
- APHP.Centre (Cochin Hospital), Paris University, Paris, France.
| | - Stéphanie Baert-Desurmont
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Carole Corsini
- Arnaud de Villeneuve University Hospital, Montpellier, France
| | - Olivier Caron
- Gustave-Roussy University Hospital, Villejuif, France
| | - Nadine Andrieu
- Institut Curie, PSL Research University, Department of Tumor Biology, Paris, France; Unité Inserm, Institut Curie, Paris, France
| | | | | | | | - Antoine De Pauw
- Institut Curie, PSL Research University, Department of Tumor Biology, Paris, France
| | | | | | | | - Dominique Leroux
- Grenoble University Hospital, Couple-Enfant Hospital, Grenoble, France
| | | | - Jessica Moretta-Serra
- Institut Paoli-Calmettes, Department of Clinical Cancer Genetics, Aix Marseille Univ, INSERM, IRD, SESSTIM, Marseille, France
| | - Cornel Popovici
- Institut Paoli-Calmettes, Department of Clinical Cancer Genetics, Aix Marseille Univ, INSERM, IRD, SESSTIM, Marseille, France
| | - Bruno Buecher
- Institut Curie, PSL Research University, Department of Tumor Biology, Paris, France
| | - Chrystelle Colas
- Institut Curie, PSL Research University, Department of Tumor Biology, Paris, France
| | - Catherine Noguès
- Institut Paoli-Calmettes, Department of Clinical Cancer Genetics, Aix Marseille Univ, INSERM, IRD, SESSTIM, Marseille, France
| | | |
Collapse
|
32
|
Djursby M, Madsen MB, Frederiksen JH, Berchtold LA, Therkildsen C, Willemoe GL, Hasselby JP, Wikman F, Okkels H, Skytte AB, Nilbert M, Wadt K, Gerdes AM, van Overeem Hansen T. New Pathogenic Germline Variants in Very Early Onset and Familial Colorectal Cancer Patients. Front Genet 2020; 11:566266. [PMID: 33193653 PMCID: PMC7541943 DOI: 10.3389/fgene.2020.566266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/24/2020] [Indexed: 12/30/2022] Open
Abstract
A genetic diagnosis facilitates personalized cancer treatment and clinical care of relatives at risk, however, although 25% of colorectal cancer cases are familial, around 95% of the families are genetically unresolved. In this study, we performed gene panel analysis on germline DNA of 32 established or candidate colorectal cancer predisposing genes in 149 individuals from either families with an accumulation of colorectal cancers or families with only one sporadic case of very early onset colorectal cancer (≤40 years at diagnosis). We identified pathogenic or likely pathogenic genetic variants in 10.1% of the participants in genes such as APC, POLE, MSH2 or PMS2. The MSH2 variant, c.2168C>T, p.(Ser723Phe) was previously described as a variant of unknown significance, but we have now reclassified it to be likely pathogenic. The POLE variant, c.1089C>A, p.(Asn363Lys) was identified in a patient with three metachronous colorectal cancers from age 28 and turned out to be de novo. One pathogenic PMS2 variant was novel. We also identified a number of highly interesting variants of unknown significance in APC, BUB1, TP53 and RPS20. The RPS20 variant is novel and was found in a large Amsterdam I positive family with a multi tumor phenotype including 12 cases of CRC from as early as age 24. This variant was found to segregate with cancer in the family and multiple in silico tools predict it to be pathogenic. Our data further support the shift from phenotypic-based cancer panels to large panels including all established genes involved in hereditary cancer syndromes or (targeted) whole genome sequencing. Additionally, identification of a likely disease-predisposing variant in RPS20 expands the phenotypic spectrum of RPS20-related cancers and emphasize that this gene is relevant to include in colorectal cancer gene panels.
Collapse
Affiliation(s)
- Malene Djursby
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Majbritt B Madsen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jane H Frederiksen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lukas A Berchtold
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christina Therkildsen
- The Danish HNPCC Register, Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| | - Gro L Willemoe
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jane P Hasselby
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Friedrik Wikman
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Okkels
- Section of Molecular Diagnostics, Department of Clinical Chemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Anne-Bine Skytte
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Mef Nilbert
- The Danish HNPCC Register, Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| | - Karin Wadt
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas van Overeem Hansen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
33
|
Bhar S, Zhou F, Reineke LC, Morris DK, Khincha PP, Giri N, Mirabello L, Bergstrom K, Lemon LD, Williams CL, Toh Y, Elghetany MT, Lloyd RE, Alter BP, Savage SA, Bertuch AA. Expansion of germline RPS20 mutation phenotype to include Diamond-Blackfan anemia. Hum Mutat 2020; 41:1918-1930. [PMID: 32790018 DOI: 10.1002/humu.24092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/18/2020] [Accepted: 08/08/2020] [Indexed: 11/10/2022]
Abstract
Diamond-Blackfan anemia (DBA) is a ribosomopathy of variable expressivity and penetrance characterized by red cell aplasia, congenital anomalies, and predisposition to certain cancers, including early-onset colorectal cancer (CRC). DBA is primarily caused by a dominant mutation of a ribosomal protein (RP) gene, although approximately 20% of patients remain genetically uncharacterized despite exome sequencing and copy number analysis. Although somatic loss-of-function mutations in RP genes have been reported in sporadic cancers, with the exceptions of 5q-myelodysplastic syndrome (RPS14) and microsatellite unstable CRC (RPL22), these cancers are not enriched in DBA. Conversely, pathogenic variants in RPS20 were previously implicated in familial CRC; however, none of the reported individuals had classical DBA features. We describe two unrelated children with DBA lacking variants in known DBA genes who were found by exome sequencing to have de novo novel missense variants in RPS20. The variants affect the same amino acid but result in different substitutions and reduce the RPS20 protein level. Yeast models with mutation of the cognate residue resulted in defects in growth, ribosome biogenesis, and polysome formation. These findings expand the phenotypic spectrum of RPS20 mutation beyond familial CRC to include DBA, which itself is associated with increased risk of CRC.
Collapse
Affiliation(s)
- Saleh Bhar
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Fujun Zhou
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, Bethesda, Maryland
| | - Lucas C Reineke
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Danna K Morris
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Payal P Khincha
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lisa Mirabello
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Katie Bergstrom
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Laramie D Lemon
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas
| | - Christopher L Williams
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Yukimatsu Toh
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - M Tarek Elghetany
- Department of Pathology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Richard E Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alison A Bertuch
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
34
|
Peltomäki P, Olkinuora A, Nieminen TT. Updates in the field of hereditary nonpolyposis colorectal cancer. Expert Rev Gastroenterol Hepatol 2020; 14:707-720. [PMID: 32755332 DOI: 10.1080/17474124.2020.1782187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Up to one third of colorectal cancers show familial clustering and 5% are hereditary single-gene disorders. Hereditary non-polyposis colorectal cancer comprises DNA mismatch repair-deficient and -proficient subsets, represented by Lynch syndrome (LS) and familial colorectal cancer type X (FCCTX), respectively. Accurate knowledge of molecular etiology and genotype-phenotype correlations are critical for tailored cancer prevention and treatment. AREAS COVERED The authors highlight advances in the molecular dissection of hereditary non-polyposis colorectal cancer, based on recent literature retrieved from PubMed. Future possibilities for novel gene discoveries are discussed. EXPERT COMMENTARY LS is molecularly well established, but new information is accumulating of the associated clinical and tumor phenotypes. FCCTX remains poorly defined, but several promising candidate genes have been discovered and share some preferential biological pathways. Multi-level characterization of specimens from large patient cohorts representing multiple populations, combined with proper bioinformatic and functional analyses, will be necessary to resolve the outstanding questions.
Collapse
Affiliation(s)
- Paivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki , Helsinki, Finland
| | - Alisa Olkinuora
- Department of Medical and Clinical Genetics, University of Helsinki , Helsinki, Finland
| | - Taina T Nieminen
- Department of Medical and Clinical Genetics, University of Helsinki , Helsinki, Finland
| |
Collapse
|
35
|
Belhadj S, Terradas M, Munoz-Torres PM, Aiza G, Navarro M, Capellá G, Valle L. Candidate genes for hereditary colorectal cancer: Mutational screening and systematic review. Hum Mutat 2020; 41:1563-1576. [PMID: 32449991 DOI: 10.1002/humu.24057] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/30/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022]
Abstract
Genome-wide approaches applied for the identification of new hereditary colorectal cancer (CRC) genes, identified several potential causal genes, including RPS20, IL12RB1, LIMK2, POLE2, MRE11, POT1, FAN1, WIF1, HNRNPA0, SEMA4A, FOCAD, PTPN12, LRP6, POLQ, BLM, MCM9, and the epigenetic inactivation of PTPRJ. Here we attempted to validate the association between variants in these genes and nonpolyposis CRC by performing a mutational screening of the genes and PTPRJ promoter methylation analysis in 473 familial/early-onset CRC cases, a systematic review of the published cases, and assessment of allele frequencies in control population. In the studied cohort, 24 (5%) carriers of (predicted) deleterious variants in the studied genes and no constitutional PTPRJ epimutations were identified. Assessment of allele frequencies in controls compared with familial/early-onset patients with CRC showed association with increased nonpolyposis CRC risk of disruptive variants in RPS20, IL12RB1, POLE2, MRE11 and POT1, and of FAN1 c.149T>G (p.Met50Arg). Lack of association was demonstrated for LIMK2, PTPN12, LRP6, PTPRJ, POLQ, BLM, MCM9 and FOCAD variants. Additional studies are required to provide conclusive evidence for SEMA4A, WIF1, HNRNPA0 c.-110G>C, and FOCAD large deletions.
Collapse
Affiliation(s)
- Sami Belhadj
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Mariona Terradas
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Pau M Munoz-Torres
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Gemma Aiza
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Matilde Navarro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| |
Collapse
|
36
|
Schubert SA, Morreau H, de Miranda NFCC, van Wezel T. The missing heritability of familial colorectal cancer. Mutagenesis 2020; 35:221-231. [PMID: 31605533 PMCID: PMC7352099 DOI: 10.1093/mutage/gez027] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023] Open
Abstract
Pinpointing heritability factors is fundamental for the prevention and early detection of cancer. Up to one-quarter of colorectal cancers (CRCs) occur in the context of familial aggregation of this disease, suggesting a strong genetic component. Currently, only less than half of the heritability of CRC can be attributed to hereditary syndromes or common risk loci. Part of the missing heritability of this disease may be explained by the inheritance of elusive high-risk variants, polygenic inheritance, somatic mosaicism, as well as shared environmental factors, among others. A great deal of the missing heritability in CRC is expected to be addressed in the coming years with the increased application of cutting-edge next-generation sequencing technologies, routine multigene panel testing and tumour-focussed germline predisposition screening approaches. On the other hand, it will be important to define the contribution of environmental factors to familial aggregation of CRC incidence. This review provides an overview of the known genetic causes of familial CRC and aims at providing clues that explain the missing heritability of this disease.
Collapse
Affiliation(s)
- Stephanie A Schubert
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Noel F C C de Miranda
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| |
Collapse
|
37
|
Dámaso E, González-Acosta M, Vargas-Parra G, Navarro M, Balmaña J, Ramon y Cajal T, Tuset N, Thompson BA, Marín F, Fernández A, Gómez C, Velasco À, Solanes A, Iglesias S, Urgel G, López C, del Valle J, Campos O, Santacana M, Matias-Guiu X, Lázaro C, Valle L, Brunet J, Pineda M, Capellá G. Comprehensive Constitutional Genetic and Epigenetic Characterization of Lynch-Like Individuals. Cancers (Basel) 2020; 12:E1799. [PMID: 32635641 PMCID: PMC7408773 DOI: 10.3390/cancers12071799] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 01/01/2023] Open
Abstract
The causal mechanism for cancer predisposition in Lynch-like syndrome (LLS) remains unknown. Our aim was to elucidate the constitutional basis of mismatch repair (MMR) deficiency in LLS patients throughout a comprehensive (epi)genetic analysis. One hundred and fifteen LLS patients harboring MMR-deficient tumors and no germline MMR mutations were included. Mutational analysis of 26 colorectal cancer (CRC)-associated genes was performed. Pathogenicity of MMR variants was assessed by splicing and multifactorial likelihood analyses. Genome-wide methylome analysis was performed by the Infinium Human Methylation 450K Bead Chip. The multigene panel analysis revealed the presence of two MMR gene truncating mutations not previously found. Of a total of 15 additional MMR variants identified, five -present in 6 unrelated individuals- were reclassified as pathogenic. In addition, 13 predicted deleterious variants in other CRC-predisposing genes were found in 12 probands. Methylome analysis detected one constitutional MLH1 epimutation, but no additional differentially methylated regions were identified in LLS compared to LS patients or cancer-free individuals. In conclusion, the use of an ad-hoc designed gene panel combined with pathogenicity assessment of variants allowed the identification of deleterious MMR mutations as well as new LLS candidate causal genes. Constitutional epimutations in non-LS-associated genes are not responsible for LLS.
Collapse
Affiliation(s)
- Estela Dámaso
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
| | - Maribel González-Acosta
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; (À.V.); (X.M.-G.)
| | - Gardenia Vargas-Parra
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; (À.V.); (X.M.-G.)
| | - Matilde Navarro
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; (À.V.); (X.M.-G.)
| | - Judith Balmaña
- High Risk and Cancer Prevention Group, Vall d’Hebron Institute of Oncology (VHIO), Carrer de Natzaret 115-117, 08035 Barcelona, Spain;
| | - Teresa Ramon y Cajal
- Medical Oncology Department, Hospital de Santa Creu i Sant Pau, Carrer de Sant Quintí 89, 08041 Barcelona, Spain; (T.R.y.C.); (C.L.)
| | - Noemí Tuset
- Genetic Counseling Unit, Hospital Arnau de Vilanova, Avinguda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (N.T.); (G.U.)
| | - Bryony A. Thompson
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Building 181 Grattan St, VIC 3010 Melbourne, Australia;
| | - Fátima Marín
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; (À.V.); (X.M.-G.)
| | - Anna Fernández
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
| | - Carolina Gómez
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
| | - Àngela Velasco
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; (À.V.); (X.M.-G.)
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d’Investigació Biomèdica de Girona (IDIBGI), Carrer del Dr. Castany s/n, 17190 Salt, Girona, Spain
| | - Ares Solanes
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
| | - Sílvia Iglesias
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; (À.V.); (X.M.-G.)
| | - Gisela Urgel
- Genetic Counseling Unit, Hospital Arnau de Vilanova, Avinguda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (N.T.); (G.U.)
| | - Consol López
- Medical Oncology Department, Hospital de Santa Creu i Sant Pau, Carrer de Sant Quintí 89, 08041 Barcelona, Spain; (T.R.y.C.); (C.L.)
| | - Jesús del Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; (À.V.); (X.M.-G.)
| | - Olga Campos
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
| | - Maria Santacana
- Pathology Department, Hospital Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida (IRB Lleida), Avinguda Alcalde Rovira Roure 80, 25198 Lleida, Spain;
| | - Xavier Matias-Guiu
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; (À.V.); (X.M.-G.)
- Pathology Department, Hospital Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida (IRB Lleida), Avinguda Alcalde Rovira Roure 80, 25198 Lleida, Spain;
- Pathology Department, Bellvitge University Hospital, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), Carrer de la Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; (À.V.); (X.M.-G.)
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; (À.V.); (X.M.-G.)
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; (À.V.); (X.M.-G.)
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d’Investigació Biomèdica de Girona (IDIBGI), Carrer del Dr. Castany s/n, 17190 Salt, Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Carrer Emili Grahit 77, 17003 Girona, Spain
| | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; (À.V.); (X.M.-G.)
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; (À.V.); (X.M.-G.)
| |
Collapse
|
38
|
Aghabozorgi AS, Ebrahimi R, Bahiraee A, Tehrani SS, Nabizadeh F, Setayesh L, Jafarzadeh-Esfehani R, Ferns GA, Avan A, Rashidi Z. The genetic factors associated with Wnt signaling pathway in colorectal cancer. Life Sci 2020; 256:118006. [PMID: 32593708 DOI: 10.1016/j.lfs.2020.118006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
Colorectal cancer (CRC) is a common cancer with poor prognosis and high mortality. There is growing information about the factors involved in the pathogenesis of CRC. However, the knowledge of the predisposing factors is limited. The development of CRC is strongly associated with the Wingless/Integrated (Wnt) signaling pathway. This pathway comprises several major target proteins, including LRP5/6, GSK3β, adenomatous polyposis coli (APC), axis inhibition protein (Axin), and β-catenin. Genetic variations in these components of the Wnt signaling pathway may lead to the activation of β-catenin, potentially increasing the proliferation of colorectal cells. Because of the potentially important role of the Wnt signaling pathway in CRC, we aimed to review the involvement of different mutations in the main downstream proteins of this pathway, including LRP5/6, APC, GSK3β, Axin, and β-catenin. Determination of the genetic risk factors involved in the progression of CRC may lead to novel approaches for the early diagnosis of CRC and the identification of potential therapeutic targets in the treatment of CRC.
Collapse
Affiliation(s)
- Amirsaeed Sabeti Aghabozorgi
- Medical Genetics Research Center, Basic Medical Sciences Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhane Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Bahiraee
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabizadeh
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Leila Setayesh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Jafarzadeh-Esfehani
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Amir Avan
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Zahra Rashidi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
39
|
Terradas M, Capellá G, Valle L. Dominantly Inherited Hereditary Nonpolyposis Colorectal Cancer Not Caused by MMR Genes. J Clin Med 2020; 9:jcm9061954. [PMID: 32585810 PMCID: PMC7355797 DOI: 10.3390/jcm9061954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/30/2022] Open
Abstract
In the past two decades, multiple studies have been undertaken to elucidate the genetic cause of the predisposition to mismatch repair (MMR)-proficient nonpolyposis colorectal cancer (CRC). Here, we present the proposed candidate genes according to their involvement in specific pathways considered relevant in hereditary CRC and/or colorectal carcinogenesis. To date, only pathogenic variants in RPS20 may be convincedly linked to hereditary CRC. Nevertheless, accumulated evidence supports the involvement in the CRC predisposition of other genes, including MRE11, BARD1, POT1, BUB1B, POLE2, BRF1, IL12RB1, PTPN12, or the epigenetic alteration of PTPRJ. The contribution of the identified candidate genes to familial/early onset MMR-proficient nonpolyposis CRC, if any, is extremely small, suggesting that other factors, such as the accumulation of low risk CRC alleles, shared environmental exposures, and/or gene-environmental interactions, may explain the missing heritability in CRC.
Collapse
Affiliation(s)
- Mariona Terradas
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-93-260-7145
| |
Collapse
|
40
|
Bedoui SA, Barbirou M, Stayoussef M, Dallel M, Mokrani A, Makni L, Mezlini A, Bouhaouala-Zahar B, Yacoubi-Loueslati B, Almawi WY. Identification of novel advanced glycation end products receptor gene variants associated with colorectal cancer in Tunisians: A case-control study. Gene 2020; 754:144893. [PMID: 32544495 DOI: 10.1016/j.gene.2020.144893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022]
Abstract
A central role for advanced glycation end products (AGE) and their receptor (RAGE) in the pathogenesis of multiple cancer types, including colorectal cancer (CRC) was reported. We investigated the association between CRC and rs2853807, rs77170610, rs184003, rs1035798, rs2070600, rs1800684, rs1800624, and rs1800625 RAGE gene (AGER) polymorphic variants. Study subjects comprised 293 CRC patients [186 colon cancer (CC) and 107 rectal cancer (RC)] patients), and 264 age-, gender-, BMI-, and ethnicity-matched controls. Minor allele frequency (MAF) of rs77170610 and rs1800625 were significantly lower, while MAF of rs1035798 was significantly higher in CRC patients compared to control subjects, which was associated with reduced and increased risk of CRC, respectively; MAF of the remaining variants was comparable between CRC patients and controls. Significant difference in the distribution of rs2853807 and rs77170610 genotypes was seen between CRC patients and controls, with both variants associated with decreased risk of CRC. Comparison of the distribution of minor allele-carrying genotypes in CC and RC patient subgroups revealed lack of significant difference in the distribution of these genotypes between the patient subgroups. In view of the lack of LD between rs2853807 and rs77170610 with other variants, six-locus (rs184003, rs1035798, rs2070600, rs1800684, rs1800624, rs1800625) haplotypes were constructed. Haplotype analysis did not identify any specific 6-locus AGER haplotype associated with CRC. In conclusion, AGER gene rs2853807 and rs77170610 variants rs77170610 are associated with altered risk of CRC in Tunisians, but with no discrimination between CC and RC types.
Collapse
Affiliation(s)
- Sinda A Bedoui
- Department of Biology, Faculty of Sciences of Tunis, Laboratory of Mycology Pathologies and Biomarkers, El Manar University, Tunis LR16ES05, Tunisia
| | - Mouadh Barbirou
- Department of Biology, Faculty of Sciences of Tunis, Laboratory of Mycology Pathologies and Biomarkers, El Manar University, Tunis LR16ES05, Tunisia; Laboratory of Venoms and Therapeutic Molecules, Pasteur Institute of Tunis, Tunisia
| | - Mouna Stayoussef
- Department of Biology, Faculty of Sciences of Tunis, Laboratory of Mycology Pathologies and Biomarkers, El Manar University, Tunis LR16ES05, Tunisia
| | - Meriem Dallel
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), University of Monastir, Monastir, Tunisia
| | - Amina Mokrani
- Salah Azaiez Oncology Institute, Avenue 9 Avril, 1006, Bab Saadoun, Tunis, Tunisia
| | - Lamia Makni
- Department of Biology, Faculty of Sciences of Tunis, Laboratory of Mycology Pathologies and Biomarkers, El Manar University, Tunis LR16ES05, Tunisia
| | - Amel Mezlini
- Salah Azaiez Oncology Institute, Avenue 9 Avril, 1006, Bab Saadoun, Tunis, Tunisia
| | - Balkiss Bouhaouala-Zahar
- Laboratory of Venoms and Therapeutic Molecules, Pasteur Institute of Tunis, Tunisia; Medical School of Tunis, University of Tunis El Manar, 15 rue Djebel Lakhdhar, La Rabta, 1007 Tunis, Tunisia
| | - Besma Yacoubi-Loueslati
- Department of Biology, Faculty of Sciences of Tunis, Laboratory of Mycology Pathologies and Biomarkers, El Manar University, Tunis LR16ES05, Tunisia
| | - Wassim Y Almawi
- Department of Biology, Faculty of Sciences of Tunis, Laboratory of Mycology Pathologies and Biomarkers, El Manar University, Tunis LR16ES05, Tunisia; College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
41
|
DeSouza B, Georgiou D. Advances in Hereditary Colorectal Cancer: Opportunities and Challenges for Clinical Translation. CURRENT GENETIC MEDICINE REPORTS 2020. [DOI: 10.1007/s40142-020-00183-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
De Pasquale MD, Crocoli A, Caldaro T, Rinelli M, Spinelli GP, Francalanci P, Cozza R, Inserra A, Miele E. Targeting Epidermal Growth Factor Receptor (EGFR) in Pediatric Colorectal Cancer. Cancers (Basel) 2020; 12:E414. [PMID: 32053874 PMCID: PMC7072611 DOI: 10.3390/cancers12020414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 11/17/2022] Open
Abstract
Background: Colorectal carcinoma (CRC) is very rare in the pediatric and adolescent age range and clinical management is performed according to adult protocols. We report, for the first time in the literature, a case of a child with metastatic CRC successfully treated with panitumumab associated to chemotherapy. Methods: A twelve-year-old male was diagnosed with CRC with nodal metastasis and peritoneal neoplastic effusion. After performing a genetic evaluation, in light of the absence of mutations in RAS family genes, anti-Epidermal Growth Factor Receptor (EGFR) monoclonal antibody, panitumumab, was added to chemotherapy FOLFOXIRI. Results: The child successfully responded to therapy with normalization of the Carbohydrate Antigen (CA) 19.9 value after the third cycle of treatment. After the sixth cycle, he underwent surgery that consisted in sigmoid resection with complete D3 lymphadenectomy. At histological evaluation, no residual neoplastic cells were detectable in the surgical specimen. He completed 12 cycles of chemotherapy plus panitumomab and he is alive without disease 14 months from diagnosis. Conclusions: Our results suggest performing mutational screening for colorectal cancer also in the pediatric setting, in order to orient treatment that should include targeted therapies.
Collapse
Affiliation(s)
- Maria Debora De Pasquale
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (M.D.D.P.); (R.C.)
| | - Alessandro Crocoli
- Surgical Oncology Unit, Department of Surgery, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (A.C.); (A.I.)
| | - Tamara Caldaro
- Digestive Endoscopy and Surgery Unit, Department of Surgery, Bambino Gesù Children’s Hospital-IRCCS, 00165 Rome, Italy;
| | - Martina Rinelli
- Department of Laboratories, Genetic Unit, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
| | - Gian Paolo Spinelli
- Oncology Unit, Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Via Giustiniano, 04011 Aprilia, Italy;
| | - Paola Francalanci
- Department of Laboratories, Pathology Unit, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
| | - Raffaele Cozza
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (M.D.D.P.); (R.C.)
| | - Alessandro Inserra
- Surgical Oncology Unit, Department of Surgery, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (A.C.); (A.I.)
| | - Evelina Miele
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (M.D.D.P.); (R.C.)
| |
Collapse
|
43
|
Pardini B, Corrado A, Paolicchi E, Cugliari G, Berndt SI, Bezieau S, Bien SA, Brenner H, Caan BJ, Campbell PT, Casey G, Chan AT, Chang-Claude J, Cotterchio M, Gala M, Gallinger SJ, Haile RW, Harrison TA, Hayes RB, Hoffmeister M, Hopper JL, Hsu L, Huyghe J, Jenkins MA, Le Marchand L, Lin Y, Lindor NM, Nan H, Newcomb PA, Ogino S, Potter JD, Schoen RE, Slattery ML, White E, Vodickova L, Vymetalkova V, Vodicka P, Gemignani F, Peters U, Naccarati A, Landi S. DNA repair and cancer in colon and rectum: Novel players in genetic susceptibility. Int J Cancer 2020; 146:363-372. [PMID: 31209889 PMCID: PMC7301215 DOI: 10.1002/ijc.32516] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/27/2019] [Indexed: 01/07/2023]
Abstract
Interindividual differences in DNA repair systems may play a role in modulating the individual risk of developing colorectal cancer. To better ascertain the role of DNA repair gene polymorphisms on colon and rectal cancer risk individually, we evaluated 15,419 single nucleotide polymorphisms (SNPs) within 185 DNA repair genes using GWAS data from the Colon Cancer Family Registry (CCFR) and the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), which included 8,178 colon cancer, 2,936 rectum cancer cases and 14,659 controls. Rs1800734 (in MLH1 gene) was associated with colon cancer risk (p-value = 3.5 × 10-6 ) and rs2189517 (in RAD51B) with rectal cancer risk (p-value = 5.7 × 10-6 ). The results had statistical significance close to the Bonferroni corrected p-value of 5.8 × 10-6 . Ninety-four SNPs were significantly associated with colorectal cancer risk after Binomial Sequential Goodness of Fit (BSGoF) procedure and confirmed the relevance of DNA mismatch repair (MMR) and homologous recombination pathways for colon and rectum cancer, respectively. Defects in MMR genes are known to be crucial for familial form of colorectal cancer but our findings suggest that specific genetic variations in MLH1 are important also in the individual predisposition to sporadic colon cancer. Other SNPs associated with the risk of colon cancer (e.g., rs16906252 in MGMT) were found to affect mRNA expression levels in colon transverse and therefore working as possible cis-eQTL suggesting possible mechanisms of carcinogenesis.
Collapse
Affiliation(s)
- Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alda Corrado
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Giovanni Cugliari
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD. USA
| | - Stephane Bezieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire (CHU) Nantes, France
| | - Stephanie A. Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ) Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bette J. Caan
- Kaiser Permanente Medical Care Program of Northern California, Oakland, CA, USA
| | - Peter T. Campbell
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, USA
| | - Graham Casey
- Public Health Sciences, University of Virginia, VA, USA
| | - Andrew T. Chan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ) Heidelberg, Germany
| | | | - Manish Gala
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Tabitha A. Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Richard B. Hayes
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - John L. Hopper
- Melborne School of Population Health, The University of Melborne, Melborne, Australia
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jeroen Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mark A. Jenkins
- Melborne School of Population Health, The University of Melborne, Melborne, Australia
| | - Loic Le Marchand
- Epidemiology Program, Research Cancer Center of Hawaii, University of Hawaii, Honolulu, HI, USA
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Noralane M. Lindor
- Department of Health Sciences Research, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Hongmei Nan
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
| | - Polly A. Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School
- Department of Oncologic Pathology, Dana-Farber Cancer Institute
- Department of Epidemiology, Harvard T.H. Chan School of Public Health; all in, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - John D. Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Robert E. Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Martha L. Slattery
- Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ludmila Vodickova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czech Republic
| | - Veronika Vymetalkova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Vodicka
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czech Republic
| | | | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czech Republic
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
44
|
Kastrinos F, Samadder NJ, Burt RW. Use of Family History and Genetic Testing to Determine Risk of Colorectal Cancer. Gastroenterology 2020; 158:389-403. [PMID: 31759928 DOI: 10.1053/j.gastro.2019.11.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022]
Abstract
Approximately 35% of patients with colorectal cancer (CRC) have a family history of the disease attributed to genetic factors, common exposures, or both. Some families with a history of CRC carry genetic variants that cause CRC with high or moderate penetrance, but these account for only 5% to 10% of CRC cases. Most families with a history of CRC and/or adenomas do not carry genetic variants associated with cancer syndromes; this is called common familial CRC. Our understanding of familial predisposition to CRC and cancer syndromes has increased rapidly due to advances in next-generation sequencing technologies. As a result, there has been a shift from genetic testing for specific inherited cancer syndromes based on clinical criteria alone, to simultaneous testing of multiple genes for cancer-associated variants. We summarize current knowledge of common familial CRC, provide an update on syndromes associated with CRC (including the nonpolyposis and polyposis types), and review current recommendations for CRC screening and surveillance. We also provide an approach to genetic evaluation and testing in clinical practice. Determination of CRC risk based on family cancer history and results of genetic testing can provide a personalized approach to cancer screening and prevention, with optimal use of colonoscopy to effectively decrease CRC incidence and mortality.
Collapse
Affiliation(s)
- Fay Kastrinos
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York; Division of Digestive and Liver Diseases, Columbia University Irving Medical Center and the Vagelos College of Physicians and Surgeons, New York, New York.
| | - N Jewel Samadder
- Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, Arizona
| | - Randall W Burt
- Department of Gastroenterology, University of Utah, Salt Lake City, Utah; Emeritus Professor of Medicine, University of Utah, Salt Lake City, Utah
| |
Collapse
|
45
|
Incorporating Colorectal Cancer Genetic Risk Assessment into Gastroenterology Practice. ACTA ACUST UNITED AC 2019; 17:702-715. [DOI: 10.1007/s11938-019-00267-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
46
|
Terradas M, Munoz-Torres PM, Belhadj S, Aiza G, Navarro M, Brunet J, Capellá G, Valle L. Contribution to colonic polyposis of recently proposed predisposing genes and assessment of the prevalence of NTHL1- and MSH3-associated polyposes. Hum Mutat 2019; 40:1910-1923. [PMID: 31243857 DOI: 10.1002/humu.23853] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/12/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022]
Abstract
Technological advances have allowed the identification of new adenomatous and serrated polyposis genes, and of several candidate genes that require additional supporting evidence of causality. Through an exhaustive literature review and mutational screening of 177 unrelated polyposis patients, we assessed the involvement of MCM9, FOCAD, POLQ, and RNF43 in the predisposition to (nonserrated) colonic polyposis, as well as the prevalence of NTHL1 and MSH3 mutations among genetically unexplained polyposis patients. Our results, together with previously reported data and mutation frequency in controls, indicate that: MCM9 and POLQ mutations are not associated with polyposis; germline RNF43 mutations, with a prevalence of 1.5-2.5% among serrated polyposis patients, do not cause nonserrated polyposis; MSH3 biallelic mutations are highly infrequent among European polyposis patients, and the prevalence of NTHL1 biallelic mutations among unexplained polyposes is ~2%. Although nonsignificant, FOCAD predicted deleterious variants are overrepresented in polyposis patients compared to controls, warranting larger studies to provide definite evidence in favor or against their causal association with polyposis predisposition.
Collapse
Affiliation(s)
- Mariona Terradas
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Pau M Munoz-Torres
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Sami Belhadj
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Gemma Aiza
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Matilde Navarro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBGi, Girona, Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
47
|
Qin W, Wang X, Wang Y, Li Y, Chen Q, Hu X, Wu Z, Zhao P, Li S, Zhao H, Yao W, Ding J, Wei M, Wu H. Functional polymorphisms of the lncRNA H19 promoter region contribute to the cancer risk and clinical outcomes in advanced colorectal cancer. Cancer Cell Int 2019; 19:215. [PMID: 31452627 PMCID: PMC6702740 DOI: 10.1186/s12935-019-0895-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/29/2019] [Indexed: 01/15/2023] Open
Abstract
Background The long non-coding RNA H19 plays critical roles in cancer occurrence, development, and progression. The present study is for the first time to evaluate the association of genetic variations in the H19 promoter region with advanced colorectal cancer (CRC) susceptibility, environmental factors, and clinical outcomes. Methods 16 single-nucleotide polymorphisms (SNPs) were identified in the H19 gene promoter by DNA sequencing, and 3 SNPs among which including rs4930101, rs11042170, and rs2735970 further expanded samples with 572 advanced CRC patients and 555 healthy controls. Results We found that harboring SNP [rs4930101 (P = 0.009), rs2735970 (P = 0.003), and rs11042170 (P = 0.003)] or carrying more than one combined risk genotypes significantly increased the risk for CRC [P < 0.0001, adjusted OR (95% CI) 6.48 (2.97–14.15)]. In the correlation analysis with environmental factors, rs2735970 and gender, combined risk genotypes (> 1 vs. ≤ 1) and family history of cancer demonstrated significant interactions. Furthermore, a remarkably worse clinical outcome was found in combined risk genotypes (> 1 vs. ≤ 1), especially in CRC patients with body weight ≥ 61 kg, smoking, and first-degree family history of cancer (Log-rank test: P = 0.006, P = 0.018, and P = 0.013, respectively). More importantly, the multivariate Cox regression analyses further verified that combined risk genotypes > 1 showed a prognostic risk factor for CRC patients with body weight ≥ 61 kg (P = 0.002), smoking (P = 0.008), and family history of cancer (P = 0.006). In addition, MDR analysis consistently revealed that the combination of selected SNPs and nine known risk factors showed a better prediction prognosis and represented the best model to predict advanced CRC prognosis. Conclusion 3 SNPs of rs4930101, rs11042170, and rs27359703 among 16 identified SNPs of H19 gene remarkably increased CRC risk. Furthermore, the combined risk genotypes had a significant impact on environmental factors and clinical outcomes in the advanced CRC patients with body weight ≥ 61 kg, ever-smoking, and first-degree family history of cancer. These data suggest that H19 promoter SNPs, especially these combined SNPs might be more potentially functional biomarkers in the prediction of advanced CRC risk and prognosis. Electronic supplementary material The online version of this article (10.1186/s12935-019-0895-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenyan Qin
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Xiaodong Wang
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Yilin Wang
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Yalun Li
- 2Department of Anorectal Surgery, First Hospital of China Medical University, Shenyang, 110001 People's Republic of China
| | - Qiuchen Chen
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Xiaoyun Hu
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Zhikun Wu
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Pengfei Zhao
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Shanqiong Li
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Haishan Zhao
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Weifan Yao
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Jian Ding
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China.,3Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Minjie Wei
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Huizhe Wu
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| |
Collapse
|
48
|
A Role for the WNT Co-Receptor LRP6 in Pathogenesis and Therapy of Epithelial Cancers. Cancers (Basel) 2019; 11:cancers11081162. [PMID: 31412666 PMCID: PMC6721565 DOI: 10.3390/cancers11081162] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
The WNT/β-catenin signaling pathway controls stem and progenitor cell proliferation, survival and differentiation in epithelial tissues. Aberrant stimulation of this pathway is therefore frequently observed in cancers from epithelial origin. For instance, colorectal and hepatic cancers display activating mutations in the CTNNB1 gene encoding β-catenin, or inactivating APC and AXIN gene mutations. However, these mutations are uncommon in breast and pancreatic cancers despite nuclear β-catenin localization, indicative of pathway activation. Notably, the low-density lipoprotein receptor-related protein 6 (LRP6), an indispensable co-receptor for WNT, is frequently overexpressed in colorectal, liver, breast and pancreatic adenocarcinomas in association with increased WNT/β -catenin signaling. Moreover, LRP6 is hyperphosphorylated in KRAS-mutated cells and in patient-derived colorectal tumours. Polymorphisms in the LRP6 gene are also associated with different susceptibility to developing specific types of lung, bladder and colorectal cancers. Additionally, recent observations suggest that LRP6 dysfunction may be involved in carcinogenesis. Indeed, reducing LRP6 expression and/or activity inhibits cancer cell proliferation and delays tumour growth in vivo. This review summarizes current knowledge regarding the biological function and regulation of LRP6 in the development of epithelial cancers—especially colorectal, liver, breast and pancreatic cancers.
Collapse
|
49
|
Lorca V, Rueda D, Martín-Morales L, Fernández-Aceñero MJ, Grolleman J, Poves C, Llovet P, Tapial S, García-Barberán V, Sanz J, Pérez-Segura P, de Voer RM, Díaz-Rubio E, de la Hoya M, Caldés T, Garre P. Contribution of New Adenomatous Polyposis Predisposition Genes in an Unexplained Attenuated Spanish Cohort by Multigene Panel Testing. Sci Rep 2019; 9:9814. [PMID: 31285513 PMCID: PMC6614360 DOI: 10.1038/s41598-019-46403-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/28/2019] [Indexed: 12/25/2022] Open
Abstract
Attenuated adenomatous polyposis (AAP) is a heterogeneous syndrome in terms of clinical manifestations, heritability and etiology of the disease. Genetic heterogeneity and low penetrance alleles are probably the best explanation for this variability. Certainly, it is known that APC and MUTYH are high penetrance predisposition genes for adenomatous polyposis, but they only account for 5-10% of AAP. Other new predisposition genes, such as POLE, POLD1, NTHL1, AXIN2 or MSH3, have been recently described and have been associated with AAP, but their relative contribution is still not well defined. In order to evaluate the genetic predisposition to AAP in a hospital based population, germline DNAs from 158 AAP subjects were screened for genetic variants in the coding regions and intron-exon boundaries of seven associated genes through a next-generation sequencing (NGS) custom gene panel. Splicing, segregation studies, somatic mutational screening and RNA quantitative expression assays were conducted for selected variants. In four of the probands the adenoma susceptibility could be explained by actionable mutations in APC or MUTYH, and one other patient was a double carrier of two truncating variants in both POLE and NTHL1. Furthermore, 16 additional patients harbored uncertain significance variants in the remaining tested genes. This report gives information about the contribution of the newly described adenomatous polyposis predisposition genes in a Spanish attenuated polyposis cohort. Our results highly support the convenience of NGS multigene panels for attenuated polyposis genetic screening and reveals POLE frameshift variants as a plausible susceptibility mechanism for AAP.
Collapse
Affiliation(s)
- Víctor Lorca
- Laboratorio de Oncología Molecular, Hospital Clínico San Carlos, IdISSC, CIBERONC, Madrid, Spain
| | - Daniel Rueda
- Laboratorio de Cáncer Hereditario, Servicio de Bioquímica, i + 12, Hospital 12 de Octubre, Madrid, Spain
| | - Lorena Martín-Morales
- Laboratorio de Oncología Molecular, Hospital Clínico San Carlos, IdISSC, CIBERONC, Madrid, Spain
| | | | - Judith Grolleman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carmen Poves
- Servicio de Aparato Digestivo, Hospital Clínico San Carlos, Madrid, Spain
| | - Patricia Llovet
- Laboratorio de Oncología Molecular, Hospital Clínico San Carlos, IdISSC, CIBERONC, Madrid, Spain
| | - Sandra Tapial
- Laboratorio de Cáncer Hereditario, Servicio de Bioquímica, i + 12, Hospital 12 de Octubre, Madrid, Spain
| | - Vanesa García-Barberán
- Laboratorio de Oncología Molecular, Hospital Clínico San Carlos, IdISSC, CIBERONC, Madrid, Spain
| | - Julián Sanz
- Servicio de Anatomía Patológica, Hospital Clínico San Carlos, Madrid, Spain
| | - Pedro Pérez-Segura
- Servicio de Oncología Médica, Hospital Clínico San Carlos, CIBERONC, Madrid, Spain
| | - Richarda M de Voer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eduardo Díaz-Rubio
- Servicio de Oncología Médica, Hospital Clínico San Carlos, CIBERONC, Madrid, Spain
| | - Miguel de la Hoya
- Laboratorio de Oncología Molecular, Hospital Clínico San Carlos, IdISSC, CIBERONC, Madrid, Spain
| | - Trinidad Caldés
- Laboratorio de Oncología Molecular, Hospital Clínico San Carlos, IdISSC, CIBERONC, Madrid, Spain
| | - Pilar Garre
- Laboratorio de Oncología Molecular, Hospital Clínico San Carlos, IdISSC, CIBERONC, Madrid, Spain.
| |
Collapse
|
50
|
Belhadj S, Quintana I, Mur P, Munoz-Torres PM, Alonso MH, Navarro M, Terradas M, Piñol V, Brunet J, Moreno V, Lázaro C, Capellá G, Valle L. NTHL1 biallelic mutations seldom cause colorectal cancer, serrated polyposis or a multi-tumor phenotype, in absence of colorectal adenomas. Sci Rep 2019; 9:9020. [PMID: 31227763 PMCID: PMC6588610 DOI: 10.1038/s41598-019-45281-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 05/30/2019] [Indexed: 12/20/2022] Open
Abstract
The cancer-predisposing syndrome caused by biallelic mutations in NTHL1 may not be a solely colorectal cancer (CRC) and polyposis syndrome but rather a multi-tumor recessive disease. The presence of ≤10 adenomas in several mutation carriers suggests a possible causal role of NTHL1 in hereditary or early-onset nonpolyposis CRC. The involvement of NTHL1 in serrated/hyperplastic polyposis remains unexplored. The aim of our study is to elucidate the role of NTHL1 in the predisposition to personal or familial history of multiple tumor types, familial/early-onset nonpolyposis CRC, and serrated polyposis. NTHL1 mutational screening was performed in 312 cancer patients with personal or family history of multiple tumor types, 488 with hereditary nonpolyposis CRC, and 96 with serrated/hyperplastic polyposis. While no biallelic mutation carriers were identified in patients with personal and/or family history of multiple tumor types or with serrated polyposis, one was identified among the 488 nonpolyposis CRC patients. The carrier of c.268C>T (p.Q90*) and 550-1G>A was diagnosed with CRC and meningioma at ages 37 and 45 respectively, being reclassified as attenuated adenomatous polyposis after the cumulative detection of 26 adenomas. Our findings suggest that biallelic mutations in NTHL1 rarely cause CRC, a personal/familial multi-tumor history, or serrated polyposis, in absence of adenomas.
Collapse
Affiliation(s)
- Sami Belhadj
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 Hospitalet de Llobregat, Barcelona, Spain
| | - Isabel Quintana
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 Hospitalet de Llobregat, Barcelona, Spain
| | - Pilar Mur
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Pau M Munoz-Torres
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 Hospitalet de Llobregat, Barcelona, Spain
| | - M Henar Alonso
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 Hospitalet de Llobregat, Barcelona, Spain.,Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology, IDIBELL, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.,Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Matilde Navarro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Mariona Terradas
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 Hospitalet de Llobregat, Barcelona, Spain
| | - Virginia Piñol
- Gastroenterology Unit, Hospital Universitario de Girona Dr Josep Trueta, 17007, Girona, Spain.,School of Medicine, University of Girona, 17071, Girona, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology, IDIBGi, 17007, Girona, Spain
| | - Victor Moreno
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 Hospitalet de Llobregat, Barcelona, Spain.,Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology, IDIBELL, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.,Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 Hospitalet de Llobregat, Barcelona, Spain. .,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 Hospitalet de Llobregat, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|