1
|
Jafari P, Drogan C, Keel E, Kupfer S, Hart J, Setia N. Screening at the scope: enhancing the role of pathologists in diagnosing gastrointestinal polyposis syndromes. Virchows Arch 2025:10.1007/s00428-025-04118-1. [PMID: 40358740 DOI: 10.1007/s00428-025-04118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 04/15/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
Only a minority of patients at high likelihood of a gastrointestinal polyposis syndrome (GPS) are appropriately referred for workup. This proof-of-concept study evaluates a GPS screening rubric based exclusively on information in prior pathology reports and intended to facilitate pathologist engagement in GPS screening and referral. We sought to (1) identify patients who would benefit from further GPS workup, (2) assign a probable polyposis syndrome category (adenomatous, hamartomatous, serrated, or mixed), and (3) suggest a specific syndrome, such as familial adenomatous polyposis, whenever possible. We retrospectively tested the rubric against the pathology records of 108 patients (median, 6 reports/patient) with an established clinical diagnosis of GPS (adenomatous (N = 88), hamartomatous (N = 18), and mixed (N = 2) polyposis syndromes). Records were reviewed chronologically (mean, 4.4 min/patient) by a GI pathologist blinded to clinical history. Ninety-five patients (88%) had a positive GPS screen (N = 76 with an adenomatous polyposis syndrome, N = 17 with a hamartomatous polyposis syndrome, N = 2 with a mixed polyposis syndrome); all were assigned to the correct syndrome category. In a subset of cases, the histopathologic record suggested a specific syndrome (correct in 28 of 30 instances). Of 13 patients with a negative screen (failure to meet any rubric parameters), N = 6 (46.2%) had incomplete records. These findings demonstrate that when robust records are available, structured review of pathology reports is a sensitive and efficient tool for the identification of patients with a high suspicion of a GPS. While prospective studies are necessary, pathologists are indeed well positioned to play an expanded role in GPS screening.
Collapse
Affiliation(s)
- Pari Jafari
- Department of Pathology, University of Chicago Medicine, 5841 S. Maryland Avenue, MC 6101, Room S-638, IL 60637-1470, Chicago, USA.
| | - Christine Drogan
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago Medicine, Chicago, USA
| | - Emma Keel
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago Medicine, Chicago, USA
| | - Sonia Kupfer
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago Medicine, Chicago, USA
| | - John Hart
- Department of Pathology, University of Chicago Medicine, 5841 S. Maryland Avenue, MC 6101, Room S-638, IL 60637-1470, Chicago, USA
| | - Namrata Setia
- Department of Pathology, University of Chicago Medicine, 5841 S. Maryland Avenue, MC 6101, Room S-638, IL 60637-1470, Chicago, USA
| |
Collapse
|
2
|
Jin Z, Cao Y. Gremlin1: a BMP antagonist with therapeutic potential in Oncology. Invest New Drugs 2024; 42:716-727. [PMID: 39347850 DOI: 10.1007/s10637-024-01474-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Gremlins, originating from early 20th-century Western folklore, are mythical creatures known for causing mechanical malfunctions and electronic failures, aptly dubbed "little devils". Analogously, GREM1 acts like a horde of these mischievous entities by antagonizing the bone morphogenetic protein (BMP signaling) pathway or through other non-BMP dependent mechanisms (such as binding to Fibroblast Growth Factor Receptor 1and Epidermal Growth Factor Receptor) contributing to the malignant progression of various cancers. The overexpression of GREM1 promotes tumor cell growth and survival, enhances angiogenesis within the tumor microenvironment, and creates favorable conditions for tumor development and dissemination. Consequently, inhibiting the activity of GREM1 or blocking its interaction with BMP presents a promising strategy for suppressing tumor growth and metastasis. However, the role of GREM1 in cancer remains a subject of debate, with evidence suggesting both oncogenic and tumor-suppressive functions. Currently, several pharmaceutical companies are researching the GREM1 target, with some advancing to Phase I/II clinical trials. This article will provide a detailed overview of the GREM1 target and explore its potential role in cancer therapy.
Collapse
Affiliation(s)
- Zhao Jin
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Yanshuo Cao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
3
|
Fasano C, Lepore Signorile M, De Marco K, Forte G, Disciglio V, Sanese P, Grossi V, Simone C. In Silico Deciphering of the Potential Impact of Variants of Uncertain Significance in Hereditary Colorectal Cancer Syndromes. Cells 2024; 13:1314. [PMID: 39195204 PMCID: PMC11352798 DOI: 10.3390/cells13161314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Colorectal cancer (CRC) ranks third in terms of cancer incidence worldwide and is responsible for 8% of all deaths globally. Approximately 10% of CRC cases are caused by inherited pathogenic mutations in driver genes involved in pathways that are crucial for CRC tumorigenesis and progression. These hereditary mutations significantly increase the risk of initial benign polyps or adenomas developing into cancer. In recent years, the rapid and accurate sequencing of CRC-specific multigene panels by next-generation sequencing (NGS) technologies has enabled the identification of several recurrent pathogenic variants with established functional consequences. In parallel, rare genetic variants that are not characterized and are, therefore, called variants of uncertain significance (VUSs) have also been detected. The classification of VUSs is a challenging task because each amino acid has specific biochemical properties and uniquely contributes to the structural stability and functional activity of proteins. In this scenario, the ability to computationally predict the effect of a VUS is crucial. In particular, in silico prediction methods can provide useful insights to assess the potential impact of a VUS and support additional clinical evaluation. This approach can further benefit from recent advances in artificial intelligence-based technologies. In this review, we describe the main in silico prediction tools that can be used to evaluate the structural and functional impact of VUSs and provide examples of their application in the analysis of gene variants involved in hereditary CRC syndromes.
Collapse
Affiliation(s)
- Candida Fasano
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (K.D.M.); (G.F.); (V.D.); (P.S.); (V.G.)
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (K.D.M.); (G.F.); (V.D.); (P.S.); (V.G.)
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (K.D.M.); (G.F.); (V.D.); (P.S.); (V.G.)
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (K.D.M.); (G.F.); (V.D.); (P.S.); (V.G.)
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (K.D.M.); (G.F.); (V.D.); (P.S.); (V.G.)
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (K.D.M.); (G.F.); (V.D.); (P.S.); (V.G.)
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (K.D.M.); (G.F.); (V.D.); (P.S.); (V.G.)
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (K.D.M.); (G.F.); (V.D.); (P.S.); (V.G.)
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
4
|
Negro S, Bao QR, Scarpa M, Scognamiglio F, Pucciarelli S, Remo A, Agostini M, D'Angelo E, Mammi I, Schiavi F, Rossi S, Zingone F, Ferrara F, Fantin A, Cristofori C, Guido E, Rizzotto ER, Intini R, Bergamo F, Fassan M, Salviati L, Urso EDL. Multiple colorectal adenomas syndrome: The role of MUTYH mutation and the polyps' number in clinical management and colorectal cancer risk. Dig Liver Dis 2024; 56:1087-1094. [PMID: 38071180 DOI: 10.1016/j.dld.2023.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 05/28/2024]
Abstract
BACKGROUND & AIMS Multiple colorectal adenomas (MCRAs) can result from APC (AFAP) or biallelic MUTYH (MAP) mutations, but most patients are wild type and referred to as non-APC/MUTYH polyposis (NAMP). We aim to examine the risk of colorectal cancer (CRC) and the role of endoscopy in managing patients with MCRAs, with a specific focus on clinical features and genotype. METHODS Records of MRCAs between 2000 and 2022 were retrospectively analysed. Patients were divided according to the genotype (MAP vs. NAMP) and the number of categorised polyps' burden (group 1: 10-24, group 2: 25-49, and group 3: 50-99 adenomas). Predictors of outcome were CRC-free survival (CRC-FS) and Surgery free-survival (S-FS). RESULTS 220 patients were enrolled (NAMP n = 178(80.0%)). CRC at diagnosis was more frequent in group 3 (p = 0.01), without significant differences between the genotypes (p = 0.20). At a follow-up of 83(41-164) months, 15(7%) patients developed CRC during surveillance. CRC-FS was not correlated to genotype (p = 0.07) or polyps' number (p = 0.33), while S-FS was similar in MAP and NAMP (p = 0.22) and lower in groups 2 and 3 (p = 0.0001). CONCLUSIONS MAP and NAMP have the same CRC risk and no difference in treatment. Endoscopic surveillance compared favorably with surgery in avoiding CRC risk, even in patients with more severe colorectal polyposis.
Collapse
Affiliation(s)
- Silvia Negro
- General Surgery 3, Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Padua, Italy
| | - Quoc Riccardo Bao
- General Surgery 3, Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Padua, Italy.
| | - Marco Scarpa
- General Surgery 3, Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Padua, Italy
| | - Federico Scognamiglio
- General Surgery 3, Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Padua, Italy
| | - Salvatore Pucciarelli
- General Surgery 3, Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Padua, Italy
| | - Andrea Remo
- Department of Pathology, ULSS 9 "Scaligera", Verona, Italy
| | - Marco Agostini
- General Surgery 3, Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Padua, Italy
| | - Edoardo D'Angelo
- General Surgery 3, Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Padua, Italy
| | - Isabella Mammi
- Familial Cancer Clinic and Oncoendocrinology, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Francesca Schiavi
- Familial Cancer Clinic and Oncoendocrinology, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Silvia Rossi
- Familial Cancer Clinic and Oncoendocrinology, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Fabiana Zingone
- Gastroenterology Unit, Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Padua, Italy
| | - Francesco Ferrara
- Gastroenterology Unit, Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Padua, Italy
| | - Alberto Fantin
- Gastroenterology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Chiara Cristofori
- Gastroenterology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Ennio Guido
- Gastroenterology Unit, Azienda Ospedaliera Università di Padova, University of Padova, Padua, Italy
| | - Erik Rosa Rizzotto
- Gastroenterology Unit, Azienda Ospedaliera Università di Padova, University of Padova, Padua, Italy
| | - Rossana Intini
- Oncology 1, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | | | - Matteo Fassan
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padova, Padua, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Padua, Italy
| | - Emanuele D L Urso
- General Surgery 3, Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Padua, Italy
| |
Collapse
|
5
|
Foda ZH, Dharwadkar P, Katona BW. Preventive strategies in familial and hereditary colorectal cancer. Best Pract Res Clin Gastroenterol 2023; 66:101840. [PMID: 37852714 DOI: 10.1016/j.bpg.2023.101840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/05/2023] [Accepted: 05/17/2023] [Indexed: 10/20/2023]
Abstract
Colorectal cancer is a leading cause of cancer-related deaths worldwide. While most cases are sporadic, a significant proportion of cases are associated with familial and hereditary syndromes. Individuals with a family history of colorectal cancer have an increased risk of developing the disease, and those with hereditary syndromes such as Lynch syndrome or familial adenomatous polyposis have a significantly higher risk. In these populations, preventive strategies are critical for reducing the incidence and mortality of colorectal cancer. This review provides an overview of current preventive strategies for individuals at increased risk of colorectal cancer due to familial or hereditary factors. The manuscript includes a discussion of risk assessment and genetic testing, highlighting the importance of identifying at-risk individuals and families. This review describes various preventive measures, including surveillance colonoscopy, chemoprevention, and prophylactic surgery, and their respective benefits and limitations. Together, this work highlights the importance of preventive strategies in familial and hereditary colorectal cancer.
Collapse
Affiliation(s)
- Zachariah H Foda
- The Sidney Kimmel Comprehensive Cancer Center and Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pooja Dharwadkar
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Bryson W Katona
- Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Genetic Predisposition to Colorectal Cancer: How Many and Which Genes to Test? Int J Mol Sci 2023; 24:ijms24032137. [PMID: 36768460 PMCID: PMC9916931 DOI: 10.3390/ijms24032137] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Colorectal cancer is one of the most common tumors, and genetic predisposition is one of the key risk factors in the development of this malignancy. Lynch syndrome and familial adenomatous polyposis are the best-known genetic diseases associated with hereditary colorectal cancer. However, some other genetic disorders confer an increased risk of colorectal cancer, such as Li-Fraumeni syndrome (TP53 gene), MUTYH-associated polyposis (MUTYH gene), Peutz-Jeghers syndrome (STK11 gene), Cowden syndrome (PTEN gene), and juvenile polyposis syndrome (BMPR1A and SMAD4 genes). Moreover, the recent advances in molecular techniques, in particular Next-Generation Sequencing, have led to the identification of many new genes involved in the predisposition to colorectal cancers, such as RPS20, POLE, POLD1, AXIN2, NTHL1, MSH3, RNF43 and GREM1. In this review, we summarized the past and more recent findings in the field of cancer predisposition genes, with insights into the role of the encoded proteins and into the associated genetic disorders. Furthermore, we discussed the possible clinical utility of genetic testing in terms of prevention protocols and therapeutic approaches.
Collapse
|
7
|
Styk J, Buglyó G, Pös O, Csók Á, Soltész B, Lukasz P, Repiská V, Nagy B, Szemes T. Extracellular Nucleic Acids in the Diagnosis and Progression of Colorectal Cancer. Cancers (Basel) 2022; 14:3712. [PMID: 35954375 PMCID: PMC9367600 DOI: 10.3390/cancers14153712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
Colorectal cancer (CRC) is the 3rd most common malignant neoplasm worldwide, with more than two million new cases diagnosed yearly. Despite increasing efforts in screening, many cases are still diagnosed at a late stage, when mortality is high. This paper briefly reviews known genetic causes of CRC (distinguishing between sporadic and familial forms) and discusses potential and confirmed nucleic acid biomarkers obtainable from liquid biopsies, classified by their molecular features, focusing on clinical relevance. We comment on advantageous aspects such as better patient compliance due to blood sampling being minimally invasive, the possibility to monitor mutation characteristics of sporadic and hereditary CRC in a disease showing genetic heterogeneity, and using up- or down-regulated circulating RNA markers to reveal metastasis or disease recurrence. Current difficulties and thoughts on some possible future directions are also discussed. We explore current evidence in the field pointing towards the introduction of personalized CRC management.
Collapse
Affiliation(s)
- Jakub Styk
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia; (O.P.); (B.N.); (T.S.)
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.B.); (Á.C.); (B.S.)
| | - Ondrej Pös
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia; (O.P.); (B.N.); (T.S.)
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Ádám Csók
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.B.); (Á.C.); (B.S.)
| | - Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.B.); (Á.C.); (B.S.)
| | - Peter Lukasz
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, 1082 Budapest, Hungary;
| | - Vanda Repiská
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
- Medirex Group Academy, n.p.o., 949 05 Nitra, Slovakia
| | - Bálint Nagy
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia; (O.P.); (B.N.); (T.S.)
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.B.); (Á.C.); (B.S.)
| | - Tomáš Szemes
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia; (O.P.); (B.N.); (T.S.)
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 05 Bratislava, Slovakia
| |
Collapse
|
8
|
Boland CR, Idos GE, Durno C, Giardiello FM, Anderson JC, Burke CA, Dominitz JA, Gross S, Gupta S, Jacobson BC, Patel SG, Shaukat A, Syngal S, Robertson DJ. Diagnosis and Management of Cancer Risk in the Gastrointestinal Hamartomatous Polyposis Syndromes: Recommendations From the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology 2022; 162:2063-2085. [PMID: 35487791 DOI: 10.1053/j.gastro.2022.02.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gastrointestinal hamartomatous polyposis syndromes are rare, autosomal dominant disorders associated with an increased risk of benign and malignant intestinal and extraintestinal tumors. They include Peutz-Jeghers syndrome, juvenile polyposis syndrome, the PTEN hamartoma tumor syndrome (including Cowden's syndrome and Bannayan-Riley-Ruvalcaba syndrome), and hereditary mixed polyposis syndrome. Diagnoses are based on clinical criteria and, in some cases, confirmed by demonstrating the presence of a germline pathogenic variant. The best understood hamartomatous polyposis syndrome is Peutz-Jeghers syndrome, caused by germline pathogenic variants in the STK11 gene. The management is focused on prevention of bleeding and mechanical obstruction of the small bowel by polyps and surveillance of organs at increased risk for cancer. Juvenile polyposis syndrome is caused by a germline pathogenic variant in either the SMAD4 or BMPR1A genes, with differing clinical courses. Patients with SMAD4 pathogenic variants may have massive gastric polyposis, which can result in gastrointestinal bleeding and/or protein-losing gastropathy. Patients with SMAD4 mutations usually have the simultaneous occurrence of hereditary hemorrhagic telangiectasia (juvenile polyposis syndrome-hereditary hemorrhagic telangiectasia overlap syndrome) that can result in epistaxis, gastrointestinal bleeding from mucocutaneous telangiectasias, and arteriovenous malformations. Germline pathogenic variants in the PTEN gene cause overlapping clinical phenotypes (known as the PTEN hamartoma tumor syndromes), including Cowden's syndrome and related disorders that are associated with an increased risk of gastrointestinal and colonic polyposis, colon cancer, and other extraintestinal manifestations and cancers. Due to the relative rarity of the hamartomatous polyposis syndromes, recommendations for management are based on few studies. This U.S Multi-Society Task Force on Colorectal Cancer consensus statement summarizes the clinical features, assesses the current literature, and provides guidance for diagnosis, assessment, and management of patients with the hamartomatous polyposis syndromes, with a focus on endoscopic management.
Collapse
Affiliation(s)
- C Richard Boland
- Division of Gastroenterology, University of California-San Diego School of Medicine, San Diego, California
| | - Gregory E Idos
- Divisions of Gastroenterology and Clinical Cancer Genomics, Center for Precision Medicine, City of Hope National Medical Center, Duarte, California
| | - Carol Durno
- The Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Francis M Giardiello
- Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joseph C Anderson
- Veterans Affairs Medical Center, White River Junction, Vermont; Geisel School of Medicine at Dartmouth, Hanover, New Hampshire; University of Connecticut, Farmington, Connecticut
| | - Carol A Burke
- Department of Gastroenterology, Hepatology and Nutrition, Cleveland Clinic, Cleveland, Ohio
| | - Jason A Dominitz
- Veterans Affairs Puget Sound Health Care System, Seattle, Washington; University of Washington School of Medicine, Seattle, Washington
| | - Seth Gross
- Division of Gastroenterology and Hepatology, New York University Langone Health, New York, New York
| | - Samir Gupta
- Veterans Affairs Medical Center, San Diego, California; University of California San Diego, La Jolla, California; Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Brian C Jacobson
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
| | - Swati G Patel
- University of Colorado School of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Aasma Shaukat
- Minneapolis Veterans Affairs Health Care System, Minneapolis, Minnesota; University of Minnesota, Minneapolis, Minnesota
| | - Sapna Syngal
- Brigham and Women's Hospital, Boston Massachusetts; Dana-Farber Cancer Institute, Boston Massachusetts; Harvard Medical School, Boston Massachusetts
| | - Douglas J Robertson
- Veterans Affairs Medical Center, White River Junction, Vermont; Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
9
|
Boland CR, Idos GE, Durno C, Giardiello FM, Anderson JC, Burke CA, Dominitz JA, Gross S, Gupta S, Jacobson BC, Patel SG, Shaukat A, Syngal S, Robertson DJ. Diagnosis and management of cancer risk in the gastrointestinal hamartomatous polyposis syndromes: recommendations from the U.S. Multi-Society Task Force on Colorectal Cancer. Gastrointest Endosc 2022; 95:1025-1047. [PMID: 35487765 DOI: 10.1016/j.gie.2022.02.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The gastrointestinal hamartomatous polyposis syndromes are rare, autosomal dominant disorders associated with an increased risk of benign and malignant intestinal and extraintestinal tumors. They include Peutz-Jeghers syndrome, juvenile polyposis syndrome, the PTEN hamartoma tumor syndrome (including Cowden's syndrome and Bannayan-Riley-Ruvalcaba syndrome), and hereditary mixed polyposis syndrome. Diagnoses are based on clinical criteria and, in some cases, confirmed by demonstrating the presence of a germline pathogenic variant. The best understood hamartomatous polyposis syndrome is Peutz-Jeghers syndrome, caused by germline pathogenic variants in the STK11 gene. The management is focused on prevention of bleeding and mechanical obstruction of the small bowel by polyps and surveillance of organs at increased risk for cancer. Juvenile polyposis syndrome is caused by a germline pathogenic variant in either the SMAD4 or BMPR1A genes, with differing clinical courses. Patients with SMAD4 pathogenic variants may have massive gastric polyposis, which can result in gastrointestinal bleeding and/or protein-losing gastropathy. Patients with SMAD4 mutations usually have the simultaneous occurrence of hereditary hemorrhagic telangiectasia (juvenile polyposis syndrome-hereditary hemorrhagic telangiectasia overlap syndrome) that can result in epistaxis, gastrointestinal bleeding from mucocutaneous telangiectasias, and arteriovenous malformations. Germline pathogenic variants in the PTEN gene cause overlapping clinical phenotypes (known as the PTEN hamartoma tumor syndromes), including Cowden's syndrome and related disorders that are associated with an increased risk of gastrointestinal and colonic polyposis, colon cancer, and other extraintestinal manifestations and cancers. Due to the relative rarity of the hamartomatous polyposis syndromes, recommendations for management are based on few studies. This U.S. Multi-Society Task Force on Colorectal Cancer consensus statement summarizes the clinical features, assesses the current literature, and provides guidance for diagnosis, assessment, and management of patients with the hamartomatous polyposis syndromes, with a focus on endoscopic management.
Collapse
Affiliation(s)
- C Richard Boland
- Division of Gastroenterology, University of California-San Diego School of Medicine, San Diego, California.
| | - Gregory E Idos
- Divisions of Gastroenterology and Clinical Cancer Genomics, Center for Precision Medicine, City of Hope National Medical Center, Duarte, California
| | - Carol Durno
- The Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Francis M Giardiello
- Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joseph C Anderson
- Veterans Affairs Medical Center, White River Junction, Vermont; Geisel School of Medicine at Dartmouth, Hanover, New Hampshire; University of Connecticut, Farmington, Connecticut
| | - Carol A Burke
- Department of Gastroenterology, Hepatology and Nutrition, Cleveland Clinic, Cleveland, Ohio
| | - Jason A Dominitz
- Veterans Affairs Puget Sound Health Care System, Seattle, Washington; University of Washington School of Medicine, Seattle, Washington
| | - Seth Gross
- Division of Gastroenterology and Hepatology, New York University Langone Health, New York, New York
| | - Samir Gupta
- Veterans Affairs Medical Center, San Diego, California; University of California San Diego, La Jolla, California; Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Brian C Jacobson
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
| | - Swati G Patel
- University of Colorado School of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Aasma Shaukat
- Minneapolis Veterans Affairs Health Care System, Minneapolis, Minnesota; University of Minnesota, Minneapolis, Minnesota
| | - Sapna Syngal
- Brigham and Women's Hospital, Boston Massachusetts; Dana-Farber Cancer Institute, Boston Massachusetts; Harvard Medical School, Boston Massachusetts
| | - Douglas J Robertson
- Veterans Affairs Medical Center, White River Junction, Vermont; Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
10
|
Diagnosis and Management of Cancer Risk in the Gastrointestinal Hamartomatous Polyposis Syndromes: Recommendations From the US Multi-Society Task Force on Colorectal Cancer. Am J Gastroenterol 2022; 117:846-864. [PMID: 35471415 DOI: 10.14309/ajg.0000000000001755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022]
Abstract
The gastrointestinal hamartomatous polyposis syndromes are rare, autosomal dominant disorders associated with an increased risk of benign and malignant intestinal and extraintestinal tumors. They include Peutz-Jeghers syndrome, juvenile polyposis syndrome, the PTEN hamartoma tumor syndrome (including Cowden's syndrome and Bannayan-Riley-Ruvalcaba syndrome), and hereditary mixed polyposis syndrome. Diagnoses are based on clinical criteria and, in some cases, confirmed by demonstrating the presence of a germline pathogenic variant. The best understood hamartomatous polyposis syndrome is Peutz-Jeghers syndrome, caused by germline pathogenic variants in the STK11 gene. The management is focused on prevention of bleeding and mechanical obstruction of the small bowel by polyps and surveillance of organs at increased risk for cancer. Juvenile polyposis syndrome is caused by a germline pathogenic variant in either the SMAD4 or BMPR1A genes, with differing clinical courses. Patients with SMAD4 pathogenic variants may have massive gastric polyposis, which can result in gastrointestinal bleeding and/or protein-losing gastropathy. Patients with SMAD4 mutations usually have the simultaneous occurrence of hereditary hemorrhagic telangiectasia (juvenile polyposis syndrome-hereditary hemorrhagic telangiectasia overlap syndrome) that can result in epistaxis, gastrointestinal bleeding from mucocutaneous telangiectasias, and arteriovenous malformations. Germline pathogenic variants in the PTEN gene cause overlapping clinical phenotypes (known as the PTEN hamartoma tumor syndromes), including Cowden's syndrome and related disorders that are associated with an increased risk of gastrointestinal and colonic polyposis, colon cancer, and other extraintestinal manifestations and cancers. Due to the relative rarity of the hamartomatous polyposis syndromes, recommendations for management are based on few studies. This US Multi-Society Task Force on Colorectal Cancer consensus statement summarizes the clinical features, assesses the current literature, and provides guidance for diagnosis, assessment, and management of patients with the hamartomatous polyposis syndromes, with a focus on endoscopic management.
Collapse
|
11
|
Elemam NM, Malek AI, Mahmoud EE, El-Huneidi W, Talaat IM. Insights into the Role of Gremlin-1, a Bone Morphogenic Protein Antagonist, in Cancer Initiation and Progression. Biomedicines 2022; 10:301. [PMID: 35203511 PMCID: PMC8869528 DOI: 10.3390/biomedicines10020301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
The bone morphogenic protein (BMP) antagonist Gremlin-1 is a biologically significant regulator known for its crucial role in tissue differentiation and embryonic development. Nevertheless, it has been reported that Gremlin-1 can exhibit its function through BMP dependent and independent pathways. Gremlin-1 has also been reported to be involved in organ fibrosis, which has been correlated to the development of other diseases, such as renal inflammation and diabetic nephropathy. Based on growing evidence, Gremlin-1 has recently been implicated in the initiation and progression of different types of cancers. Further, it contributes to the stemness state of cancer cells. Herein, we explore the recent findings on the role of Gremlin-1 in various cancer types, including breast, cervical, colorectal, and gastric cancers, as well as glioblastomas. Additionally, we highlighted the impact of Gremlin-1 on cellular processes and signaling pathways involved in carcinogenesis. Therefore, it was suggested that Gremlin-1 might be a promising prognostic biomarker and therapeutic target in cancers.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdullah Imadeddin Malek
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
| | - Esraa Elaraby Mahmoud
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
| | - Waseem El-Huneidi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Iman M. Talaat
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| |
Collapse
|
12
|
Long JM, Powers JM, Katona BW. Evaluation of Classic, Attenuated, and Oligopolyposis of the Colon. Gastrointest Endosc Clin N Am 2022; 32:95-112. [PMID: 34798989 PMCID: PMC8607742 DOI: 10.1016/j.giec.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The goal of this review is to provide an overview of evaluating patients with adenomatous polyposis of the colon, including elements such as generating a differential diagnosis, referral considerations for genetic testing, genetic testing options, and expected outcomes from genetic testing in these individuals. In more recent years, adenomatous colonic polyposis has evolved beyond the more robustly characterized familial adenomatous polyposis (FAP) and MUTYH-associated polyposis (MAP) now encompassing more newly described genes and associated syndromes. Technological innovation, from whole-exome sequencing to multigene panel testing, has dramatically increased the amount of genotypic and phenotypic data amassed in adenomatous polyposis cohorts, which has contributed greatly to informing diagnosis and clinical management of affected individuals and their families.
Collapse
Affiliation(s)
- Jessica M. Long
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jacquelyn M. Powers
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bryson W. Katona
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
13
|
Gupta N, Drogan C, Kupfer SS. How many is too many? Polyposis syndromes and what to do next. Curr Opin Gastroenterol 2022; 38:39-47. [PMID: 34839308 PMCID: PMC8648991 DOI: 10.1097/mog.0000000000000796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to help providers recognize, diagnose and manage gastrointestinal (GI) polyposis syndromes. RECENT FINDINGS Intestinal polyps include a number of histological sub-types such as adenomas, serrated, hamartomas among others. Over a quarter of individuals undergoing screening colonoscopy are expected to have colonic adenomas. Although it is not uncommon for adults to have a few GI polyps in their lifetime, some individuals are found to have multiple polyps of varying histology throughout the GI tract. In these individuals, depending on polyp histology, number, location and size as well as extra-intestinal features and/or family history, a polyposis syndrome should be considered with appropriate testing and management. SUMMARY Diagnosis and management of polyposis syndromes has evolved with advent of multigene panel testing and new data on optimal surveillance strategies. Evidence-based recommendations and current practice guidelines for polyposis syndromes are reviewed here. Areas of uncertainty and future research are also highlighted.
Collapse
Affiliation(s)
- Nina Gupta
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
14
|
Jelsig AM, Byrjalsen A, Busk Madsen M, Kuhlmann TP, van Overeem Hansen T, Wadt KAW, Karstensen JG. Novel Genetic Causes of Gastrointestinal Polyposis Syndromes. Appl Clin Genet 2021; 14:455-466. [PMID: 34866929 PMCID: PMC8637176 DOI: 10.2147/tacg.s295157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Hereditary polyposis syndromes are characterized by a large number and/or histopathologically specific polyps in the gastrointestinal tract and a high risk of both colorectal cancer and extracolonic cancer at an early age. While the genes responsible for some of the syndromes, eg, APC in familial adenomatous polyposis and STK11 in Peutz-Jeghers syndrome, have been known for decades, novel genetic causes have recently been detected that have shed light on the broader clinical spectrum of syndromes. Genetic diagnoses are important because they can facilitate a personalized surveillance program. Furthermore, at-risk members of the patient's family can be tested and enrolled in surveillance as needed. In some cases, prenatal diagnostics should be offered. In this paper, we describe the development in germline genetics of the hereditary polyposis syndromes over the last 10-12 years, their clinical characteristics, as well as how to implement genetic analyses in the diagnostic pipeline.
Collapse
Affiliation(s)
- Anne Marie Jelsig
- Department of Clinical Genetics, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Anna Byrjalsen
- Department of Clinical Genetics, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Majbritt Busk Madsen
- Center for Genomic Medicine, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Tine Plato Kuhlmann
- Department of Pathology, University Hospital of Copenhagen, Herlev Hospital, Herlev, Denmark
| | | | - Karin A W Wadt
- Department of Clinical Genetics, University Hospital of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - John Gásdal Karstensen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Danish Polyposis Registry, Gastro Unit, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| |
Collapse
|
15
|
Laish I, Goldberg Y, Friedman E, Kedar I, Katz L, Levi Z, Gingold-Belfer R, Kopylov U, Feldman D, Levi-Reznick G, Half E. Genetic testing for assessment of lynch syndrome in young patients with polyps. Dig Liver Dis 2021; 53:1640-1646. [PMID: 34148862 DOI: 10.1016/j.dld.2021.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Routine screening for establishing Lynch syndrome (LS) in young individuals diagnosed with adenomas is not recommended due to its low yield, and limited sensitivity of the employment of immunohistochemistry for DNA mismatch-repair proteins on polyps. Hence we aimed to evaluate the yield of germline mutational analysis in diagnosis of LS in a young Israeli cohort with colorectal adenomatous polyps. METHODS Data were retrospectively collected on consecutive patients, age ≤ 45 years, who underwent colonoscopy with removal of at least one adenoma during 2015-2020, and subsequently genetic testing by multigene panel or LS-Jewish founder mutation panel. RESULTS Overall, 92 patients were included (median age 35 years, range 23-45 years), of whom 79 (85.8%) underwent multigene panel genotyping, and 13 (14.2%) analysis for Jewish founder LS gene mutations. Altogether, 18 patients were identified with pathogenic mutations in actionable genes, including LS-associated genes in 6 (6.5%), BRCA2 in 2 (2.5%), GREM1 in 1(1.2%), and low-penetrance genes- APC I1307K and CHEK2- in 9 (11.4%) patients. Compared with non-LS patients, LS-carriers had a significantly higher median PREMM5 score (2.6 vs. 1.3; P = 0.04). CONCLUSIONS Young individuals diagnosed with adenomatous polyps should be offered genetic testing when fulfilling clinical guidelines for LS, but weight should also be given to adenoma characteristics in the PREMM5 score.
Collapse
Affiliation(s)
- Ido Laish
- Gastroenterology Institute, Chaim Sheba Medical Center, Tel-Hashomer, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Yael Goldberg
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva, Israel
| | - Eitan Friedman
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Susanne Levy Gertner Oncogenetics Unit, The Danek Gertner Institute of Human Genetics, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Inbal Kedar
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva, Israel
| | - Lior Katz
- Department of Gastroenterology and Hepatology, Hadassah Medical Center, Jerusalem, Israel
| | - Zohar Levi
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Gastroenterology Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva, Israel
| | - Rachel Gingold-Belfer
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Gastroenterology Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva, Israel
| | - Uri Kopylov
- Gastroenterology Institute, Chaim Sheba Medical Center, Tel-Hashomer, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dan Feldman
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Gastroenterology Institute, Meir Medical Center, Kfar-Saba, Israel
| | | | - Elizabeth Half
- Gastroenterology Institute, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
16
|
Dell'Elice A, Cini G, Fornasarig M, Armelao F, Barana D, Bianchi F, Casalis Cavalchini GC, Maffè A, Mammi I, Pedroni M, Percesepe A, Sorrentini I, Tibiletti M, Maestro R, Quaia M, Viel A. Filling the gap: A thorough investigation for the genetic diagnosis of unsolved polyposis patients with monoallelic MUTYH pathogenic variants. Mol Genet Genomic Med 2021; 9:e1831. [PMID: 34704405 PMCID: PMC8683633 DOI: 10.1002/mgg3.1831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/23/2021] [Accepted: 09/28/2021] [Indexed: 11/09/2022] Open
Abstract
Backgrounds MUTYH‐associated polyposis (MAP) is an autosomal recessive disease caused by biallelic pathogenic variants (PV) of the MUTYH gene. The aim of this study was to investigate the genetic causes of unexplained polyposis patients with monoallelic MUTYH PV. The analysis focused on 26 patients with suspected MAP, belonging to 23 families. Ten probands carried also one or more additional MUTYH variants of unknown significance. Methods Based on variant type and on the collected clinical and molecular data, these variants were reinterpreted by applying the ACMG/AMP rules. Moreover, supplementary analyses were carried out to investigate the presence of other variants and copy number variations in the coding and promoter regions of MUTYH, as well as other polyposis genes (APC, NTHL1, POLE, POLD1, MSH3, RNF43, and MCM9). Results We reclassified 4 out of 10 MUTYH variants as pathogenic or likely pathogenic, thus supporting the diagnosis of MAP in only four cases. Two other patients belonging to the same family showed a previously undetected deletion of the APC gene promoter. No PVs were found in the other investigated genes. However, 6 out of the 18 remaining families are still interesting MAP candidates, due to the co‐presence of a class 3 MUTYH variant that could be reinterpreted in the next future. Conclusion Several efforts are necessary to fully elucidate the genetic etiology of suspected MAP patients, especially those with the most severe polyposis/tumor phenotype. Clinical data, tumor molecular profile, family history, and polyposis inheritance mode may guide variant interpretation and address supplementary studies.
Collapse
Affiliation(s)
- Anastasia Dell'Elice
- Unit of Functional Oncogenomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Giulia Cini
- Unit of Functional Oncogenomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Mara Fornasarig
- Unit of Oncologic Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Franco Armelao
- U.O. Multizonale Gastroenterologia ed Endoscopia Digestiva, Ospedale Santa Chiara, Azienda Provinciale per i Servizi sanitari, Trento, Italy
| | - Daniela Barana
- Oncology Unit, Local Health and Social Care Unit, ULSS8 Berica, Montecchio Maggiore, Italy
| | - Francesca Bianchi
- Clinica Oncologica e Centro Regionale di Genetica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Ancona, Italy
| | | | - Antonella Maffè
- S.S. Genetica e Biologia Molecolare, S.C. Interaziendale Laboratorio Analisi Chimico Cliniche e Microbiologia, ASO S Croce e Carle, Cuneo, Italy
| | - Isabella Mammi
- Medical Genetics Unit, Dolo General Hospital, Venezia, Italy
| | - Monica Pedroni
- Dipartimento di Scienze Mediche e Chirurgiche Materno-Infantili e dell'Adulto, Università di Modena e Reggio Emilia, Modena, Italy
| | | | | | - Mariagrazia Tibiletti
- Department of Pathology, Circolo Hospital ASST Settelaghi, Varese, Italy.,Research Center for the Study of Hereditary and Familial Tumors, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Roberta Maestro
- Unit of Functional Oncogenomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Michele Quaia
- Unit of Functional Oncogenomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Alessandra Viel
- Unit of Functional Oncogenomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| |
Collapse
|
17
|
Jelsig AM, Karstensen JG, Jespersen N, Ketabi Z, Lautrup C, Rønlund K, Sunde L, Wadt K, Thorlacius-Ussing O, Qvist N. Danish guidelines for management of non-APC-associated hereditary polyposis syndromes. Hered Cancer Clin Pract 2021; 19:41. [PMID: 34620187 PMCID: PMC8499431 DOI: 10.1186/s13053-021-00197-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Hereditary Polyposis Syndromes are a group of rare, inherited syndromes characterized by the presence of histopathologically specific or numerous intestinal polyps and an increased risk of cancer. Some polyposis syndromes have been known for decades, but the development in genetic technologies has allowed the identification of new syndromes.. The diagnosis entails surveillance from an early age, but universal guideline on how to manage and surveille these new syndromes are lacking. This paper represents a condensed version of the recent guideline (2020) from a working group appointed by the Danish Society of Medical Genetics and the Danish Society of Surgery on recommendations for the surveillance of patients with hereditary polyposis syndromes, including rare polyposis syndromes.
Collapse
Affiliation(s)
- Anne Marie Jelsig
- Department of Clinical Genetics, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark.
| | - John Gásdal Karstensen
- Danish Polyposis Registry, Gastrounit, Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Niels Jespersen
- Danish Polyposis Registry, Gastrounit, Hvidovre Hospital, Hvidovre, Denmark
| | - Zohreh Ketabi
- Department of Gynecology and Obstetrics, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Charlotte Lautrup
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| | - Karina Rønlund
- Department of Clinical Genetics, University Hospital of Southern Denmark, Vejle Hospital, Vejle, Denmark
| | - Lone Sunde
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| | - Karin Wadt
- Department of Clinical Genetics, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Ole Thorlacius-Ussing
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Niels Qvist
- Research Unit for Surgery, Odense University Hospital, Odense, Denmark
- University of Southern Denmark, Odense, Denmark
| |
Collapse
|
18
|
Liu S, Ma Y, You W, Li J, Li JN, Qian JM. Hamartomatous polyposis syndrome associated malignancies: Risk, pathogenesis and endoscopic surveillance. J Dig Dis 2021; 22:444-451. [PMID: 34145757 DOI: 10.1111/1751-2980.13029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/20/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022]
Abstract
Hamartomatous polyposis syndromes (HPS) are a heterogeneous spectrum of diseases that are characterized by diffuse hamartomatous polyps lining the gastrointestinal (GI) tract together with extra-GI manifestations. Classical HPS includes juvenile polyposis syndrome, Peutz-Jeghers syndrome, PTEN hamartoma tumor syndrome and hereditary mixed polyposis syndrome. Patients with HPS have a higher risk of GI and extra-GI malignancies than the general population, although the underlying mechanisms remain unclear and are obviously different from the carcinogenesis of classical adenocarcinoma and colitis-associated malignancy. In this review we aimed to clarify the risks, possible mechanism and endoscopic surveillance of HPS-associated GI malignancies.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ye Ma
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Wen You
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ji Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Nan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Ming Qian
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Hinoi T. Cancer Genomic Profiling in Colorectal Cancer: Current Challenges in Subtyping Colorectal Cancers Based on Somatic and Germline Variants. J Anus Rectum Colon 2021; 5:213-228. [PMID: 34395933 PMCID: PMC8321592 DOI: 10.23922/jarc.2021-009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/17/2021] [Indexed: 11/30/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease caused by the accumulation of multistep genetic alterations under the influence of genomic instability. Different backgrounds of genomic instability, such as chromosomal instability, microsatellite instability, hypermutated-single nucleotide variants, and genome stable-induced transformation in the colonic epithelium, can result in adenomas, adenocarcinomas, and metastatic tumors. Characterization of molecular subtypes and establishment of treatment policies based on each subtype will lead to better treatment outcomes and an improved selection of molecularly targeted agents. In Japan, cancer precision medicine has been introduced in the National Health Insurance program through the addition of the cancer genomic profiling (CGP) examination. It has also become possible to access a large amount of genomic information, including information on pathogenic somatic and germline variants, incomparable to conventional diagnostic tests. This information enables us to apply research data to clinical decision-making, benefiting patients and their healthy family members. In this article, we discuss the important molecules and signaling pathways presumed to be the driver genes of CRC progression and the signal transduction system in which they are involved. Molecular subtypes of CRC based on CGP examinations and gene expression profiles have been established in The Cancer Genome Atlas Network with the advent of next-generation sequencing technology. We will also discuss the recommended management of secondary/germline findings, pathogenic germline variants, and presumed germline pathogenic variants obtained from CGP examination and review the current challenges to better understand these data in a new era of cancer genomic medicine.
Collapse
Affiliation(s)
- Takao Hinoi
- Department of Clinical and Molecular Genetics, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
20
|
Duffy L, Henderson J, Brown M, Pryzborski S, Fullard N, Summa L, Distler JHW, Stratton R, O'Reilly S. Bone Morphogenetic Protein Antagonist Gremlin-1 Increases Myofibroblast Transition in Dermal Fibroblasts: Implications for Systemic Sclerosis. Front Cell Dev Biol 2021; 9:681061. [PMID: 34150776 PMCID: PMC8213337 DOI: 10.3389/fcell.2021.681061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/13/2021] [Indexed: 11/18/2022] Open
Abstract
Objective Systemic Sclerosis is an autoimmune connective tissue disease which results in fibrosis of the skin and lungs. The disease is characterized by activation of myofibroblasts but what governs this is unknown. Gremlin-1 is a BMP antagonist that is developmentally regulated and we sought to investigate its role in Systemic Sclerosis. Methods Dermal fibroblasts were transfected with Grem1pcDNA3.1 expression vectors or empty vectors. Various markers of myofibroblasts were measured at the mRNA and protein levels. Scratch wound assays were also performed. Media Transfer experiments were performed to evaluate cytokine like effects. Various inhibitors of TGF-β signaling and MAPK signaling were used post-transfection. siRNA to Gremlin-1 in SSc dermal fibroblasts were performed to evaluate the role of Gremlin-1. Different cytokines were incubated with fibroblasts and Gremlin-1 measured. Bleomycin was used as model of fibrosis and immunohistochemistry performed. Results Overexpression of Gremlin-1 was achieved in primary dermal fibroblasts and lead to activation of quiescent cells to myofibroblasts indicated by collagen and α-Smooth muscle actin. Overexpression also led to functional effects. This was associated with increased TGF-β1 levels and SBE luciferase activity but not increased Thrombospondin-1 expression. Inhibition of Gremlin-1 overexpression cells with antibodies to TGF-β1 but not isotype controls led to reduced collagen and various TGF-β pathway chemical inhibitors also led to reduced collagen levels. In SSc cells siRNA mediated reduction of Gremlin-1 reduced collagen expression and CTGF gene and protein levels in these cells. IL-13 did not lead to elevated Gremlin-1 expression nor did IL-11. Gremlin-1 was elevated in an animal model of fibrosis compared to NaCl-treated mice. Conclusion Gremlin-1 is a key regulator of myofibroblast transition leading to enhanced ECM deposition. Strategies that block Gremlin-1 maybe a possible therapeutic target in fibrotic diseases such as SSc.
Collapse
Affiliation(s)
- Laura Duffy
- Faculty of Health and Life Science, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - John Henderson
- Faculty of Health and Life Science, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Max Brown
- Biosciences Department, Durham University, Durham, United Kingdom
| | | | - Nicola Fullard
- Biosciences Department, Durham University, Durham, United Kingdom
| | - Lena Summa
- Department of Internal Medicine 3 Friedrich-Alexander-University, Erlangen-Nurnberg, Germany
| | - Jorg H W Distler
- Department of Internal Medicine 3 Friedrich-Alexander-University, Erlangen-Nurnberg, Germany
| | - Richard Stratton
- Centre for Rheumatology, University College London, London, United Kingdom
| | - Steven O'Reilly
- Biosciences Department, Durham University, Durham, United Kingdom
| |
Collapse
|
21
|
Urso EDL, Ponz de Leon M, Vitellaro M, Piozzi GN, Bao QR, Martayan A, Remo A, Stigliano V, Oliani C, Lucci Cordisco E, Pucciarelli S, Ranzani GN, Viel A. Definition and management of colorectal polyposis not associated with APC/MUTYH germline pathogenic variants: AIFEG consensus statement. Dig Liver Dis 2021; 53:409-417. [PMID: 33504457 DOI: 10.1016/j.dld.2020.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023]
Abstract
An expert consensus panel convened by the Italian Association for Inherited and Familial Gastrointestinal Tumors (Associazione Italiana per lo Studio della Familiarità ed Ereditarietà dei Tumori Gastrointestinali, AIFEG) reviewed the literature and agreed on a number of position statements regarding the definition and management of polyposis coli without an identified pathogenic mutation on the APC or MUTYH genes, defined in the document as NAMP (non-APC/MUTYH polyposis).
Collapse
Affiliation(s)
- Emanuele Damiano Luca Urso
- Clinica Chirurgica I, Department of Surgical, Oncological and Gastroenterological Sciences (DiSCOG), University Hospital of Padua, Italy
| | - Maurizio Ponz de Leon
- Department of Internal Medicine, University of Modena and Reggio Emilia. Retired, Italy
| | - Marco Vitellaro
- Unit of Hereditary Digestive Tract Tumors, Department of Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy; Colorectal Surgery Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy.
| | - Guglielmo Niccolò Piozzi
- Colorectal Surgery Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Quoc Riccardo Bao
- Clinica Chirurgica I, Department of Surgical, Oncological and Gastroenterological Sciences (DiSCOG), University Hospital of Padua, Italy
| | - Aline Martayan
- Clinical Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Remo
- Pathology Unit, Services Department, ULSS9 Scaligera, Verona, Italy
| | - Vittoria Stigliano
- Division of Gastroenterology and Digestive Endoscopy, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | | | - Salvatore Pucciarelli
- Clinica Chirurgica I, Department of Surgical, Oncological and Gastroenterological Sciences (DiSCOG), University Hospital of Padua, Italy
| | | | - Alessandra Viel
- Functional Oncogenomics and Genetics Unit, IRCCS Centro di Riferimento Oncologico di Aviano (CRO), Aviano, Italy
| |
Collapse
|
22
|
Daca Alvarez M, Quintana I, Terradas M, Mur P, Balaguer F, Valle L. The Inherited and Familial Component of Early-Onset Colorectal Cancer. Cells 2021; 10:cells10030710. [PMID: 33806975 PMCID: PMC8005051 DOI: 10.3390/cells10030710] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
Early-onset colorectal cancer (EOCRC), defined as that diagnosed before the age of 50, accounts for 10–12% of all new colorectal cancer (CRC) diagnoses. Epidemiological data indicate that EOCRC incidence is increasing, despite the observed heterogeneity among countries. Although the cause for such increase remains obscure, ≈13% (range: 9–26%) of EOCRC patients carry pathogenic germline variants in known cancer predisposition genes, including 2.5% of patients with germline pathogenic variants in hereditary cancer genes traditionally not associated with CRC predisposition. Approximately 28% of EOCRC patients have family history of the disease. This article recapitulates current evidence on the inherited syndromes that predispose to EOCRC and its familial component. The evidence gathered support that all patients diagnosed with an EOCRC should be referred to a specialized genetic counseling service and offered somatic and germline pancancer multigene panel testing. The identification of a germline pathogenic variant in a known hereditary cancer gene has relevant implications for the clinical management of the patient and his/her relatives, and it may guide surgical and therapeutic decisions. The relative high prevalence of hereditary cancer syndromes and familial component among EOCRC patients supports further research that helps understand the genetic background, either monogenic or polygenic, behind this increasingly common disease.
Collapse
Affiliation(s)
- Maria Daca Alvarez
- Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain;
| | - Isabel Quintana
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (M.T.); (P.M.)
| | - Mariona Terradas
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (M.T.); (P.M.)
| | - Pilar Mur
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (M.T.); (P.M.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Francesc Balaguer
- Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
- Correspondence: (F.B.); (L.V.); Tel.: +34-932275400 (ext. 5418) (F.B.); +34-93-260-7145 (L.V.)
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (M.T.); (P.M.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence: (F.B.); (L.V.); Tel.: +34-932275400 (ext. 5418) (F.B.); +34-93-260-7145 (L.V.)
| |
Collapse
|
23
|
Dhooge M, Baert-Desurmont S, Corsini C, Caron O, Andrieu N, Berthet P, Bonadona V, Cohen-Haguenauer O, De Pauw A, Delnatte C, Dussart S, Lasset C, Leroux D, Maugard C, Moretta-Serra J, Popovici C, Buecher B, Colas C, Noguès C. National recommendations of the French Genetics and Cancer Group - Unicancer on the modalities of multi-genes panel analyses in hereditary predispositions to tumors of the digestive tract. Eur J Med Genet 2020; 63:104080. [PMID: 33039684 DOI: 10.1016/j.ejmg.2020.104080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
In case of suspected hereditary predisposition to digestive cancers, next-generation sequencing can analyze simultaneously several genes associated with an increased risk of developing these tumors. Thus, "Gastro Intestinal" (GI) gene panels are commonly used in French molecular genetic laboratories. Lack of international recommendations led to disparities in the composition of these panels and in the management of patients. To harmonize practices, the Genetics and Cancer Group (GGC)-Unicancer set up a working group who carried out a review of the literature for 31 genes of interest in this context and established a list of genes for which the estimated risks associated with pathogenic variant seemed sufficiently reliable and high for clinical use. Pancreatic cancer susceptibility genes have been excluded. This expertise defined a panel of 14 genes of confirmed clinical interest and relevant for genetic counseling: APC, BMPR1A, CDH1, EPCAM, MLH1, MSH2, MSH6, MUTYH, PMS2, POLD1, POLE, PTEN, SMAD4 and STK11. The reasons for the exclusion of the others 23 genes have been discussed. The paucity of estimates of the associated tumor risks led to the exclusion of genes, in particular CTNNA1, MSH3 and NTHL1, despite their implication in the molecular pathways involved in the pathophysiology of GI cancers. A regular update of the literature is planned to up-grade this panel of genes in case of new data on candidate genes. Genetic and epidemiological studies and international collaborations are needed to better estimate the risks associated with the pathogenic variants of these genes either selected or not in the current panel.
Collapse
Affiliation(s)
- Marion Dhooge
- APHP.Centre (Cochin Hospital), Paris University, Paris, France.
| | - Stéphanie Baert-Desurmont
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Carole Corsini
- Arnaud de Villeneuve University Hospital, Montpellier, France
| | - Olivier Caron
- Gustave-Roussy University Hospital, Villejuif, France
| | - Nadine Andrieu
- Institut Curie, PSL Research University, Department of Tumor Biology, Paris, France; Unité Inserm, Institut Curie, Paris, France
| | | | | | | | - Antoine De Pauw
- Institut Curie, PSL Research University, Department of Tumor Biology, Paris, France
| | | | | | | | - Dominique Leroux
- Grenoble University Hospital, Couple-Enfant Hospital, Grenoble, France
| | | | - Jessica Moretta-Serra
- Institut Paoli-Calmettes, Department of Clinical Cancer Genetics, Aix Marseille Univ, INSERM, IRD, SESSTIM, Marseille, France
| | - Cornel Popovici
- Institut Paoli-Calmettes, Department of Clinical Cancer Genetics, Aix Marseille Univ, INSERM, IRD, SESSTIM, Marseille, France
| | - Bruno Buecher
- Institut Curie, PSL Research University, Department of Tumor Biology, Paris, France
| | - Chrystelle Colas
- Institut Curie, PSL Research University, Department of Tumor Biology, Paris, France
| | - Catherine Noguès
- Institut Paoli-Calmettes, Department of Clinical Cancer Genetics, Aix Marseille Univ, INSERM, IRD, SESSTIM, Marseille, France
| | | |
Collapse
|
24
|
Kastrinos F, Samadder NJ, Burt RW. Use of Family History and Genetic Testing to Determine Risk of Colorectal Cancer. Gastroenterology 2020; 158:389-403. [PMID: 31759928 DOI: 10.1053/j.gastro.2019.11.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022]
Abstract
Approximately 35% of patients with colorectal cancer (CRC) have a family history of the disease attributed to genetic factors, common exposures, or both. Some families with a history of CRC carry genetic variants that cause CRC with high or moderate penetrance, but these account for only 5% to 10% of CRC cases. Most families with a history of CRC and/or adenomas do not carry genetic variants associated with cancer syndromes; this is called common familial CRC. Our understanding of familial predisposition to CRC and cancer syndromes has increased rapidly due to advances in next-generation sequencing technologies. As a result, there has been a shift from genetic testing for specific inherited cancer syndromes based on clinical criteria alone, to simultaneous testing of multiple genes for cancer-associated variants. We summarize current knowledge of common familial CRC, provide an update on syndromes associated with CRC (including the nonpolyposis and polyposis types), and review current recommendations for CRC screening and surveillance. We also provide an approach to genetic evaluation and testing in clinical practice. Determination of CRC risk based on family cancer history and results of genetic testing can provide a personalized approach to cancer screening and prevention, with optimal use of colonoscopy to effectively decrease CRC incidence and mortality.
Collapse
Affiliation(s)
- Fay Kastrinos
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York; Division of Digestive and Liver Diseases, Columbia University Irving Medical Center and the Vagelos College of Physicians and Surgeons, New York, New York.
| | - N Jewel Samadder
- Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, Arizona
| | - Randall W Burt
- Department of Gastroenterology, University of Utah, Salt Lake City, Utah; Emeritus Professor of Medicine, University of Utah, Salt Lake City, Utah
| |
Collapse
|
25
|
MacFarland SP, Zelley K, Katona BW, Wilkins BJ, Brodeur GM, Mamula P. Gastrointestinal Polyposis in Pediatric Patients. J Pediatr Gastroenterol Nutr 2019; 69:273-280. [PMID: 31211762 PMCID: PMC7336255 DOI: 10.1097/mpg.0000000000002421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gastrointestinal polyps are mucosal overgrowths that, if unchecked, can undergo malignant transformation. Although relatively uncommon in the pediatric age group, they can be the harbingers of multiorgan cancer risk and require close management and follow-up. Additionally, as many polyposis syndromes are inherited, appropriate genetic testing and management of relatives is vital for the health of the entire family. In this review, we discuss both common and uncommon childhood gastrointestinal polyposis syndromes in terms of clinical presentation, management, and surveillance. We also detail any additional malignancy risk and surveillance required in the pediatric age group (<21 years old). Through this review, we provide a framework for gastroenterologists to manage the multifaceted nature of pediatric polyposis syndromes.
Collapse
Affiliation(s)
- Suzanne P. MacFarland
- Division of Oncology, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kristin Zelley
- Division of Oncology, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Bryson W. Katona
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Benjamin J. Wilkins
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Garrett M. Brodeur
- Division of Oncology, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Petar Mamula
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
26
|
Valle L, de Voer RM, Goldberg Y, Sjursen W, Försti A, Ruiz-Ponte C, Caldés T, Garré P, Olsen MF, Nordling M, Castellvi-Bel S, Hemminki K. Update on genetic predisposition to colorectal cancer and polyposis. Mol Aspects Med 2019; 69:10-26. [PMID: 30862463 DOI: 10.1016/j.mam.2019.03.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/26/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
Abstract
The present article summarizes recent developments in the characterization of genetic predisposition to colorectal cancer (CRC). The main themes covered include new hereditary CRC and polyposis syndromes, non-CRC hereditary cancer genes found mutated in CRC patients, strategies used to identify novel causal genes, and review of candidate genes that have been proposed to predispose to CRC and/or colonic polyposis. We provide an overview of newly described genes and syndromes associated with predisposition to CRC and polyposis, including: polymerase proofreading-associated polyposis, NTHL1-associated polyposis, mismatch repair gene biallelic inactivation-related adenomatous polyposis (including MSH3- and MLH3-associated polyposes), GREM1-associated mixed polyposis, RNF43-associated serrated polyposis, and RPS20 mutations as a rare cause of hereditary nonpolyposis CRC. The implementation of next generation sequencing approaches for genetic testing has exposed the presence of pathogenic germline variants in genes associated with hereditary cancer syndromes not traditionally linked to CRC, which may have an impact on genetic testing, counseling and surveillance. The identification of new hereditary CRC and polyposis genes has not deemed an easy endeavor, even though known CRC-related genes explain a small proportion of the estimated familial risk. Whole-genome sequencing may offer a technology for increasing this proportion, particularly if applied on pedigree data allowing linkage type of analysis. The final section critically surveys the large number of candidate genes that have been recently proposed for CRC predisposition.
Collapse
Affiliation(s)
- Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Spain; Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain.
| | - Richarda M de Voer
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yael Goldberg
- Raphael Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva, Israel
| | - Wenche Sjursen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Department of Medical Genetics, St Olavs University Hospital, Trondheim, Norway
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany
| | - Clara Ruiz-Ponte
- Fundación Pública Galega de Medicina Xenómica, Grupo de Medicina Xenómica, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Trinidad Caldés
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain; Oncology Molecular Laboratory, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Pilar Garré
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain; Oncology Molecular Laboratory, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Maren F Olsen
- Department of Medical Genetics, St Olavs University Hospital, Trondheim, Norway
| | - Margareta Nordling
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sergi Castellvi-Bel
- Genetic Predisposition to Gastrointestinal Cancer Group, Gastrointestinal and Pancreatic Oncology Team, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain.
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany.
| |
Collapse
|
27
|
McKenna DB, Van Den Akker J, Zhou AY, Ryan L, Leon A, O'Connor R, Shah PD, Rustgi AK, Katona BW. Identification of a novel GREM1 duplication in a patient with multiple colon polyps. Fam Cancer 2019; 18:63-66. [PMID: 29804199 PMCID: PMC6261785 DOI: 10.1007/s10689-018-0090-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hereditary mixed polyposis syndrome (HMPS) is a hereditary syndrome that is characterized by multiple colon polyps of mixed pathologic subtypes and an increased risk for colorectal cancer. A 40 kb duplication in the 5' regulatory region of the GREM1 gene was recently found to be the causal mutation in a subset of Ashkenazi Jewish families with HMPS. Given this discovery, the GREM1 5' regulatory region is now analyzed on many different multi-gene cancer panels, however the data on duplications distinct from the 40 kb duplication remains minimal. Herein we report a novel 24 kb tandem duplication of the 5' regulatory region of GREM1 in a patient without Ashkenazi Jewish heritage, who had a family history that was concerning for Lynch syndrome and satisfied Amsterdam II criteria. This is only the third reported GREM1 duplication separate from the 40 kb Ashkenazi Jewish duplication, and is the only reported duplication to selectively involve exon 1 of GREM1. This finding supports comprehensive testing of the GREM1 regulatory region in families of all ethnicities with multiple colon polyps or colon cancer, and when Lynch syndrome is suspected.
Collapse
Affiliation(s)
- Danielle B McKenna
- Division of Hematology-Oncology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | | | | | | | | | | | - Payal D Shah
- Division of Hematology-Oncology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Anil K Rustgi
- Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Bryson W Katona
- Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
28
|
Cragun DL, Kechik J, Pal T. Complexities of genetic screening and testing in hereditary colorectal cancer. SEMINARS IN COLON AND RECTAL SURGERY 2018. [DOI: 10.1053/j.scrs.2018.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Cheah PY, Lo M, Tang CL. GREM1 Defect Unlikely to be Disease Causing and Hence Not Useful for Screening and Surveillance in Singapore Mixed Polyposis Families. Gastroenterology 2017; 153:1692. [PMID: 29107710 DOI: 10.1053/j.gastro.2017.04.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/11/2017] [Indexed: 12/02/2022]
Affiliation(s)
- Peh Yean Cheah
- Department of Colorectal Surgery, Singapore General Hospital and Saw Swee Hock School of Public Health and Duke-NUS Medical School, National University of Singapore, Singapore
| | - Michelle Lo
- Department of Colorectal Surgery, Singapore General Hospital, Singapore
| | - Choong Leong Tang
- Department of Colorectal Surgery, Singapore General Hospital, Singapore
| |
Collapse
|