1
|
León-Vega II, Oregon R, Schnoor M, Vadillo E. From Ulcerative Colitis to Metastatic Colorectal Cancer: The Neutrophil Contribution. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:814-830. [PMID: 39889826 DOI: 10.1016/j.ajpath.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
Ulcerative colitis (UC) is an inflammatory colon and rectum disease affecting approximately 5 million people worldwide. There is no cure for UC, and approximately 8% of patients with UC develop colorectal cancer (CRC) by gradual acquisition of mutations driving the formation of adenomas and their progression to adenocarcinomas and metastatic disease. CRC constitutes 10% of total cancer cases worldwide and 9% of cancer deaths. Both UC and CRC have an increasing incidence worldwide. Although the epithelium has been well studied in UC and CRC, the contribution of neutrophils is less clear. Neutrophils are rapidly recruited in excessive amounts from peripheral blood to the colon during UC, and their overactivation in the proinflammatory UC tissue environment contributes to tissue damage. In CRC, the role of neutrophils is controversial, but emerging evidence suggests that their role depends on the evolution and context of the disease. The role of neutrophils in the transition from UC to CRC is even less clear. However, recent studies propose neutrophils as therapeutic targets for better clinical management of both diseases. This review summarizes the current knowledge on the roles of neutrophils in UC and CRC.
Collapse
Affiliation(s)
- Iliana I León-Vega
- Department of Molecular Biomedicine, Cinvestav-National Polytechnic Institute, Mexico City, Mexico
| | - Reyna Oregon
- Oncology Research Unit, Oncology Hospital, National Medical Center, Mexican Institute of Social Security, Mexico City, Mexico
| | - Michael Schnoor
- Department of Molecular Biomedicine, Cinvestav-National Polytechnic Institute, Mexico City, Mexico.
| | - Eduardo Vadillo
- Oncology Research Unit, Oncology Hospital, National Medical Center, Mexican Institute of Social Security, Mexico City, Mexico.
| |
Collapse
|
2
|
Cai W, Fan T, Xiao C, Deng Z, Liu Y, Li C, He J. Neutrophils in cancer: At the crucial crossroads of anti-tumor and pro-tumor. Cancer Commun (Lond) 2025. [PMID: 40296668 DOI: 10.1002/cac2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
Neutrophils are important components of the immune system and play a key role in defending against pathogenic infections and responding to inflammatory cues, including cancer. Their dysregulation indicates potential disease risk factors. However, their functional importance in disease progression has often been underestimated due to their short half-life, especially as there is limited information on the role of intratumoral neutrophils. Recent studies on their prominent role in cancer have led to a paradigm shift in our understanding of the functional diversity of neutrophils. These studies highlight that neutrophils have emerged as key components of the tumor microenvironment, where they can play a dual role in promoting and suppressing cancer. Moreover, several approaches to therapeutically target neutrophils have emerged, and clinical trials are investigating their efficacy. In this review, we discussed the involvement of neutrophils in cancer initiation and progression. We summarized recent advances in therapeutic strategies targeting neutrophils and, most importantly, suggested future research directions that could facilitate the manipulation of neutrophils for therapeutic purposes in cancer patients.
Collapse
Affiliation(s)
- Wenpeng Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Yixiao Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
3
|
Wang X, He S, Gong X, Lei S, Zhang Q, Xiong J, Liu Y. Neutrophils in colorectal cancer: mechanisms, prognostic value, and therapeutic implications. Front Immunol 2025; 16:1538635. [PMID: 40092983 PMCID: PMC11906667 DOI: 10.3389/fimmu.2025.1538635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Neutrophils, the most abundant myeloid cells in human peripheral blood, serve as the first defense line against infection and are also significantly involved in the initiation and progression of cancer. In colorectal cancer (CRC), neutrophils exhibit a dual function by promoting tumor events and exerting antitumor activity, which is related to the heterogeneity of neutrophils. The neutrophil extracellular traps (NETs), gut microbiota, and various cells within the tumor microenvironment (TME) are involved in shaping the heterogeneous function of neutrophils. This article provides an updated overview of the complex functions and underlying mechanisms of neutrophils in CRC and their pivotal role in guiding prognosis assessment and therapeutic strategies, aiming to offer novel insights into neutrophil-associated treatment approaches for CRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yang Liu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Zhang J, Mengli Y, Zhang T, Song X, Ying S, Shen Z, Yu C. Deficiency in Epithelium RAD50 Aggravates UC via IL-6-Mediated JAK1/2-STAT3 Signaling and Promotes Development of Colitis-Associated Cancer in Mice. J Crohns Colitis 2025; 19:jjae134. [PMID: 39207300 DOI: 10.1093/ecco-jcc/jjae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/17/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is one of the most important risk factors for developing colitis-associated cancer (CAC). Persistent DNA damage increases CAC risk and has been observed in patients with UC. We aimed to identify the regulatory role of RAD50, a DNA double-strand breaks (DSBs) sensor, in UC progression to CAC. METHODS DSBs and RAD50 expression in inflammatory bowel disease (IBD) and CAC cell and mouse models were assessed. Mice with intestinal epithelial RAD50 deletion (RAD50IEC-KO) were used to examine the role of RAD50 in colitis and CAC. RESULTS Along with the increased γ-H2AX expression in colitis and CAC models, RAD50 expression was reduced in human IBD and CAC as well as in mouse models. Furthermore, RAD50IEC-KO sensitizes mice to dextran sulfate sodium (DSS)-induced acute and chronic experimental colitis. RNA-seq analyses revealed that RAD50IEC-KO activated the cytokine-cytokine receptor response, which was amplified through the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. RAD50 directly interacts with STAT3 and subsequently inhibits its phosphorylation, which may disrupt the IL-6-JAK1/2-STAT3-IL-6 feed-forward loop. Pharmacological STAT3 inhibition relieves colitis in RAD50IEC-KO mice. Severe DSBs, increased cell proliferation, and extended inflammatory response were identified in RAD50-deficient cells, which promoted azoxymethane (AOM)-DSS-induced colon tumor development in RAD50IEC-KO mice. CONCLUSIONS RAD50 exerts anti-IL-6-related inflammatory effects in colitis and suppresses CAC. Increasing RAD50 level in colon tissues may be promising for treating patients with UC and CAC.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Mengli
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tiantian Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Song
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Songmin Ying
- Department of Pharmacology and Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zhe Shen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Chen T, Liu J, Hang R, Chen Q, Wang D. Neutrophils: From Inflammatory Bowel Disease to Colitis-Associated Colorectal Cancer. J Inflamm Res 2025; 18:925-947. [PMID: 39871958 PMCID: PMC11770381 DOI: 10.2147/jir.s497701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a non-specific inflammatory disease of digestive tract, primarily manifesting as ulcerative colitis (UC) and Crohn's disease (CD). The precise etiology of IBD remains elusive. The interplay of genetic factors, environmental influences, and intestinal microbiota contributes to the establishment of an uncontrolled immune environment within the intestine, which can progressively lead to atypical hyperplasia and ultimately to malignancy over a long period. This colorectal malignant tumor that arises from chronic IBD is referred to as colitis-associated colorectal cancer (CAC). Dysregulation in the quantity and functionality of neutrophils plays a significant role in the onset, progression, and recurrence of IBD, as well as in the transition from IBD to CAC. Neutrophils affect the pathophysiology of IBD through various mechanisms, including the production of reactive oxygen species (ROS), degranulation, the release of inflammatory mediators and chemokines, and the formation of neutrophil extracellular traps (NETs). These processes can induce DNA mutations, thereby facilitating the development of colon cancer. Given the incomplete understanding of the disease mechanisms underlying IBD and CAC, effective treatment and prevention strategies remain challenging. Consequently, a comprehensive review of the functional roles of neutrophils in IBD and CAC is essential for advancing our understanding of IBD pathogenesis and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Tianyi Chen
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Jiachen Liu
- Radiology Department, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Ruyi Hang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Qian Chen
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Dong Wang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
- Oncology Department of Qianjiang Center Hospital, Chongqing University, Chongqing, People’s Republic of China
| |
Collapse
|
6
|
Yao J, Ji L, Wang G, Ding J. Effect of neutrophils on tumor immunity and immunotherapy resistance with underlying mechanisms. Cancer Commun (Lond) 2025; 45:15-42. [PMID: 39485719 PMCID: PMC11758154 DOI: 10.1002/cac2.12613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024] Open
Abstract
Neutrophils are key mediators of the immune response and play essential roles in the development of tumors and immune evasion. Emerging studies indicate that neutrophils also play a critical role in the immunotherapy resistance in cancer. In this review, firstly, we summarize the novel classification and phenotypes of neutrophils and describe the regulatory relationships between neutrophils and tumor metabolism, flora microecology, neuroendocrine and tumor therapy from a new perspective. Secondly, we review the mechanisms by which neutrophils affect drug resistance in tumor immunotherapy from the aspects of the immune microenvironment, tumor antigens, and epigenetics. Finally, we propose several promising strategies for overcoming tumor immunotherapy resistance by targeting neutrophils and provide new research ideas in this area.
Collapse
Affiliation(s)
- Jiali Yao
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| | - Linlin Ji
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| | - Guang Wang
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| | - Jin Ding
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| |
Collapse
|
7
|
Masui H, Kawada K, Obama K. Neutrophil and Colorectal Cancer. Int J Mol Sci 2024; 26:6. [PMID: 39795864 PMCID: PMC11720084 DOI: 10.3390/ijms26010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Colorectal cancer (CRC) is often associated with metastasis and recurrence and is the leading cause of cancer-related mortality. In the progression of CRC, recent studies have highlighted the critical role of neutrophils, particularly tumor-associated neutrophils (TANs). TANs have both tumor-promoting and tumor-suppressing activities, contributing to metastasis, immunosuppression, angiogenesis, and epithelial-to-mesenchymal transition. Tumor-promoting TANs promote tumor growth by releasing proteases, reactive oxygen species, and cytokines, whereas tumor-suppressing TANs enhance immune responses by activating T cells and natural killer cells. Understanding the mechanisms underlying TAN mobilization, plasticity, and their role in the tumor microenvironment has revealed potential therapeutic targets. This review provides a comprehensive overview of TAN biology in CRC and discusses both the tumor-promoting and tumor-suppressing functions of neutrophils. Novel therapeutic approaches targeting TANs, such as chemokine receptor antagonists, aim to modulate neutrophil reprogramming and offer promising avenues for improving treatment outcomes of CRC.
Collapse
Affiliation(s)
- Hideyuki Masui
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.M.); (K.O.)
- Department of Surgery, Hirakata Kohsai Hospital, Osaka 573-0153, Japan
| | - Kenji Kawada
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.M.); (K.O.)
- Department of Surgery, Kurashiki Central Hospital, Okayama 710-8602, Japan
| | - Kazutaka Obama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.M.); (K.O.)
| |
Collapse
|
8
|
Ghosh S, Zanoni I. The Dark Knight: Functional Reprogramming of Neutrophils in the Pathogenesis of Colitis-Associated Cancer. Cancer Immunol Res 2024; 12:1311-1319. [PMID: 39270036 PMCID: PMC11444878 DOI: 10.1158/2326-6066.cir-23-0642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/05/2024] [Accepted: 07/17/2024] [Indexed: 09/15/2024]
Abstract
Neutrophils are the primary myeloid cells that are recruited to inflamed tissues, and they are key players during colitis, being also present within the tumor microenvironment during the initiation and growth of colon cancer. Neutrophils fundamentally serve to protect the host against microorganism invasion, but during cancer development, they can become protumoral and lead to tumor initiation, growth, and eventually, metastasis-hence, playing a dichotomic role for the host. Protumoral neutrophils in cancer patients can be immunosuppressive and serve as markers for disease progression but their characteristics are not fully defined. In this review, we explore the current knowledge on how neutrophils in the gut fluctuate between an inflammatory or immunosuppressive state and how they contribute to tumor development. We describe neutrophils' antitumoral and protumoral effects during inflammatory bowel diseases and highlight their capacity to provoke the advent of inflammation-driven colorectal cancer. We present the functional ambivalence of the neutrophil populations within the colon tumor microenvironment, which can be potentially exploited to establish therapies that will prevent, or even reverse, inflammation-dependent colon cancer incidence in high-risk patients.
Collapse
Affiliation(s)
- Sreya Ghosh
- Harvard Medical School, Boston Children’s Hospital, Division of Immunology and Division of Gastroenterology, Boston, 02115, USA
| | - Ivan Zanoni
- Harvard Medical School, Boston Children’s Hospital, Division of Immunology and Division of Gastroenterology, Boston, 02115, USA
| |
Collapse
|
9
|
Liu W, Kuang T, Liu L, Deng W. The role of innate immune cells in the colorectal cancer tumor microenvironment and advances in anti-tumor therapy research. Front Immunol 2024; 15:1407449. [PMID: 39100676 PMCID: PMC11294098 DOI: 10.3389/fimmu.2024.1407449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024] Open
Abstract
Innate immune cells in the colorectal cancer microenvironment mainly include macrophages, neutrophils, natural killer cells, dendritic cells and bone marrow-derived suppressor cells. They play a pivotal role in tumor initiation and progression through the secretion of diverse cytokines, chemokines, and other factors that govern these processes. Colorectal cancer is a common malignancy of the gastrointestinal tract, and understanding the role of innate immune cells in the microenvironment of CRC may help to improve therapeutic approaches to CRC and increase the good prognosis. In this review, we comprehensively explore the pivotal role of innate immune cells in the initiation and progression of colorectal cancer (CRC), alongside an extensive evaluation of the current landscape of innate immune cell-based immunotherapies, thereby offering valuable insights for future research strategies and clinical trials.
Collapse
Affiliation(s)
| | | | | | - Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
10
|
Bui TM, Yalom LK, Ning E, Urbanczyk JM, Ren X, Herrnreiter CJ, Disario JA, Wray B, Schipma MJ, Velichko YS, Sullivan DP, Abe K, Lauberth SM, Yang GY, Dulai PS, Hanauer SB, Sumagin R. Tissue-specific reprogramming leads to angiogenic neutrophil specialization and tumor vascularization in colorectal cancer. J Clin Invest 2024; 134:e174545. [PMID: 38329810 PMCID: PMC10977994 DOI: 10.1172/jci174545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024] Open
Abstract
Neutrophil (PMN) tissue accumulation is an established feature of ulcerative colitis (UC) lesions and colorectal cancer (CRC). To assess the PMN phenotypic and functional diversification during the transition from inflammatory ulceration to CRC we analyzed the transcriptomic landscape of blood and tissue PMNs. Transcriptional programs effectively separated PMNs based on their proximity to peripheral blood, inflamed colon, and tumors. In silico pathway overrepresentation analysis, protein-network mapping, gene signature identification, and gene-ontology scoring revealed unique enrichment of angiogenic and vasculature development pathways in tumor-associated neutrophils (TANs). Functional studies utilizing ex vivo cultures, colitis-induced murine CRC, and patient-derived xenograft models demonstrated a critical role for TANs in promoting tumor vascularization. Spp1 (OPN) and Mmp14 (MT1-MMP) were identified by unbiased -omics and mechanistic studies to be highly induced in TANs, acting to critically regulate endothelial cell chemotaxis and branching. TCGA data set and clinical specimens confirmed enrichment of SPP1 and MMP14 in high-grade CRC but not in patients with UC. Pharmacological inhibition of TAN trafficking or MMP14 activity effectively reduced tumor vascular density, leading to CRC regression. Our findings demonstrate a niche-directed PMN functional specialization and identify TAN contributions to tumor vascularization, delineating what we believe to be a new therapeutic framework for CRC treatment focused on TAN angiogenic properties.
Collapse
Affiliation(s)
- Triet M. Bui
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lenore K. Yalom
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Edward Ning
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jessica M. Urbanczyk
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xingsheng Ren
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Caroline J. Herrnreiter
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jackson A. Disario
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brian Wray
- Quantitative Data Science Core, Lurie Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Matthew J. Schipma
- Quantitative Data Science Core, Lurie Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yuri S. Velichko
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - David P. Sullivan
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kouki Abe
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Shannon M. Lauberth
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Guang-Yu Yang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Parambir S. Dulai
- Department of Medicine, Gastroenterology and Hepatology, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Stephen B. Hanauer
- Department of Medicine, Gastroenterology and Hepatology, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
11
|
Ding Y, Liu Z, Li J, Niu W, Li C, Yu B. Predictive effect of the systemic inflammation response index (SIRI) on the efficacy and prognosis of neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer. BMC Surg 2024; 24:89. [PMID: 38481180 PMCID: PMC10935841 DOI: 10.1186/s12893-024-02384-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Inflammation is a part of tumours, and inflammatory cells can affect the proliferation, invasion, and development of tumour cells. An increasing number of peripheral blood inflammatory markers have been found to play very important roles in the treatment and prognosis of cancer patients. The systemic inflammatory response index (SIRI) is a newer inflammatory marker, and its role in colorectal cancer, especially in locally advanced rectal cancer, is still unclear. METHODS From 2015 to 2020, 198 patients with locally advanced rectal cancer (LARC) who underwent surgery following neoadjuvant chemoradiotherapy (Neo-CRT) were analysed. Patients were categorized into good- and poor- response groups according to their pathological results, and clinical characteristics and baseline parameters were compared between the two groups. The optimal cutoff values for inflammatory indicators were determined using receiver operating characteristic (ROC) analysis. Univariate and multivariate analyses were performed using the Cox proportional hazard model. Survival analysis was performed via the Kaplan‒Meier method. RESULTS After patients were grouped into good and poor response groups, indicator differences were found in CEA, neutrophil-to-lymphocyte ratio (NLR), systemic immune-inflammation index (SII), and SIRI. According to the ROC analysis, the NLR (P = 0.015), SII (P = 0.001), and SIRI (P = 0.029) were significant prognostic factors. After univariate and multivariate analyses of the Cox proportional hazards regression model, only the SIRI was found to be an independent prognostic factor for overall survival (OS) and disease-free survival (DFS). Finally, Kaplan‒Meier survival curves also confirmed the ability of the SIRI to predict survival. CONCLUSION The preoperative SIRI can be used to predict the response to Neo-CRT in LARC patients and is an independent predictor of OS and DFS in postoperative patients. A high SIRI was associated with poor radiotherapy response and predicted poor OS and DFS.
Collapse
Affiliation(s)
- Yuanyi Ding
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumour Hospital, Hebei, 050011, China
| | - Zining Liu
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumour Hospital, Hebei, 050011, China
| | - Jing Li
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumour Hospital, Hebei, 050011, China
| | - Wenbo Niu
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumour Hospital, Hebei, 050011, China
| | - Chenhui Li
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumour Hospital, Hebei, 050011, China
| | - Bin Yu
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumour Hospital, Hebei, 050011, China.
| |
Collapse
|
12
|
Shi R, Wang S, Jiang Y, Zhong G, Li M, Sun Y. ERCC4: a potential regulatory factor in inflammatory bowel disease and inflammation-associated colorectal cancer. Front Endocrinol (Lausanne) 2024; 15:1348216. [PMID: 38516408 PMCID: PMC10954797 DOI: 10.3389/fendo.2024.1348216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
The pathogenesis of inflammatory bowel disease (IBD) remains unclear and is associated with an increased risk of developing colitis-associated cancer (CAC). Under sustained inflammatory stimulation in the intestines, loss of early DNA damage response genes can lead to tumor formation. Many proteins are involved in the pathways of DNA damage response and play critical roles in protecting genes from various potential damages that DNA may undergo. ERCC4 is a structure-specific endonuclease that participates in the nucleotide excision repair (NER) pathway. The catalytic site of ERCC4 determines the activity of NER and is an indispensable gene in the NER pathway. ERCC4 may be involved in the imbalanced process of DNA damage and repair in IBD-related inflammation and CAC. This article primarily reviews the function of ERCC4 in the DNA repair pathway and discusses its potential role in the processes of IBD-related inflammation and carcinogenesis. Finally, we explore how this knowledge may open novel avenues for the treatment of IBD and IBD-related cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Sun
- *Correspondence: Yan Sun, ; Mingsong Li,
| |
Collapse
|
13
|
Awasthi D, Sarode A. Neutrophils at the Crossroads: Unraveling the Multifaceted Role in the Tumor Microenvironment. Int J Mol Sci 2024; 25:2929. [PMID: 38474175 DOI: 10.3390/ijms25052929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Over the past decade, research has prominently established neutrophils as key contributors to the intricate landscape of tumor immune biology. As polymorphonuclear granulocytes within the innate immune system, neutrophils play a pivotal and abundant role, constituting approximately ∼70% of all peripheral leukocytes in humans and ∼10-20% in mice. This substantial presence positions them as the frontline defense against potential threats. Equipped with a diverse array of mechanisms, including reactive oxygen species (ROS) generation, degranulation, phagocytosis, and the formation of neutrophil extracellular traps (NETs), neutrophils undeniably serve as indispensable components of the innate immune system. While these innate functions enable neutrophils to interact with adaptive immune cells such as T, B, and NK cells, influencing their functions, they also engage in dynamic interactions with rapidly dividing tumor cells. Consequently, neutrophils are emerging as crucial regulators in both pro- and anti-tumor immunity. This comprehensive review delves into recent research to illuminate the multifaceted roles of neutrophils. It explores their diverse functions within the tumor microenvironment, shedding light on their heterogeneity and their impact on tumor recruitment, progression, and modulation. Additionally, the review underscores their potential anti-tumoral capabilities. Finally, it provides valuable insights into clinical therapies targeting neutrophils, presenting a promising approach to leveraging innate immunity for enhanced cancer treatment.
Collapse
Affiliation(s)
- Deepika Awasthi
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Aditya Sarode
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
14
|
Sumagin R. Phenotypic and Functional Diversity of Neutrophils in Gut Inflammation and Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2-12. [PMID: 37918801 PMCID: PMC10768535 DOI: 10.1016/j.ajpath.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Neutrophils [polymorphonuclear leukocytes (PMNs)] execute important effector functions protecting the host against invading pathogens. However, their activity in tissue can exacerbate inflammation and inflammation-associated tissue injury and tumorigenesis. Until recently, PMNs were considered to be short-lived, terminally differentiated phagocytes. However, this view is rapidly changing with the emerging evidence of increased PMN lifespan in tissues, PMN plasticity, and phenotypic heterogeneity. Specialized PMN subsets have been identified in inflammation and in developing tumors, consistent with both beneficial and detrimental functions of PMNs in these conditions. Because PMN and tumor-associated neutrophil activity and the resulting beneficial/detrimental impacts primarily occur after homing to inflamed tissue/tumors, studying the underlying mechanisms of PMN/tumor-associated neutrophil trafficking is of high interest and clinical relevance. This review summarizes some of the key findings from over a decade of work from my laboratory and others on the regulation of PMN recruitment and identification of phenotypically and functionally diverse PMN subtypes as they pertain to gut inflammation and colon cancer.
Collapse
Affiliation(s)
- Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
15
|
Ghimire J, Iftikhar R, Penrose HM, Snarski P, Ruiz E, Savkovic SD. FOXO3 Deficiency in Neutrophils Drives Colonic Inflammation and Tumorigenesis. Int J Mol Sci 2023; 24:ijms24119730. [PMID: 37298680 DOI: 10.3390/ijms24119730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Inflammatory bowel disease (IBD), characterized by infiltration of polymorphonuclear neutrophils (PMNs), increases the risk of colon cancer. PMN activation corresponds to the accumulation of intracellular Lipid Droplets (LDs). As increased LDs are negatively regulated by transcription factor Forkhead Box O3 (FOXO3), we aim to determine the significance of this regulatory network in PMN-mediated IBD and tumorigenesis. Affected tissue of IBD and colon cancer patients, colonic and infiltrated immune cells, have increased LDs' coat protein, PLIN2. Mouse peritoneal PMNs with stimulated LDs and FOXO3 deficiency have elevated transmigratory activity. Transcriptomic analysis of these FOXO3-deficient PMNs showed differentially expressed genes (DEGs; FDR < 0.05) involved in metabolism, inflammation, and tumorigenesis. Upstream regulators of these DEGs, similar to colonic inflammation and dysplasia in mice, were linked to IBD and human colon cancer. Additionally, a transcriptional signature representing FOXO3-deficient PMNs (PMN-FOXO3389) separated transcriptomes of affected tissue in IBD (p = 0.00018) and colon cancer (p = 0.0037) from control. Increased PMN-FOXO3389 presence predicted colon cancer invasion (lymphovascular p = 0.015; vascular p = 0.046; perineural p = 0.03) and poor survival. Validated DEGs from PMN-FOXO3389 (P2RX1, MGLL, MCAM, CDKN1A, RALBP1, CCPG1, PLA2G7) are involved in metabolism, inflammation, and tumorigenesis (p < 0.05). These findings highlight the significance of LDs and FOXO3-mediated PMN functions that promote colonic pathobiology.
Collapse
Affiliation(s)
- Jenisha Ghimire
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Rida Iftikhar
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Harrison M Penrose
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Patricia Snarski
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Emmanuelle Ruiz
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Suzana D Savkovic
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
16
|
Zhang P, Wang S, Wu JZ, Song Q. Clinical and prognostic significance of perioperative change in red cell distribution width in patients with esophageal squamous cell carcinoma. BMC Cancer 2023; 23:319. [PMID: 37024853 PMCID: PMC10080779 DOI: 10.1186/s12885-023-10804-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Numerous studies have reported the prognostic significance of the red cell distribution width (RDW) in patients with esophageal squamous cell carcinoma (ESCC), but the relationship between the perioperative change in RDW (delta RDW) and survival in patients with ESCC after surgery has not been evaluated. METHODS A total of 594 patients with newly diagnosed ESCC after surgery were enrolled in the study. Delta RDW (delta RDW = Postoperative RDW-Preoperative RDW) was counted based on data within one week before surgery and two weeks after surgery. To investigate the relationship between delta RDW and overall survival (OS), the median delta RDW was chosen as the cut-off value. RESULTS 99 (16.7%) patients had pathological stage 1a-1b, 202 (34.0%) patients had pathological stage 2a-2b, and 293 (49.3%) patients had pathological stage 3a-3c.There were 179 (30.1%) patients who had vessel invasive, and 415 (69.9%) patients without vessel invasive. There were 216 (36.4%) patients with nerve infiltration, and 378 (63.6%) without nerve infiltration. In univariate analysis, five parameters including delta RDW(≥ 0.44 vs.<0.44) (P = 0.039, HR = 1.337, 95% CI = 1.014-1.762) significantly correlated with worse OS. Multivariate analysis revealed that delta RDW(≥ 0.44 vs.<0.44) was an independent prognostic marker for OS (P = 0.033, HR = 1.356, 95% CI = 1.025-1.793). Kaplan-Meier curves showed that delta RDW ≥ 0.44 was significantly associated with worse OS (P = 0.039). Subgroup analysis suggested that delta RDW ≥ 0.44 indicated worse survival in patients with ESCC exclusively in these subtypes such as female patients, age > 60 patients, patients with lymph node metastasis, and patients with vessel invasive. CONCLUSIONS Perioperative change in red cell distribution width predicts worse survival in patients with ESCC after surgery.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Radiology Physics, Key Laboratory of Radiation Oncology of Zhejiang Province, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Sheng Wang
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jun-Zhou Wu
- Cancer Research Institute, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Qian Song
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Adrover JM, McDowell SAC, He XY, Quail DF, Egeblad M. NETworking with cancer: The bidirectional interplay between cancer and neutrophil extracellular traps. Cancer Cell 2023; 41:505-526. [PMID: 36827980 DOI: 10.1016/j.ccell.2023.02.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
Neutrophils are major effectors and regulators of the immune system. They play critical roles not only in the eradication of pathogens but also in cancer initiation and progression. Conversely, the presence of cancer affects neutrophil activity, maturation, and lifespan. By promoting or repressing key neutrophil functions, cancer cells co-opt neutrophil biology to their advantage. This co-opting includes hijacking one of neutrophils' most striking pathogen defense mechanisms: the formation of neutrophil extracellular traps (NETs). NETs are web-like filamentous extracellular structures of DNA, histones, and cytotoxic granule-derived proteins. Here, we discuss the bidirectional interplay by which cancer stimulates NET formation, and NETs in turn support disease progression. We review how vascular dysfunction and thrombosis caused by neutrophils and NETs underlie an elevated risk of death from cardiovascular events in cancer patients. Finally, we propose therapeutic strategies that may be effective in targeting NETs in the clinical setting.
Collapse
Affiliation(s)
- Jose M Adrover
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Sheri A C McDowell
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada; Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Xue-Yan He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Daniela F Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada; Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
18
|
Rottmann BG, Patel N, Ahmed M, Deng Y, Ciarleglio M, Vyas M, Jain D, Zhang X. Clinicopathological significance of neutrophil-rich colorectal carcinoma. J Clin Pathol 2023; 76:34-39. [PMID: 34312298 PMCID: PMC10910606 DOI: 10.1136/jclinpath-2021-207702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/08/2021] [Indexed: 02/05/2023]
Abstract
AIMS The importance of the interaction between tumour cells and neutrophils has recently begun to emerge. However, the significance of tumour-infiltrating neutrophil (TIN) in colorectal carcinomas (CRCs) remains unclear. The aim of this study was to investigate the prognostic significance of TIN in CRCs. METHODS CRCs were evaluated for TIN and were classified as neutrophil-rich (NR), neutrophil-intermediate (NI) and neutrophil-poor (NP) based on the presence of >15, 5-15 and <5 TIN per 100 tumour cells, respectively. Various clinicopathological parameters were recorded in each case including age, gender, histological grade, tumour, node, metastasis (TNM) stage, tumour location and DNA mismatch repair (MMR) status. RESULTS Among the 348 CRC cases reviewed, 38 cases were NR, 43 cases were NI and 267 cases were NP. High TIN was associated with higher histological grade (p=0.0222), right-sided tumour location (p=0.0025), advanced TNM stage (p=0.0346) and higher rate of MMR-deficient CRCs (p=0.0027). Patients with NR CRCs had significantly poorer 5-year recurrence-free survival comparing to patients with NI or NP CRCs on Kaplan-Meier analysis (p=0.0001) and high TIN remained an independent risk factor with multivariate analysis (p=0.0137; HR: 1.930, 95% CI: 1.144 to 3.255). NR CRCs are more commonly seen in MMR-deficient than in MMR-proficient CRCs (p=0.0006). Patients with MMR-deficient NR CRCs showed similar 5-year recurrence-free survival compared with MMR-proficient NR CRCs. CONCLUSIONS Our findings reveal that high TIN confers poorer patient prognosis in both MMR-proficient and MMR-deficient CRCs.
Collapse
Affiliation(s)
- Bruce G Rottmann
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Natalie Patel
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Muhammad Ahmed
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yanhong Deng
- Yale Center for Analytical Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Maria Ciarleglio
- Yale Center for Analytical Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Monika Vyas
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Dhanpat Jain
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xuchen Zhang
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
19
|
Zippoli M, Ruocco A, Novelli R, Rocchio F, Miscione MS, Allegretti M, Cesta MC, Amendola PG. The role of extracellular vesicles and interleukin-8 in regulating and mediating neutrophil-dependent cancer drug resistance. Front Oncol 2022; 12:947183. [PMID: 36591453 PMCID: PMC9800989 DOI: 10.3389/fonc.2022.947183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/24/2022] [Indexed: 12/23/2022] Open
Abstract
Tumor drug resistance is a multifactorial and heterogenous condition that poses a serious burden in clinical oncology. Given the increasing incidence of resistant tumors, further understanding of the mechanisms that make tumor cells able to escape anticancer drug effects is pivotal for developing new effective treatments. Neutrophils constitute a considerable proportion of tumor infiltrated immune cells, and studies have linked elevated neutrophil counts with poor prognosis. Tumor-associated neutrophils (TANs) can acquire in fact immunoregulatory capabilities, thus regulating tumor progression and resistance, or response to therapy. In this review, we will describe TANs' actions in the tumor microenvironment, with emphasis on the analysis of the role of interleukin-8 (IL-8) and extracellular vesicles (EVs) as crucial modulators and mediators of TANs biology and function in tumors. We will then discuss the main mechanisms through which TANs can induce drug resistance, finally reporting emerging therapeutic approaches that target these mechanisms and can thus be potentially used to reduce or overcome neutrophil-mediated tumor drug resistance.
Collapse
Affiliation(s)
- Mara Zippoli
- Research and Development (R&D), Dompé farmaceutici S.p.A., Naples, Italy
| | - Anna Ruocco
- Research and Development (R&D), Dompé farmaceutici S.p.A., Naples, Italy
| | - Rubina Novelli
- Research and Development (R&D), Dompé farmaceutici S.p.A., Milan, Italy
| | - Francesca Rocchio
- Research and Development (R&D), Dompé farmaceutici S.p.A., Naples, Italy
| | - Martina Sara Miscione
- Research and Development (R&D), Dompé farmaceutici S.p.A., Naples, Italy,Department of Biotechnological and Applied Clinical Science, University of L'Aquila, L'Aquila, Italy
| | | | | | - Pier Giorgio Amendola
- Research and Development (R&D), Dompé farmaceutici S.p.A., Naples, Italy,*Correspondence: Pier Giorgio Amendola,
| |
Collapse
|
20
|
Discovery and Validation of Potential Serum Biomarkers with Pro-Inflammatory and DNA Damage Activities in Ulcerative Colitis: A Comprehensive Untargeted Metabolomic Study. Metabolites 2022; 12:metabo12100997. [PMID: 36295899 PMCID: PMC9609580 DOI: 10.3390/metabo12100997] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
Ulcerative colitis is a type of non-specific inflammatory bowel disease with unclear etiology. It is considered a progressive disease with risks of bowel motility disorders, anorectal dysfunction, and even colorectal cancer. Commonly used diagnostic markers have poor specificity and cannot predict the development of ulcerative colitis. In this study, 77 serum samples (31 patients, 46 healthy controls) were analyzed using high performance liquid chromatography-quadrupole time-of-flight mass spectrometry and 31 metabolites with significant level changes were found, revealing the relationship of ulcerative colitis to disturbed glutathione metabolism and caffeine metabolism. In addition, pyroglutamic acid, a biomarker of cervical cancer and gastric cancer, was identified with elevated levels in the serum of ulcerative colitis patients. The role of pyroglutamic acid was further analyzed, and the results indicated its positive correlation with the upregulation of inflammatory factors and increased levels of phosphorylated histone H2AX (γH2AX) in IEC-6 cells, which are related to DNA damage. All these results suggest that pyroglutamic acid is not only a biomarker for distinguishing ulcerative colitis status, but that it is also a potential effective metabolite that promotes the transformation of ulcerative colitis to colorectal cancer.
Collapse
|
21
|
Lockhart JS, Sumagin R. Non-Canonical Functions of Myeloperoxidase in Immune Regulation, Tissue Inflammation and Cancer. Int J Mol Sci 2022; 23:ijms232012250. [PMID: 36293108 PMCID: PMC9603794 DOI: 10.3390/ijms232012250] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Myeloperoxidase (MPO) is one of the most abundantly expressed proteins in neutrophils. It serves as a critical component of the antimicrobial defense system, facilitating microbial killing via generation of reactive oxygen species (ROS). Interestingly, emerging evidence indicates that in addition to the well-recognized canonical antimicrobial function of MPO, it can directly or indirectly impact immune cells and tissue responses in homeostatic and disease states. Here, we highlight the emerging non-canonical functions of MPO, including its impact on neutrophil longevity, activation and trafficking in inflammation, its interactions with other immune cells, and how these interactions shape disease outcomes. We further discuss MPO interactions with barrier forming endothelial and epithelial cells, specialized cells of the central nervous system (CNS) and its involvement in cancer progression. Such diverse function and the MPO association with numerous inflammatory disorders make it an attractive target for therapies aimed at resolving inflammation and limiting inflammation-associated tissue damage. However, while considering MPO inhibition as a potential therapy, one must account for the diverse impact of MPO activity on various cellular compartments both in health and disease.
Collapse
|
22
|
Martínez-Gutierrez A, Carbajal-Lopez B, Bui TM, Mendoza-Rodriguez M, Campos-Parra AD, Calderillo-Ruiz G, Cantú-De Leon D, Madrigal-Santillán EO, Sumagin R, Pérez-Plasencia C, Pérez-Yépez EA. A microRNA panel that regulates proinflammatory cytokines as diagnostic and prognosis biomarkers in colon cancer. Biochem Biophys Rep 2022; 30:101252. [PMID: 35313644 PMCID: PMC8933814 DOI: 10.1016/j.bbrep.2022.101252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/23/2022] [Accepted: 03/13/2022] [Indexed: 12/24/2022] Open
Abstract
Colon cancer (CC) is the third most common neoplasm and the fourth cause of cancer-related death worldwide in both sexes. It has been established that inflammation plays a critical role in tumorigenesis and progression of CC. Immune, stromal and tumor cells supply the tumor microenvironment with pro-inflammatory cytokines such as interleukin 1β, TNFα, IL-6 and IL-11, to hyperactivate signaling pathways linked to cancerous processes. Recent findings suggest a putative role of microRNAs (miRNAs) in the progression and management of the inflammatory response in intestinal diseases. Moreover, miRNAs are able to regulate expression of molecular mediators that are linking inflammation and cancer. In this work a miRNA panel differentially expressed between healthy, inflammatory bowel disease (IBD) and CC tissue was established. Identified miRNAs regulate signaling pathways related to inflammation and cancer progression. An inflammation associated-miRNA panel composed of 11-miRNAs was found to be overexpressed in CC but not in inflamed or normal tissues (miR-21-5p, miR-304-5p, miR-577, miR-335-5p, miR-21-3p, miR-27b-5p, miR-335-3p, miR-215-5p, miR-30b-5p, miR-192-5p, miR-3065-5p). The association of top hit miRNAs, miR-3065-5p and miR-30b-5p expression with overall survival of CC patients was demonstrated using Kaplan-Meier tests. Finally, differential miRNA expression was validated using an inflammation-associated CC model induced by Azoxymethane/Dextran Sodium Sulfate (AOM/DSS) to compare miRNA expression in normal and inflamed tissue versus CC tissues. Based on these findings we propose the identified inflammatory miRNA panel as a potent diagnostic tool for CC determination. A miRNA group distinguishes colon cancer tissues, since early stages, from inflamed or healthy colon tissues. The miRNA panel regulates signaling pathways related to cancer progression. The levels of pro-inflammatory cytokines are regulated by the miRNAs of the panel. Inflammation-related miRNAs are colon cancer prognosis biomarkers. A miRNA signature is specific biomarker for colitis-associated colon carcinogenesis.
Collapse
Affiliation(s)
| | - Berenice Carbajal-Lopez
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, Mexico
- Programa de Doctorado en Investigación en Medicina, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | - Triet M. Bui
- Department of Pathology, Northwestern University Feinberg School of Medicine, 300 East Superior St., Chicago, IL, 60611, USA
| | - Monica Mendoza-Rodriguez
- Unidad de Biomedicina, FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, 54090, Mexico
| | | | | | - David Cantú-De Leon
- Unidad de Investigación en Cáncer, Instituto Nacional de Cancerología, Tlalpan, Mexico
| | - Eduardo-Osiris Madrigal-Santillán
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, 11340, Mexico
| | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, 300 East Superior St., Chicago, IL, 60611, USA
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, Mexico
- Laboratorio de Genómica Funcional. Unidad de Biomedicina, FES-IZTACALA, UNAM, Tlalnepantla, Mexico
- Corresponding author. Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, Mexico.
| | - Eloy-Andrés Pérez-Yépez
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, Mexico
- Cátedra-CONACYT, Dirección de Cátedras, Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico
- Corresponding author. Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, Mexico.
| |
Collapse
|
23
|
Batra A, Bui TM, Rehring JF, Yalom LK, Muller WA, Sullivan DP, Sumagin R. Experimental Colitis Enhances Temporal Variations in CX3CR1 Cell Colonization of the Gut and Brain Following Irradiation. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:295-307. [PMID: 34767810 PMCID: PMC8908021 DOI: 10.1016/j.ajpath.2021.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 02/03/2023]
Abstract
Peripheral monocyte-derived CX3C chemokine receptor 1 positive (CX3CR1+) cells play important roles in tissue homeostasis and gut repopulation. Increasing evidence also supports their role in immune repopulation of the brain parenchyma in response to systemic inflammation. Adoptive bone marrow transfer from CX3CR1 fluorescence reporter mice and high-resolution confocal microscopy was used to assess the time course of CX3CR1+ cell repopulation of steady-state and dextran sodium sulfate (DSS)-inflamed small intestine/colon and the brain over 4 weeks after irradiation. CX3CR1+ cell colonization and morphologic polarization into fully ramified cells occurred more rapidly in the small intestine than in the colon. For both organs, the crypt/mucosa was more densely populated than the serosa/muscularis layer, indicating preferential temporal and spatial occupancy. Repopulation of the brain was delayed compared with that of gut tissue, consistent with the immune privilege of this organ. However, DSS-induced colon injury accelerated the repopulation. Expression analyses confirmed increased chemokine levels and macrophage colonization within the small intestine/colon and the brain by DSS-induced injury. Early increases of transmembrane protein 119 and ionized calcium binding adaptor molecule 1 expression within the brain after colon injury suggest immune-priming effect of brain resident microglia in response to systemic inflammation. These findings identify temporal differences in immune repopulation of the gut and brain in response to inflammation and show that gut inflammation can impact immune responses within the brain.
Collapse
Affiliation(s)
- Ayush Batra
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Triet M Bui
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jacob F Rehring
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lenore K Yalom
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - William A Muller
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David P Sullivan
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
24
|
Bui TM, Sumagin R. Neutrophils and micronuclei: An emerging link between genomic instability and cancer-driven inflammation. Mutat Res 2022; 824:111778. [PMID: 35334355 PMCID: PMC9756381 DOI: 10.1016/j.mrfmmm.2022.111778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/22/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Two recent studies by Bui and Butin-Israeli et al. have established the novel contribution of neutrophils to genomic instability induction and aberrant shaping of the DNA repair landscape, particularly observed in patients with inflammatory bowel diseases (IBD) and/or progressive colorectal cancer (CRC). In addition, these back-to-back studies uncovered a sharp increase in the numbers of micronuclei and lagging chromosomes in pre-cancerous and cancerous epithelium in response to prolonged PMN exposure. Given the emerging link between neutrophils and micronuclei as well as the established role of micronuclei in cGAS/STING activation, this special commentary aims to elaborate on the mechanisms by which CRC cells may adapt to neutrophil-driven genomic instability while concurrently sustain an inflamed tumor niche. We postulate that such tumor microenvironment with constant immune cell presence, inflammatory milieu, and cumulative DNA damage can drive tumor adaptation and resistance to therapeutic interventions. Finally, we discuss potential novel therapeutic approaches that can be leveraged to target this emerging neutrophil-micronuclei pathological axis, thereby preventing perpetual CRC inflammation and unwanted tumor adaptation.
Collapse
Affiliation(s)
- Triet M Bui
- Department of Pathology, Northwestern University Feinberg School of Medicine, 300 East Superior St., Chicago, IL 60611, USA
| | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, 300 East Superior St., Chicago, IL 60611, USA.
| |
Collapse
|
25
|
Xiong S, Dong L, Cheng L. Neutrophils in cancer carcinogenesis and metastasis. J Hematol Oncol 2021; 14:173. [PMID: 34674757 PMCID: PMC8529570 DOI: 10.1186/s13045-021-01187-y] [Citation(s) in RCA: 300] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years, neutrophils have attracted increasing attention because of their cancer-promoting effects. An elevated neutrophil-to-lymphocyte ratio is considered a prognostic indicator for patients with cancer. Neutrophils are no longer regarded as innate immune cells with a single function, let alone bystanders in the pathological process of cancer. Their diversity and plasticity are being increasingly recognized. This review summarizes previous studies assessing the roles and mechanisms of neutrophils in cancer initiation, progression, metastasis and relapse. Although the findings are controversial, the fact that neutrophils play a dual role in promoting and suppressing cancer is undeniable. The plasticity of neutrophils allows them to adapt to different cancer microenvironments and exert different effects on cancer. Given the findings from our own research, we propose a reasonable hypothesis that neutrophils may be reprogrammed into a cancer-promoting state in the cancer microenvironment. This new perspective indicates that neutrophil reprogramming in the course of cancer treatment is a problem worthy of attention. Preventing or reversing the reprogramming of neutrophils may be a potential strategy for adjuvant cancer therapy.
Collapse
Affiliation(s)
- Shumin Xiong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liaoliao Dong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lin Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
26
|
Bui TM, Yalom LK, Sumagin R. Tumor-associated neutrophils: orchestrating cancer pathobiology and therapeutic resistance. Expert Opin Ther Targets 2021; 25:573-583. [PMID: 34236924 DOI: 10.1080/14728222.2021.1954162] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Neutrophils or polymorphonuclear cells (PMNs) account for a considerable portion of the tumor immune stroma. Emerging single-cell transcriptomic analyses have elucidated the striking cellular heterogeneity of PMNs during homeostasis and pathologic conditions and have established their diverse roles in cancer. PMNs have emerged as important players in cancer pathobiology and therapeutic resistance. Tumor-associated neutrophils (TANs) effector functions influence tumor development and resistance or response to therapy.Areas covered: This review focuses on PMN heterogeneity and functional diversity in the context of carcinogenesis. TANs, by activating diverse signaling pathways, contribute to cancer progression and resistance to therapies. Mechanisms by which TANs impact therapeutic resistance include alterations of the tumoral DNA damage response, angiogenesis, reactivation of cancer dormancy, enhancement of tumor cell proliferation/survival and immune evasion.Expert opinion: With the emerging phenotypic and function heterogeneity of TANs, targeting specific TAN functions in developing tumors can lead to translatable therapeutic approaches and limit drug resistance. We propose that combining specific targeting of TAN activity with standard cancer therapy can help patients achieving a complete response and prevent cancer relapse.
Collapse
Affiliation(s)
- Triet M Bui
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lenore K Yalom
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|