1
|
Jia M, Chen X, Guo W, Ma D, Wang P, Niu H, Liu C, Lin X, Lu Q, Wang J, Zheng X, Sun Q, Gao C, Yuan H. AGR2-mediated cell-cell communication controls the antiviral immune response by promoting the thiol oxidation of TRAF3. Redox Biol 2025; 82:103581. [PMID: 40085973 PMCID: PMC11957533 DOI: 10.1016/j.redox.2025.103581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
Protein disulfide isomerases (PDIs) are essential catalysts for the formation and isomerization of disulfide bonds in diverse substrate proteins and exert multiple functions under pathophysiological conditions. Here, we show that anterior gradient 2 (AGR2), a member of PDIs, acts as a negative regulator in antiviral immunity. RNA virus infection stimulated the expression and secretion of AGR2 in epithelial cells. While AGR2 is absent in immune cells, both intracellular AGR2 and extracellular AGR2 compromised type I interferon (IFN-I) production in vitro and in vivo. The inhibitory effect of secreted AGR2 on the immune response resulted from its crosstalk with immune cells, such as macrophages, by which eAGR2 was internalized via endocytosis depending on its adhesion motif. We further identified AGR2 as a novel binding protein of TRAF3, which forms a disulfide bond between Cys81 of AGR2 and Cys296 on TRAF3. This interaction led to the inhibition of TRAF3 K63-linked ubiquitination and TRAF3-TBK1 complex formation, ultimately impairing TRAF3's ability to induce IFN-I production. The TRAF3 Cys296 mutation diminishes oxidative modification by AGR2 but enhances self-association of TRAF3 and IFN-I production. Our study demonstrated a cysteine-dependent oxidative modification of TRAF3 by AGR2 that suppresses TRAF3 activity and maintains innate immune homeostasis.
Collapse
Affiliation(s)
- Mengqi Jia
- Key Laboratory of Experimental Teratology of Ministry of Education, Institute of Medical Sciences, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaojing Chen
- Key Laboratory of Experimental Teratology of Ministry of Education, Institute of Medical Sciences, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenxue Guo
- Key Laboratory of Experimental Teratology of Ministry of Education, Institute of Medical Sciences, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dapeng Ma
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Peng Wang
- Key Laboratory of Experimental Teratology of Ministry of Education, Institute of Medical Sciences, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huanmin Niu
- Key Laboratory of Experimental Teratology of Ministry of Education, Institute of Medical Sciences, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Changhong Liu
- Key Laboratory of Experimental Teratology of Ministry of Education, Institute of Medical Sciences, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xianjuan Lin
- Key Laboratory of Experimental Teratology of Ministry of Education, Institute of Medical Sciences, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - QiQi Lu
- Key Laboratory of Experimental Teratology of Ministry of Education, Institute of Medical Sciences, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Wang
- Key Laboratory of Experimental Teratology of Ministry of Education, Institute of Medical Sciences, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoxue Zheng
- Key Laboratory of Experimental Teratology of Ministry of Education, Institute of Medical Sciences, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qi Sun
- Key Laboratory of Experimental Teratology of Ministry of Education, Institute of Medical Sciences, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Huiqing Yuan
- Key Laboratory of Experimental Teratology of Ministry of Education, Institute of Medical Sciences, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
2
|
Jian Z, Pan T, Li R, Zhang W, Cheng T, Zhang H, Song J, Shi N, Zhang Z. Comprehensive analysis of UPK3B as a marker for prognosis and immunity in pancreatic adenocarcinoma. Sci Rep 2025; 15:12716. [PMID: 40223017 PMCID: PMC11994762 DOI: 10.1038/s41598-025-97213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 04/03/2025] [Indexed: 04/15/2025] Open
Abstract
The low immunogenicity of pancreatic cancer inhibits effective antitumor immune responses, primarily due to the immune evasion mediated by low expression of the major histocompatibility complex (MHC). Through comprehensive analysis, our study identifies UPK3B as a gene closely associated with low MHC expression and low immunogenicity in pancreatic cancer. UPK3B has been reported as a marker of primary mesothelial cells, mature epicardium and promotes extracellular matrix signaling. However, the role of UPK3B in pancreatic cancer remain unclear. We found that UPK3B is highly predictive of overall survival (OS) in patients with pancreatic ductal adenocarcinoma (PDAC) and is significantly related to clinical features, immune cell infiltration, and response to immune checkpoint inhibitor (ICI) therapy. Gene enrichment analysis revealed significant downregulation of immune regulatory and BCR signaling pathways in the UPK3B high-expression group. Additionally, UPK3B is positively correlated with immunosuppressive cells, suggesting that high UPK3B expression may inhibit antitumor immune responses by promoting low MHC expression. UPK3B is also positively correlated with immune checkpoints, indicating that tumors with high UPK3B expression may not benefit from ICI therapy. Therefore, UPK3B may serve as a novel biomarker and therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Ziying Jian
- Department of Hematology, Zhong da Hospital of Southeast University, Nanjing, China
| | - Tao Pan
- Department of Radiology, Center of Interventional Radiology and Vascular Surgery, Medical School, Zhongda Hospital, Southeast University, Nanjing, China
| | - Renjie Li
- School of Medicine, Southeast University, Nanjing, China
| | - Weiyu Zhang
- Department of General Surgery, Zhongda Hospital of Southeast University, Nanjing, China
| | - Tao Cheng
- Department of General Surgery, Zhongda Hospital of Southeast University, Nanjing, China
| | - Hanzhe Zhang
- School of Medicine, Southeast University, Nanjing, China
| | - Jialin Song
- School of Medicine, Southeast University, Nanjing, China
| | - Naipeng Shi
- Department of Urology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Zhiheng Zhang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
3
|
Sun Y, Qiao Y, Niu Y, Madhavan BK, Fang C, Hu J, Schuck K, Traub B, Friess H, Herr I, Michalski CW, Kong B. ARP2/3 complex affects myofibroblast differentiation and migration in pancreatic ductal adenocarcinoma. Int J Cancer 2025; 156:1272-1281. [PMID: 39472297 PMCID: PMC11737003 DOI: 10.1002/ijc.35246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 01/18/2025]
Abstract
The ARP2/3 complex, which orchestrates actin cytoskeleton organization and lamellipodia formation, has been implicated in the initiation of pancreatic ductal adenocarcinoma (PDAC). This study aims to clarify its impact on the activity of cancer-associated fibroblasts (CAFs), key players in PDAC progression, and patient outcomes. Early pancreatic carcinogenesis was modeled in p48Cre; LSL-KrasG12D mice with caerulein-induced pancreatitis, complemented by in vitro studies on human immortalized pancreatic stellate cells (PSCs) and primary PDAC-derived CAFs. Data were gained from microarray analysis, RNA sequencing (RNA-seq), and single-cell RNA sequencing (sc-RNA-seq), with subsequent bioinformatics analysis. We uncovered a specific transcriptional signature associated with fibroblast migration in early pancreatic carcinogenesis and linked it to poor survival in patients with PDAC. A pivotal role of the ARP2/3 complex in CAF migration was identified. Inhibition of the ARP2/3 complex markedly decreased CAF motility and induced significant morphological changes in vitro. Furthermore, its inhibition also hindered TGFβ1-mediated myofibroblastic CAF differentiation but had no effect on IL-1-mediated inflammatory CAF differentiation. Our findings position the ARP2/3 complex as central to the migration and differentiation of myofibroblastic CAF. Targeting this complex presents a promising new therapeutic avenue for PDAC treatment.
Collapse
Affiliation(s)
- Yifeng Sun
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
- Beijing Tsinghua Changgung Hospital, School of Clinical MedicineTsinghua UniversityBeijingChina
- Department of General and Visceral SurgeryUlm University HospitalUlmGermany
| | - Yina Qiao
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
| | - Yiqi Niu
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
- Department of General and Visceral SurgeryUlm University HospitalUlmGermany
| | | | - Chao Fang
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
- Department of General and Visceral SurgeryUlm University HospitalUlmGermany
| | - Jingxiong Hu
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
- Department of General and Visceral SurgeryUlm University HospitalUlmGermany
| | - Kathleen Schuck
- Department of General and Visceral SurgeryUlm University HospitalUlmGermany
| | - Benno Traub
- Department of General and Visceral SurgeryUlm University HospitalUlmGermany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, School of Medicine and HealthyTechnical University of Munich (TUM)MunichGermany
| | - Ingrid Herr
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
| | - Christoph W. Michalski
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
| | - Bo Kong
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
| |
Collapse
|
4
|
Dabsan S, Twito G, Biadsy S, Igbaria A. Less is better: various means to reduce protein load in the endoplasmic reticulum. FEBS J 2025; 292:976-989. [PMID: 38865586 PMCID: PMC11880973 DOI: 10.1111/febs.17201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/08/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
The endoplasmic reticulum (ER) is an important organelle that controls the intracellular and extracellular environments. The ER is responsible for folding almost one-third of the total protein population in the eukaryotic cell. Disruption of ER-protein folding is associated with numerous human diseases, including metabolic disorders, neurodegenerative diseases, and cancer. During ER perturbations, the cells deploy various mechanisms to increase the ER-folding capacity and reduce ER-protein load by minimizing the number of substrates entering the ER to regain homeostasis. These mechanisms include signaling pathways, degradation mechanisms, and other processes that mediate the reflux of ER content to the cytosol. In this review, we will discuss the recent discoveries of five different ER quality control mechanisms, including the unfolded protein response (UPR), ER-associated-degradation (ERAD), pre-emptive quality control, ER-phagy and ER to cytosol signaling (ERCYS). We will discuss the roles of these processes in decreasing ER-protein load and inter-mechanism crosstalk.
Collapse
Affiliation(s)
- Salam Dabsan
- Department of Life SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Gal Twito
- Department of Life SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Suma Biadsy
- Department of Life SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Aeid Igbaria
- Department of Life SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| |
Collapse
|
5
|
Li H, Zhang Z, Shi Z, Zhou S, Nie S, Yu Y, Zhang L, Sun Y, Fang C, Hu J, Niu Y, Schuck K, Wang L, Jiang K, Lu Z, Kahlert C, Roth S, Loos M, Herr I, Sunami Y, Kleeff J, Friess H, Reichert M, Dantes Z, Zou X, Michalski CW, Shen S, Kong B. Disrupting AGR2/IGF1 paracrine and reciprocal signaling for pancreatic cancer therapy. Cell Rep Med 2025; 6:101927. [PMID: 39914384 PMCID: PMC11866503 DOI: 10.1016/j.xcrm.2024.101927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/06/2024] [Accepted: 12/30/2024] [Indexed: 02/21/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly aggressive and characterized by pronounced desmoplasia. PDAC cells communicate with cancer-associated fibroblasts (CAFs) in a paracrine/reciprocal manner, substantially promoting tumor growth and desmoplastic responses. This study highlights the critical role of anterior gradient 2 (AGR2), an endoplasmic reticulum protein disulfide isomerase, secreted by PDAC cells to activate CAFs via the Wnt signaling pathway. Activated CAFs, in turn, secrete insulin-like growth factor 1 (IGF1), which enhances AGR2 expression and secretion in PDAC cells through the IGF1 receptor (IGF1R)/c-JUN axis. Within PDAC cells, AGR2 acts as a thioredoxin, aiding the folding and cell surface presentation of IGF1R, essential for PDAC's response to CAF-derived IGF1. This reciprocal AGR2/IGF1 signaling loop intensifies desmoplasia, immunosuppression, and tumorigenesis, creating a harmful feedback loop. Targeting both pathways disrupts this interaction, reduces desmoplasia, and restores anti-tumor immunity in preclinical models, offering a promising therapeutic strategy against PDAC.
Collapse
Affiliation(s)
- Hongzhen Li
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Zhiheng Zhang
- Department of Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany; Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhao Shi
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Siqi Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Shuang Nie
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Yuanyuan Yu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Lingling Zhang
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Yifeng Sun
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Chao Fang
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Jingxiong Hu
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Yiqi Niu
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Kathleen Schuck
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zipeng Lu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Christoph Kahlert
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Susanne Roth
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Martin Loos
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Ingrid Herr
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jörg Kleeff
- Department of Visceral, Vascular and Endocrine Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Maximilian Reichert
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Zahra Dantes
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Christoph W Michalski
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Shanshan Shen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Bo Kong
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
6
|
Shi F, Ergashev A, Pan Z, Sun H, Kong L, Jin Y, Zhang T, Liu Z, Xie H, Wang J, Li H, Wang Y, Zheng L, Shen J, Herrmann A, Chen G, Kong H. Macrophage-mimicking nanotherapy for attenuation of acute pancreatitis. Mater Today Bio 2025; 30:101406. [PMID: 39816666 PMCID: PMC11733200 DOI: 10.1016/j.mtbio.2024.101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/29/2024] [Accepted: 12/14/2024] [Indexed: 01/18/2025] Open
Abstract
Acute pancreatitis (AP) is a highly fatal pancreatic inflammation. In recent years, synthetic nanoparticles have been extensively developed as drug carriers to address the challenges of systemic adverse reactions and lack of specificity in drug delivery. However, systemically administered nanoparticle therapy is rapidly cleared from circulation by the mononuclear phagocyte system (MPS), leading to suboptimal drug concentrations in inflamed tissues and suboptimal pharmacokinetics. To address this challenge, we herein demonstrate a surface masking strategy that involves coating the surface of selenylated Poria cocos polysaccharide nanoparticles with a layer of macrophage plasma membrane to circumvent MPS sequestration, thereby enhancing the therapeutic efficacy of selenylated Poria cocos polysaccharide nanoparticles. Nanoparticles encapsulated with macrophage membranes can simulate the active homing efficacy of macrophages to inflamed lesions during AP, resulting in excessive infiltration of macrophages in pancreatic inflammation sites and prolonged tissue retention time. This technique converts non-adhesive lipid nanoparticles into bioadhesive nanoparticles, increasing local tissue accumulation under inflammatory conditions, including the pancreas and vulnerable lungs. The mechanism is related to targeting pro-inflammatory macrophages. In murine models of mild and severe AP, intravenous treatment with macrophage-mimicking nanoparticles effectively reduces systemic inflammation level and diminishes the recruitment of macrophages and neutrophils. Mechanistic studies elucidate that macrophage membrane-biomimetic selenylated Poria cocos polysaccharide nanoparticles primarily mitigate pancreatic inflammation by inhibiting the AKT/mTOR pathway to reverse autophagic flux impairment. This allows us to envision that the developed biomimetic nanotherapy approach could potentially serve as a novel strategy for pancreatic drug therapy.
Collapse
Affiliation(s)
- Fengyu Shi
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Akmal Ergashev
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Zhenyan Pan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Hongwei Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Lingming Kong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Yuepeng Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Tan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Zhu Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Haonan Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Jinhui Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Huiping Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, China
| | - Lifei Zheng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Andreas Herrmann
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
- DWI – Leibniz-Institute for Interactive Materials, Aachen, 52056, Germany
- Institute for Technical and Macromolecular Chemistry, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, 52074, Germany
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Hongru Kong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
7
|
Zheng C, Wang J, Wang J, Zhang Q, Liang T. Cell of Origin of Pancreatic cancer: Novel Findings and Current Understanding. Pancreas 2024; 53:e288-e297. [PMID: 38277420 PMCID: PMC11882172 DOI: 10.1097/mpa.0000000000002301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/08/2023] [Indexed: 01/28/2024]
Abstract
ABSTRACT Pancreatic ductal adenocarcinoma (PDAC) stands as one of the most lethal diseases globally, boasting a grim 5-year survival prognosis. The origin cell and the molecular signaling pathways that drive PDAC progression are not entirely understood. This review comprehensively outlines the categorization of PDAC and its precursor lesions, expounds on the creation and utility of genetically engineered mouse models used in PDAC research, compiles a roster of commonly used markers for pancreatic progenitors, duct cells, and acinar cells, and briefly addresses the mechanisms involved in the progression of PDAC. We acknowledge the value of precise markers and suitable tracing tools to discern the cell of origin, as it can facilitate the creation of more effective models for PDAC exploration. These conclusions shed light on our existing understanding of foundational genetically engineered mouse models and focus on the origin and development of PDAC.
Collapse
Affiliation(s)
- Chenlei Zheng
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
| | - Jianing Wang
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
| | - Junli Wang
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
| | - Qi Zhang
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province
- Zhejiang University Cancer Center, Hangzhou, China
| | - Tingbo Liang
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province
- Zhejiang University Cancer Center, Hangzhou, China
| |
Collapse
|
8
|
Zhang Z, Song B, Wei H, Liu Y, Zhang W, Yang Y, Sun B. NDRG1 overcomes resistance to immunotherapy of pancreatic ductal adenocarcinoma through inhibiting ATG9A-dependent degradation of MHC-1. Drug Resist Updat 2024; 73:101040. [PMID: 38228036 DOI: 10.1016/j.drup.2023.101040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/18/2024]
Abstract
AIMS Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease that is resistant to immune checkpoint blockade (ICB) therapies. Emerging evidence suggests that NDRG1 may be an important target for the development of new therapies for PDAC. Herein, we investigated the novel roles of NDRG1 and Combretastatin A-4 (CA-4) in the treatment of PDAC ICB resistance. METHODS Enrichment of MHC class I was detected by RNA sequence and verified by RT-qPCR and immunoblotting in NDRG1-knockdown human pancreatic cancer cell lines. The protein degradation mode was found by stimulation with various inhibitors, and the autophagy degradation pathway was found by immunoprecipitation and immunolocalization. The roles of NDRG1 and MHC-I in immunotherapy were investigated by orthotopic solid tumors, histology, immunohistochemistry, multiplex immunofluorescence staining and flow cytometry. RESULTS Here, we identified a previously undescribed role of NDRG1 in activating major histocompatibility complex class 1 (MHC-1) expression in pancreatic ductal adenocarcinoma (PDAC) cells through lysosomal-autophagy-dependent degradation. In mouse models of PDAC, either tumor cell overexpression or pharmacologic activation of NDRG1 leads to MHC-1 upregulation in tumor cells, which in turn promotes the infiltration and activity of CD8 + T cells, enhances anti-tumor immunity, and overcomes resistance to ICB therapy. Moreover, combination therapy of CA-4 and ICB overcomes the drug resistance of pancreatic cancer to ICB therapy. In PDAC patients, NDRG1 expression correlates with high MHC-1 expression and better survival. CONCLUSION Our results reveal NDRG1 in PDAC cancer cells as a tumor suppressor and suggest that pharmaceutically targeting NDRG1 is a promising way to overcome pancreatic cancer resistance to immunotherapy and provides a potential therapeutic strategy for the treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Zhiheng Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China; Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, Jiangsu, China
| | - Bojiao Song
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Haowei Wei
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, Jiangsu, China
| | - Yang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjie Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Yuhong Yang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
9
|
Nishimon R, Yoshida K, Sanuki F, Nakashima Y, Miyake T, Sato T, Tomiyama Y, Nishina S, Moriya T, Shiotani A, Hino K. Pancreatic ductal adenocarcinoma with acinar-to-ductal metaplasia-like cancer cells shows increased cellular proliferation. Pancreatology 2023; 23:811-817. [PMID: 37659916 DOI: 10.1016/j.pan.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/09/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND/OBJECTIVES Acinar-to-ductal metaplasia (ADM) has been shown to contribute to the development of pancreatic ductal adenocarcinoma (PDAC) in genetically engineered mouse models, but little is known about whether acinar cell plasticity contributes to carcinogenesis in human PDAC. We aimed to assess whether cancer cells that stain positive for amylase and CK19 (ADM-like cancer cells) are present in human resected PDAC and to investigate their role in tumor progression. METHODS We immunohistochemically investigated the presence of ADM-like cancer cells, and compared the clinical and histological parameters of PDAC patients with and without ADM-like cancer cells. RESULTS ADM-like cancer cells were detected in 16 of 60 (26.7%) PDAC specimens. Positive staining for anterior gradient protein 2 (AGR2) was observed in 14 of 16 (87.5%) PDAC specimens with ADM-like cancer cells. On the other hand, the intensity of AGR2 expression (negative, low/moderate or high) was lower in PDAC with ADM-like cancer cells (9/7) than in PDAC without these cells (11/33) (P = 0.032). The presence of ADM-like cancer cells was significantly correlated with increased cell proliferation (P = 0.012) and tended to be associated with MUC1 expression (P = 0.067). CONCLUSIONS These results indicated that acinar cells may act as the origin of human PDAC, and that their presence may be useful for the stratification of human PDAC to predict prognosis.
Collapse
Affiliation(s)
- Reiji Nishimon
- Department of Gastroenterology and Hepatology, Kawasaki Medical School, Kurashiki, Japan
| | - Koji Yoshida
- Department of Gastroenterology and Hepatology, Kawasaki Medical School, Kurashiki, Japan
| | - Fumiaki Sanuki
- Department of Pathology, Kawasaki Medical School, Kurashiki, Japan
| | - Yoshihiro Nakashima
- Department of Gastroenterology and Hepatology, Kawasaki Medical School, Kurashiki, Japan
| | - Tomoo Miyake
- Department of Gastroenterology and Hepatology, Kawasaki Medical School, Kurashiki, Japan
| | - Tatsuki Sato
- Department of Gastroenterology and Hepatology, Kawasaki Medical School, Kurashiki, Japan
| | - Yasuyuki Tomiyama
- Department of Gastroenterology and Hepatology, Kawasaki Medical School, Kurashiki, Japan
| | - Sohji Nishina
- Department of Gastroenterology and Hepatology, Kawasaki Medical School, Kurashiki, Japan
| | - Takuya Moriya
- Department of Pathology, Kawasaki Medical School, Kurashiki, Japan
| | - Akiko Shiotani
- Department of Gastroenterology and Hepatology, Kawasaki Medical School, Kurashiki, Japan
| | - Keisuke Hino
- Department of Gastroenterology and Hepatology, Kawasaki Medical School, Kurashiki, Japan.
| |
Collapse
|
10
|
Wang Z, Li Y, Zhao W, Jiang S, Huang Y, Hou J, Zhang X, Zhai Z, Yang C, Wang J, Zhu J, Pan J, Jiang W, Li Z, Ye M, Tan M, Jiang H, Dang Y. Integrative multi-omics and drug-response characterization of patient-derived prostate cancer primary cells. Signal Transduct Target Ther 2023; 8:175. [PMID: 37121942 PMCID: PMC10149505 DOI: 10.1038/s41392-023-01393-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 05/02/2023] Open
Abstract
Prostate cancer (PCa) is the second most prevalent malignancy in males across the world. A greater knowledge of the relationship between protein abundance and drug responses would benefit precision treatment for PCa. Herein, we establish 35 Chinese PCa primary cell models to capture specific characteristics among PCa patients, including gene mutations, mRNA/protein/surface protein distributions, and pharmaceutical responses. The multi-omics analyses identify Anterior Gradient 2 (AGR2) as a pre-operative prognostic biomarker in PCa. Through the drug library screening, we describe crizotinib as a selective compound for malignant PCa primary cells. We further perform the pharmacoproteome analysis and identify 14,372 significant protein-drug correlations. Surprisingly, the diminished AGR2 enhances the inhibition activity of crizotinib via ALK/c-MET-AKT axis activation which is validated by PC3 and xenograft model. Our integrated multi-omics approach yields a comprehensive understanding of PCa biomarkers and pharmacological responses, allowing for more precise diagnosis and therapies.
Collapse
Affiliation(s)
- Ziruoyu Wang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Yanan Li
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Wensi Zhao
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shuai Jiang
- Department of Urology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
- Department of Urology, Zhongshan Hospital Wusong Branch, Fudan University, 200032, Shanghai, China
| | - Yuqi Huang
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jun Hou
- Department of Urology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Xuelu Zhang
- Center for Novel Target and Therapeutic Intervention, Chongqing Medical University, 400016, Chongqing, China
| | - Zhaoyu Zhai
- Center for Novel Target and Therapeutic Intervention, Chongqing Medical University, 400016, Chongqing, China
| | - Chen Yang
- Department of Urology, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Jiaqi Wang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Jiying Zhu
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Jianbo Pan
- Center for Novel Target and Therapeutic Intervention, Chongqing Medical University, 400016, Chongqing, China
| | - Wei Jiang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Zengxia Li
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Mingliang Ye
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
| | - Minjia Tan
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Yongjun Dang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
- Center for Novel Target and Therapeutic Intervention, Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|
11
|
Zhang K, Li Y, Kong X, Lei C, Yang H, Wang N, Wang Z, Chang H, Xuan L. AGR2: a secreted protein worthy of attention in diagnosis and treatment of breast cancer. Front Oncol 2023; 13:1195885. [PMID: 37197416 PMCID: PMC10183570 DOI: 10.3389/fonc.2023.1195885] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023] Open
Abstract
AGR2 is a secreted protein widely existing in breast. In precancerous lesions, primary tumors and metastatic tumors, the expression of AGR2 is increased, which has aroused our interest. This review introduces the gene and protein structure of AGR2. Its endoplasmic reticulum retention sequence, protein disulfide isomerase active site and multiple protein binding sequences endow AGR2 with diverse functions inside and outside breast cancer cells. This review also enumerates the role of AGR2 in the progress and prognosis of breast cancer, and emphasizes that AGR2 can be a promising biomarker and a target for immunotherapy of breast cancer, providing new ideas for early diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Li
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuqi Lei
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huaiyu Yang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nianchang Wang
- Department of Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhongzhao Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Zhongzhao Wang, ; Hu Chang, ; Lixue Xuan,
| | - Hu Chang
- Administration Office, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Zhongzhao Wang, ; Hu Chang, ; Lixue Xuan,
| | - Lixue Xuan
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Zhongzhao Wang, ; Hu Chang, ; Lixue Xuan,
| |
Collapse
|
12
|
Hussein D, Alsereihi R, Salwati AAA, Algehani R, Alhowity A, Al-Hejin AM, Schulten HJ, Baeesa S, Bangash M, Alghamdi F, Cross R, Al Zughaibi T, Saka M, Chaudhary A, Abuzenadah A. The anterior gradient homologue 2 (AGR2) co-localises with the glucose-regulated protein 78 (GRP78) in cancer stem cells, and is critical for the survival and drug resistance of recurrent glioblastoma: in situ and in vitro analyses. Cancer Cell Int 2022; 22:387. [PMID: 36482387 PMCID: PMC9730595 DOI: 10.1186/s12935-022-02814-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Glioblastomas (GBs) are characterised as one of the most aggressive primary central nervous system tumours (CNSTs). Single-cell sequencing analysis identified the presence of a highly heterogeneous population of cancer stem cells (CSCs). The proteins anterior gradient homologue 2 (AGR2) and glucose-regulated protein 78 (GRP78) are known to play critical roles in regulating unfolded protein response (UPR) machinery. The UPR machinery influences cell survival, migration, invasion and drug resistance. Hence, we investigated the role of AGR2 in drug-resistant recurrent glioblastoma cells. METHODS Immunofluorescence, biological assessments and whole exome sequencing analyses were completed under in situ and in vitro conditions. Cells were treated with CNSTs clinical/preclinical drugs taxol, cisplatin, irinotecan, MCK8866, etoposide, and temozolomide, then resistant cells were analysed for the expression of AGR2. AGR2 was repressed using single and double siRNA transfections and combined with either temozolomide or irinotecan. RESULTS Genomic and biological characterisations of the AGR2-expressed Jed66_GB and Jed41_GB recurrent glioblastoma tissues and cell lines showed features consistent with glioblastoma. Immunofluorescence data indicated that AGR2 co-localised with the UPR marker GRP78 in both the tissue and their corresponding primary cell lines. AGR2 and GRP78 were highly expressed in glioblastoma CSCs. Following treatment with the aforementioned drugs, all drug-surviving cells showed high expression of AGR2. Prolonged siRNA repression of a particular region in AGR2 exon 2 reduced AGR2 protein expression and led to lower cell densities in both cell lines. Co-treatments using AGR2 exon 2B siRNA in conjunction with temozolomide or irinotecan had partially synergistic effects. The slight reduction of AGR2 expression increased nuclear Caspase-3 activation in both cell lines and caused multinucleation in the Jed66_GB cell line. CONCLUSIONS AGR2 is highly expressed in UPR-active CSCs and drug-resistant GB cells, and its repression leads to apoptosis, via multiple pathways.
Collapse
Affiliation(s)
- Deema Hussein
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Reem Alsereihi
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 80203, Jeddah, 21589 Saudi Arabia ,College of Health Sciences, Al-Rayan Colleges, 41411, Madinah AL-Munawarah, Saudi Arabia
| | - Abdulla Ahmed A. Salwati
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia
| | - Rinad Algehani
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia
| | - Alazouf Alhowity
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia
| | - Ahmed M. Al-Hejin
- grid.412125.10000 0001 0619 1117Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 80203, Jeddah, 21589 Saudi Arabia
| | - Hans-Juergen Schulten
- grid.412125.10000 0001 0619 1117Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Saleh Baeesa
- grid.412125.10000 0001 0619 1117Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Mohammed Bangash
- grid.412125.10000 0001 0619 1117Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Fahad Alghamdi
- grid.412125.10000 0001 0619 1117Pathology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Richard Cross
- grid.48815.300000 0001 2153 2936School of Engineering and Sustainable Development, Emerging Technologies Research Centre (EMTERC), De Montfort University, The Gateway, Leicester, LE1 9BH UK
| | - Torki Al Zughaibi
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Mohamad Saka
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Adeel Chaudhary
- grid.412125.10000 0001 0619 1117Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Adel Abuzenadah
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
13
|
Kawata-Shimamura Y, Eguchi H, Kawabata-Iwakawa R, Nakahira M, Okazaki Y, Yoda T, Grénman R, Sugasawa M, Nishiyama M. Biomarker discovery for practice of precision medicine in hypopharyngeal cancer: a theranostic study on response prediction of the key therapeutic agents. BMC Cancer 2022; 22:779. [PMID: 35841085 PMCID: PMC9288037 DOI: 10.1186/s12885-022-09853-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypopharyngeal cancer is a relatively rare malignancy with poor prognosis. Current chemotherapeutic algorithm is still far from personalized medicine, and the identification of the truly active therapeutic biomarkers and/or targets is eagerly awaited. METHODS Venturing to focus on the conventional key chemotherapeutic drugs, we identified the most correlative genes (and/or proteins) with cellular sensitivity to docetaxel (TXT), cisplatin (CDDP) and 5-fluorouracil (5-FU) in the expression levels, through 3 steps approach: genome-wide screening, confirmation study on the quantified expression levels, and knock-down and transfection analyses of the candidates. The probable action pathways of selected genes were examined by Ingenuity Pathway Analysis using a large-scale database, The Cancer Genome Atlas. RESULTS The first genome-wide screening study derived 16 highly correlative genes with cellular drug sensitivity in 15 cell lines (|R| > 0.8, P < 0.01 for CDDP and 5-FU; |R| > 0.5, P < 0.05 for TXT). Among 10 genes the observed correlations were confirmed in the quantified gene expression levels, and finally knock-down and transfection analyses provided 4 molecules as the most potent predictive markers-AGR2 (anterior gradient 2 homolog gene), and PDE4D (phosphodiesterase 4D, cAMP-specific gene) for TXT; NINJ2 (nerve Injury-induced protein 2); CDC25B (cell division cycle 25 homolog B gene) for 5-FU- in both gene and protein expression levels. Overexpression of AGR2, PDE4D signified worse response to TXT, and the repressed expression sensitized TXT activity. Contrary to the findings, in the other 2 molecules, NINJ2 and CDC25, there observed opposite relationship to cellular drug response to the relevant drugs. IPA raised the potential that each selected molecule functionally interacts with main action pathway (and/or targets) of the relevant drug such as tubulin β chain genes for TXT, DNA replication pathway for CDDP, and DNA synthesis pathway and thymidylate synthetase gene for 5-FU. CONCLUSION We newly propose 4 molecules -AGR2, PDE4D,NINJ2 and CDC25B) as the powerful exploratory markers for prediction of cellular response to 3 key chemotherapeutic drugs in hypopharyngeal cancers and also suggest their potentials to be the therapeutic targets, which could contribute to the development of precision medicine of the essential chemotherapy in hypopharyngeal patients. (339 words).
Collapse
Affiliation(s)
- Yumiko Kawata-Shimamura
- Department of Head and Neck Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan.,Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan.,Department of Oral Surgery, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Hidetaka Eguchi
- Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan.,Intractable Disease Research Center, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Mitsuhiko Nakahira
- Department of Head and Neck Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Yasushi Okazaki
- Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan.,Intractable Disease Research Center, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tetsuya Yoda
- Department of Oral Surgery, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan.,Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Reidar Grénman
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Turku and Turku University Hospital, PO Box 52, 20521, Turku, Finland
| | - Masashi Sugasawa
- Department of Head and Neck Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Masahiko Nishiyama
- Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan. .,Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan. .,Higashi Sapporo Hospital, 7-35, 3-3 Higashi-Sapporo, Shiroishi-ku, Sapporo, 003-8585, Japan.
| |
Collapse
|
14
|
Ding L, Roeck K, Zhang C, Zidek B, Rodman E, Hernandez-Barco Y, Zhang JS, Bamlet W, Oberg A, Zhang L, Bardeesy N, Li H, Billadeau D. Nuclear GSK-3β and Oncogenic KRas Lead to the Retention of Pancreatic Ductal Progenitor Cells Phenotypically Similar to Those Seen in IPMN. Front Cell Dev Biol 2022; 10:853003. [PMID: 35646902 PMCID: PMC9136019 DOI: 10.3389/fcell.2022.853003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Glycogen synthase kinase-3β (GSK-3β) is a downstream target of oncogenic KRas and can accumulate in the nucleus in pancreatic ductal adenocarcinoma (PDA). To determine the interplay between oncogenic KRas and nuclear GSK-3β in PDA development, we generated Lox-STOP-Lox (LSL) nuclear-targeted GSK-3β animals and crossed them with LSL-KRasG12D mice under the control of the Pdx1-cre transgene—referred to as KNGC. Interestingly, 4-week-old KNGC animals show a profound loss of acinar cells, the expansion of ductal cells, and the rapid development of cystic-like lesions reminiscent of intraductal papillary mucinous neoplasm (IPMN). RNA-sequencing identified the expression of several ductal cell lineage genes including AQP5. Significantly, the Aqp5+ ductal cell pool was proliferative, phenotypically distinct from quiescent pancreatic ductal cells, and deletion of AQP5 limited expansion of the ductal pool. Aqp5 is also highly expressed in human IPMN along with GSK-3β highlighting the putative role of Aqp5+ ductal cells in human preneoplastic lesion development. Altogether, these data identify nGSK-3β and KRasG12D as an important signaling node promoting the retention of pancreatic ductal progenitor cells, which could be used to further characterize pancreatic ductal development as well as lineage biomarkers related to IPMN and PDA.
Collapse
Affiliation(s)
- Li Ding
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Li Ding, ; Daniel Billadeau,
| | - Kaely Roeck
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Cheng Zhang
- Department of Molecular and Experimental Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Brooke Zidek
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Esther Rodman
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | | | - Jin-San Zhang
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Precision Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - William Bamlet
- Department of Health Sciences Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ann Oberg
- Department of Health Sciences Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Lizhi Zhang
- Department of Laboratory Medicine and Pathology, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Nabeel Bardeesy
- Center for Cancer Research, Harvard Medical School, Boston, MA, United States
| | - Hu Li
- Department of Molecular and Experimental Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Daniel Billadeau
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Li Ding, ; Daniel Billadeau,
| |
Collapse
|
15
|
Murray ER, Menezes S, Henry JC, Williams JL, Alba-Castellón L, Baskaran P, Quétier I, Desai A, Marshall JJT, Rosewell I, Tatari M, Rajeeve V, Khan F, Wang J, Kotantaki P, Tyler EJ, Singh N, Reader CS, Carter EP, Hodivala-Dilke K, Grose RP, Kocher HM, Gavara N, Pearce O, Cutillas P, Marshall JF, Cameron AJM. Disruption of pancreatic stellate cell myofibroblast phenotype promotes pancreatic tumor invasion. Cell Rep 2022; 38:110227. [PMID: 35081338 PMCID: PMC8810397 DOI: 10.1016/j.celrep.2021.110227] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
In pancreatic ductal adenocarcinoma (PDAC), differentiation of pancreatic stellate cells (PSCs) into myofibroblast-like cancer-associated fibroblasts (CAFs) can both promote and suppress tumor progression. Here, we show that the Rho effector protein kinase N2 (PKN2) is critical for PSC myofibroblast differentiation. Loss of PKN2 is associated with reduced PSC proliferation, contractility, and alpha-smooth muscle actin (α-SMA) stress fibers. In spheroid co-cultures with PDAC cells, loss of PKN2 prevents PSC invasion but, counter-intuitively, promotes invasive cancer cell outgrowth. PKN2 deletion induces a myofibroblast to inflammatory CAF switch in the PSC matrisome signature both in vitro and in vivo. Further, deletion of PKN2 in the pancreatic stroma induces more locally invasive, orthotopic pancreatic tumors. Finally, we demonstrate that a PKN2KO matrisome signature predicts poor outcome in pancreatic and other solid human cancers. Our data indicate that suppressing PSC myofibroblast function can limit important stromal tumor-suppressive mechanisms, while promoting a switch to a cancer-supporting CAF phenotype.
Collapse
Affiliation(s)
- Elizabeth R Murray
- Kinase Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Shinelle Menezes
- Kinase Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Jack C Henry
- Kinase Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Josie L Williams
- Kinase Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Lorena Alba-Castellón
- Kinase Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Priththivika Baskaran
- Kinase Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Ivan Quétier
- Kinase Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Ami Desai
- Kinase Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Jacqueline J T Marshall
- Protein Phosphorylation Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ian Rosewell
- Transgenic Services, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Marianthi Tatari
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Vinothini Rajeeve
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Faraz Khan
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Jun Wang
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Panoraia Kotantaki
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Eleanor J Tyler
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Namrata Singh
- Kinase Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Claire S Reader
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Edward P Carter
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Richard P Grose
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Hemant M Kocher
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK; Barts and the London HPB Centre, The Royal London Hospital, Barts Health NHS Trust, Whitechapel, London E1 1BB, UK
| | - Nuria Gavara
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Oliver Pearce
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Pedro Cutillas
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - John F Marshall
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Angus J M Cameron
- Kinase Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|