1
|
Deleu S, Becherucci G, Godny L, Mentella MC, Petito V, Scaldaferri F. The Key Nutrients in the Mediterranean Diet and Their Effects in Inflammatory Bowel Disease: A Narrative Review. Nutrients 2024; 16:4201. [PMID: 39683595 DOI: 10.3390/nu16234201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The gut microbiome, a collection of gut microorganisms, is crucial in the development and progression of inflammatory bowel diseases (IBD). Therefore, diet and dietary interventions are promising strategies to shape the gut microbiota for IBD management. Of all the diets studied in the IBD field, the Mediterranean diet has the least restrictive nature, promoting long-term adherence. The Mediterranean diet is rich in plants, with a high daily intake of fruits and vegetables (high in fiber, antioxidants, and vitamins), olive oil, whole grains, legumes, and nuts. It includes the moderate consumption of animal products such as oily fish (rich in mono- and polyunsaturated fatty acids), dairy products, and poultry, with a limited intake of red meat and processed foods. This diet is associated with a decreased risk of chronic diseases, including IBD. However, the mechanisms of specific nutrients behind these effects in the Mediterranean diet remain under investigation. Therefore, in this review, we aim to provide an overview of the nutrients that are abundant in the Mediterranean diet and their effects on IBD, with a main focus on preclinical evidence. While several nutrients like fructo-oligosaccharide, chitosan, plant-derived protein, polyphenols, omega-3 polyunsaturated fatty acids, and resveratrol have shown potential beneficial effects in preclinical models, clinical evidence is often limited. However, understanding the complex interactions between specific nutrients and IBD is essential to developing a tailored, multidisciplinary, and personalized approach for disease management; therefore, further research is required.
Collapse
Affiliation(s)
- Sara Deleu
- CEMAD Translational Research Laboratories, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Guia Becherucci
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lihi Godny
- Division of Gastroenterology and Nutrition Unit, Rabin Medical Center, Petah-Tikva 49100, Israel
| | - Maria Chiara Mentella
- UOC di Nutrizione Clinica, Dipartimento Scienze Mediche e Chirurgiche Addominali ed Endocrino-Metaboliche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Valentina Petito
- CEMAD Translational Research Laboratories, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Franco Scaldaferri
- CEMAD Translational Research Laboratories, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
2
|
Chen X, Xu D, Yu J, Song XJ, Li X, Cui YL. Tryptophan Metabolism Disorder-Triggered Diseases, Mechanisms, and Therapeutic Strategies: A Scientometric Review. Nutrients 2024; 16:3380. [PMID: 39408347 PMCID: PMC11478743 DOI: 10.3390/nu16193380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Tryptophan is widely present in foods such as peanuts, milk, and bananas, playing a crucial role in maintaining metabolic homeostasis in health and disease. Tryptophan metabolism is involved in the development and progression of immune, nervous, and digestive system diseases. Although some excellent reviews on tryptophan metabolism exist, there has been no systematic scientometric study as of yet. METHODS This review provides and summarizes research hotspots and potential future directions by analyzing annual publications, topics, keywords, and highly cited papers sourced from Web of Science spanning 1964 to 2022. RESULTS This review provides a scientometric overview of tryptophan metabolism disorder-triggered diseases, mechanisms, and therapeutic strategies. CONCLUSIONS The gut microbiota regulates gut permeability, inflammation, and host immunity by directly converting tryptophan to indole and its derivatives. Gut microbial metabolites regulate tryptophan metabolism by activating specific receptors or enzymes. Additionally, the kynurenine (KYN) pathway, activated by indoleamine-2, 3-dioxygenase (IDO) and tryptophan 2, 3-dioxygenase, affects the migration and invasion of glioma cells and the development of COVID-19 and depression. The research and development of IDO inhibitors help to improve the effectiveness of immunotherapy. Tryptophan metabolites as potential markers are used for disease therapy, guiding clinical decision-making. Tryptophan metabolites serve as targets to provide a new promising strategy for neuroprotective/neurotoxic imbalance affecting brain structure and function. In summary, this review provides valuable guidance for the basic research and clinical application of tryptophan metabolism.
Collapse
Affiliation(s)
- Xue Chen
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dong Xu
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jie Yu
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xu-Jiao Song
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xue Li
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuan-Lu Cui
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
3
|
Xie Y, Li X, Meng Q, Li J, Wang X, Zhu L, Wang W, Li X. Interplay between gut microbiota and tryptophan metabolism in type 2 diabetic mice treated with metformin. Microbiol Spectr 2024; 12:e0029124. [PMID: 39162538 PMCID: PMC11448047 DOI: 10.1128/spectrum.00291-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/13/2024] [Indexed: 08/21/2024] Open
Abstract
Tryptophan (TRP) metabolites have been identified as potent biomarkers for complications of type 2 diabetes mellitus (T2DM). However, it remains unclear whether the therapeutic effect of metformin in T2DM is related to the modulation of TRP metabolic pathway. This study aims to investigate whether metformin affects TRP metabolism in T2DM mice through the gut microbiota. A liquid chromatography-tandem mass spectrometry method was established to determine 16 TRP metabolites in the serum, colon content, urine, and feces of T2DM mice, and the correlations between metabolites and the T2DM mice gut microbiota were performed. The method demonstrated acceptable linearity (R2 > 0.996), with the limit of quantification ranging from 0.29 to 69.444 nmol/L for 16 analytes, and the limit of detection ranging from 0.087 to 20.833 nmol/L. In T2DM mice, metformin treatment effectively restored levels of indole-3-lactic acid (ILA), indole-3-propionic acid (IPA), and the ILA/IPA ratio, along with several aryl hydrocarbon receptor ligands in the serum, with a notable impact in the colon but not in the urine. This restoration was accompanied by a shift in the relative abundance of Dubosiella, Turicibacter, RF39, Clostridia_UCG-014, and Alistipes. Spearman's correlation analysis revealed positive correlations between Turicibacter and Alistipes with IPA and indole-3-acetic acid. Conversely, these genera displayed negative correlations with ILA and kynurenine. In addition, our study revealed the presence of endogenous indole pathway in germ-free mice, and the impact of metformin on endogenous TRP metabolism in T2DM mice cannot be disregarded. Further research is needed to investigate the regulation of TRP metabolism by metformin. IMPORTANCE This study provides valuable insights into the interrelationship between metformin administration, changes in the tryptophan (TRP) metabolome, and gut microbiota in type 2 diabetes mellitus (T2DM) mice. Indole-3-lactic acid (ILA)/indole-3-propionic acid (IPA) emerges as a potential biomarker for the development of T2DM and prediction of therapeutic response. While the indole metabolic pathway has long been associated exclusively with the gut microbiome, recent research has demonstrated the ability of host interleukin-4-induced-1 to metabolize TRP. The detection of indole derivatives in the serum of germ-free mice suggests the existence of inherent endogenous indole metabolic pathways. These findings deepen our understanding of metformin's efficacy in correcting TRP metabolic disorders and provide valuable directions for further investigation. Moreover, this knowledge may pave the way for the development of targeted treatment strategies for T2DM, focusing on the gut microbiome and restoration of associated TRP metabolism.
Collapse
Affiliation(s)
- Yvhao Xie
- College of Animal Science, Shanxi Agricultural University, Taigu, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Food Sciences Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xinxin Li
- College of Animal Science, Shanxi Agricultural University, Taigu, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Food Sciences Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qingshi Meng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Food Sciences Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Food Sciences Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Liying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Food Sciences Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weiwei Wang
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Xiaoqiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Food Sciences Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
4
|
Xie J, Li L, Xing H. Metabolomics in gestational diabetes mellitus: A review. Clin Chim Acta 2023; 539:134-143. [PMID: 36529269 DOI: 10.1016/j.cca.2022.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Gestational diabetes mellitus (GDM), a common complication of pregnancy, is a type of diabetes that is first detected and diagnosed during pregnancy. The incidence of GDM is increasing annually and is associated with many adverse pregnancy outcomes. Early prediction of the risk of GDM and intervention are thus important to reduce adverse pregnancy outcomes. Studies have revealed a correlation between the levels of amino acids, fatty acids, triglycerides, and other metabolites in early pregnancy and the occurrence of GDM. The development of high-throughput technologies used in metabolomics has enabled the detection of changes in the levels of small-molecule metabolites during early pregnancy, which can help reflect the overall physiological and pathological status of the body and explore the underlying mechanisms of the development of GDM. This review sought to summarize current research in this field and provide data for the development of strategies to manage GDM.
Collapse
Affiliation(s)
- Jiewen Xie
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Ling Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Haoyue Xing
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China.
| |
Collapse
|
5
|
Imamdin A, van der Vorst EPC. Exploring the Role of Serotonin as an Immune Modulatory Component in Cardiovascular Diseases. Int J Mol Sci 2023; 24:1549. [PMID: 36675065 PMCID: PMC9861641 DOI: 10.3390/ijms24021549] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/24/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Serotonin, also known as 5-hydroxytryptamine (5-HT) is a well-known neurotransmitter in the central nervous system (CNS), but also plays a significant role in peripheral tissues. There is a growing body of evidence suggesting that serotonin influences immune cell responses and contributes to the development of pathological injury in cardiovascular diseases, such as atherosclerosis, as well as other diseases which occur as a result of immune hyperactivity. In particular, high levels of serotonin are able to activate a multitude of 5-HT receptors found on the surface of immune cells, thereby influencing the process of atherosclerotic plaque formation in arteries. In this review, we will discuss the differences between serotonin production in the CNS and the periphery, and will give a brief outline of the function of serotonin in the periphery. In this context, we will particularly focus on the effects of serotonin on immune cells related to atherosclerosis and identify caveats that are important for future research.
Collapse
Affiliation(s)
- Aqeela Imamdin
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), 80336 Munich, Germany
| |
Collapse
|