1
|
Yu B, Ma W. Biomarker discovery in hepatocellular carcinoma (HCC) for personalized treatment and enhanced prognosis. Cytokine Growth Factor Rev 2024; 79:29-38. [PMID: 39191624 DOI: 10.1016/j.cytogfr.2024.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Hepatocellular carcinoma (HCC) is a leading contributor to cancer-related deaths worldwide and presents significant challenges in diagnosis and treatment due to its heterogeneous nature. The discovery of biomarkers has become crucial in addressing these challenges, promising early detection, precise diagnosis, and personalized treatment plans. Key biomarkers, such as alpha fetoprotein (AFP) glypican 3 (GPC3) and des gamma carboxy prothrombin (DCP) have shown potential in improving clinical results. Progress in proteomic technologies, including next-generation sequencing (NGS), mass spectrometry, and liquid biopsies detecting circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA), has deepened our understanding of HCC's molecular landscape. Immunological markers, like PD-L1 expression and tumor-infiltrating lymphocytes (TILs), also play a crucial role in guiding immunotherapy decisions. Despite these advancements, challenges remain in biomarker validation, standardization, integration into clinical practice, and cost-related barriers. Emerging technologies like single-cell sequencing and machine learning offer promising avenues for further exploration. Continued investment in research and collaboration among researchers, healthcare providers, and policymakers is vital to harness the potential of biomarkers fully, ultimately revolutionizing HCC management and improving patient outcomes through personalized treatment approaches.
Collapse
Affiliation(s)
- Baofa Yu
- Taimei Baofa Cancer Hospital, Dongping, Shandong 271500, China; Jinan Baofa Cancer Hospital, Jinan, Shandong 250000, China; Beijing Baofa Cancer Hospital, Beijing, 100010, China; Immune Oncology Systems, Inc, San Diego, CA 92102, USA.
| | - Wenxue Ma
- Department of Medicine, Sanford Stem Cell Institute, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
Zhao Y, Ye Z, Liu Y, Zhang J, Kuermanbayi S, Zhou Y, Guo H, Xu F, Li F. Investigating the Role of Extracellular Matrix Stiffness in Modulating the Ferroptosis Process in Hepatocellular Carcinoma Cells via Scanning Electrochemical Microscopy. Anal Chem 2024; 96:1102-1111. [PMID: 38179931 DOI: 10.1021/acs.analchem.3c03771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Extracellular matrix (ECM) stiffness modulates a variety of cellular processes, including ferroptosis, a process with significant potential implications for hepatocellular carcinoma (HCC) fibrosis and cirrhosis. However, the exact relationship between ECM stiffness and HCC ferroptosis is yet unclarified, partially due to the lack of in situ information on key parameters of the ferroptosis process of living HCC cells. This study pioneers the use of in vitro mechanical microenvironment models of HCC and the scanning electrochemical microscopy (SECM) technique for understanding this interplay. We first cultured HuH7 cells on 4.0, 18.0, and 44.0 kPa polyacrylamide (PA) gels to simulate early, intermediate, and advanced HCC ECM stiffness, respectively. Then, we used SECM to in situ monitor changes in cell membrane permeability, respiratory activity, and reactive oxygen species (ROS) levels of erastin-induced HuH7 cells on PA gels, finding that increasing ECM stiffness potentiates ferroptosis, including increased membrane permeabilization and H2O2 release as well as reduced respiratory activity. Through further transcriptome sequencing and molecular biology measurements, we identified a critical role for focal adhesion kinase (FAK)-mediated yes-associated protein (YAP) in regulating the ferroptosis process dependent on ECM stiffness, which provides novel insights into the mechanical regulation of ferroptosis in HCC cells and may pave the way for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Yuxiang Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhaoyang Ye
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yulin Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Junjie Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shuake Kuermanbayi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yan Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
3
|
Benhammou JN, Qiao B, Ko A, Sinnett-Smith J, Pisegna JR, Rozengurt E. Lipophilic statins inhibit YAP coactivator transcriptional activity in HCC cells through Rho-mediated modulation of actin cytoskeleton. Am J Physiol Gastrointest Liver Physiol 2023; 325:G239-G250. [PMID: 37366601 PMCID: PMC10511177 DOI: 10.1152/ajpgi.00089.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of liver-related death. Lipophilic statins have been associated with a decrease in HCC incidence, raising the possibility of their use as chemoprevention agents. The Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) have emerged as an important pro-oncogenic mechanism in HCC. Statins modulate YAP/TAZ in other solid tumors, but few studies have assessed their mechanisms in HCC. We aimed to delineate how lipophilic statins regulate YAP protein localization by interrogating the mevalonate pathway in a stepwise manner using pharmacological and genetical approaches in HCC cells. Huh7 and Hep3B HCC cells were treated with the lipophilic statins cerivastatin and atorvastatin. YAP protein localization was determined using quantitative immunofluorescence (IF) imaging. The gene expression of CTGF and CYR61, known YAP/TEA-domain DNA-binding factor (TEAD)-regulated genes, was measured using quantitative real-time PCR. Rescue experiments were conducted using metabolites of the mevalonate pathway including mevalonic acid and geranylgeranyl pyrophosphate (GG-PP). The cellular cytoskeleton was assessed using F-actin IF staining. YAP protein was extruded from the nucleus to the cytoplasm with statin treatment. Consistently, CTGF and CYR61 mRNA expression significantly decreased with statins. Cytoskeletal structure was also compromised with statins. Gene expression, YAP protein localization, and cytoskeletal structure were all restored to baseline with exogenous GG-PP but not with other metabolites of the mevalonate pathway. Direct Rho GTPase inhibitor treatment mirrored the statin effects on YAP. YAP protein localization is regulated by lipophilic statins via Rho GTPases, causing cytoskeletal structural changes and is independent of cholesterol metabolites.NEW & NOTEWORTHY Statins are widely used for the treatment of cardiovascular diseases. Recently, their use has been associated with a decrease in the incidence of hepatocellular carcinoma (HCC); however, their mechanism(s) has remained elusive. In this study, we delineate the mechanism by which statins affect the Yes-associated protein (YAP), which has emerged as a key oncogenic pathway in HCC. We investigate each step of the mevalonate pathway and demonstrate that statins regulate YAP via Rho GTPases.
Collapse
Affiliation(s)
- Jihane N Benhammou
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, California, United States
- Division of Gastroenterology, Hepatology and Parental Nutrition, Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, United States
| | - Bo Qiao
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, California, United States
- Division of Gastroenterology, Hepatology and Parental Nutrition, Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States
| | - Arthur Ko
- Center for Genetic Medicine Research, Childrens National Research Institute, Washington, District of Columbia, United States
| | - James Sinnett-Smith
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, California, United States
- Division of Gastroenterology, Hepatology and Parental Nutrition, Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States
| | - Joseph R Pisegna
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, California, United States
- Division of Gastroenterology, Hepatology and Parental Nutrition, Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, United States
| | - Enrique Rozengurt
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, California, United States
- Division of Gastroenterology, Hepatology and Parental Nutrition, Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, United States
| |
Collapse
|
4
|
Cholankeril G, El-Serag HB. Current Challenges and Future Direction in Surveillance for Hepatocellular Carcinoma in Patients with Nonalcoholic Fatty Liver Disease. Semin Liver Dis 2023; 43:89-99. [PMID: 36216350 DOI: 10.1055/a-1957-8540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The burden for hepatocellular carcinoma (HCC) attributed to nonalcoholic fatty liver disease (NAFLD) continues to grow in parallel with rising global trends in obesity. The risk of HCC is elevated among patients with NAFLD-related cirrhosis to a level that justifies surveillance based on cost-effectiveness argument. The quality of current evidence for HCC surveillance in all patients with chronic liver disease is poor, and even lower in those with NAFLD. For a lack of more precise risk-stratification tools, current approaches to defining a target population in noncirrhotic NAFLD are limited to noninvasive tests for liver fibrosis, as a proxy for liver-related morbidity and mortality. Beyond etiology and severity of liver disease, traditional and metabolic risk factors, such as diabetes mellitus, older age, male gender and tobacco smoking, are not enough for HCC risk stratification for surveillance efficacy and effectiveness in NAFLD. There is an association between molecular and genetic factors and HCC risk in NAFLD, and risk models integrating both clinical and genetic factors will be key to personalizing HCC risk. In this review, we discuss concerns regarding defining a target population, surveillance test accuracy, surveillance underuse, and other cost-effective considerations for HCC surveillance in individuals with NAFLD.
Collapse
Affiliation(s)
- George Cholankeril
- Department of Internal Medicine, Baylor College of Medicine, Houston, Texas
| | - Hashem B El-Serag
- Department of Internal Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|