1
|
Mercier O, Barlesi F. Precision follow-up for resected non-small-cell lung cancer: is it ready for prime time? Eur J Cardiothorac Surg 2021; 60:1232-1233. [PMID: 34347068 DOI: 10.1093/ejcts/ezab357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Olaf Mercier
- Department of Thoracic Surgery and Heart-Lung Transplantation, International Center of Thoracic Cancers, Marie Lannelongue Hospital, Université Paris-Saclay, GHPSJ, Le Plessis-Robinson, France
| | - Fabrice Barlesi
- Gustave Roussy Cancer Campus, International Center of Thoracic Cancers, Université Paris-Saclay, Villejuif, France.,Aix Marseille University, CNRS, INSERM, CRCM, Marseille, France
| |
Collapse
|
2
|
Nong L, Zhang Z, Xiong Y, Zheng Y, Li X, Li D, He Q, Li T. Comparison of next-generation sequencing and immunohistochemistry analysis for targeted therapy-related genomic status in lung cancer patients. J Thorac Dis 2019; 11:4992-5003. [PMID: 32030215 DOI: 10.21037/jtd.2019.12.25] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Some drugs that target molecular pathways are available for the targeted treatment of lung cancer. Multiple tests are needed to detect the status of the known molecular targets to determine whether the patients can respond to the drugs. An integrated platform for various gene alteration detection including both mutations and rearrangements is necessary for patients, especially those without enough tissue. Methods In our study, detections of EGFR mutations, ALK rearrangement, ROS1 rearrangement, and alterations of other nine important lung cancer-related genes were integrated into a single next-generation sequencing (NGS) platform. The NGS analysis was performed in 107 cases of non-small cell lung cancer (NSCLC). Meanwhile, hot spots such as EGFR L858R, EGFR E746-A750Del mutations and gene rearrangement of ALK and ROS1 were detected by immunohistochemical (IHC) staining. Results NGS could explore various gene mutations and gene rearrangements with a reduced experiment time and lower amounts of tumor tissues than multiple IHC staining experiments. NGS results were more informative and reliable than IHC staining for EGFR gene alterations, especially for the exon 19 region. NGS could also increase the positive rate of ALK rearrangement and decrease the false positive results of ROS1 rearrangements detected by IHC staining. Conclusions NGS is effective for confirmation the status of various important lung cancer-related gene alterations. Furthermore, NGS is necessary for the confirmation of the IHC results of ALK and ROS1 rearrangements.
Collapse
Affiliation(s)
- Lin Nong
- Department of Pathology, Peking University First Hospital, Beijing 100034, China
| | | | - Yan Xiong
- Department of Pathology, Peking University First Hospital, Beijing 100034, China
| | - Yalin Zheng
- Department of Pathology, Peking University First Hospital, Beijing 100034, China
| | - Xin Li
- Department of Pathology, Peking University First Hospital, Beijing 100034, China
| | - Dong Li
- Department of Pathology, Peking University First Hospital, Beijing 100034, China
| | - Qiye He
- Singlera Genomics Inc., Shanghai 201318, China
| | - Ting Li
- Department of Pathology, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
3
|
Abstract
Lung cancer (LC) is the leading cause of cancer-related mortality. Unfortunately, most patients of LC present at the advanced stage of the disease with a poor prognosis and 1-year survival of less than 20%. At the advanced stage of the disease, surgical resection cannot be possible, hence small biopsy or cytology specimens remain a choice for their correct diagnosis. The recognition of molecular drivers has revolutionized the treatment paradigm of non-small cell lung cancer (NSCLC) with introduction of tyrosine kinase inhibitors. Epidermal growth factor receptor (EGFR) gene mutations were identified, first, to be targeted in NSCLC followed by activating fusions in anaplastic lymphoma kinase (ALK) and rearrangements in c-ros oncogene 1 (ROS1) genes. In addition, the encouraging progress of immunotherapy in patients with NSCLC has been associated with predictive biomarker testing in the form of programmed death ligand-1 (PD-L1) immunohistochemistry assay. To test for these alterations, accurate biomarker testing is needed from biopsy or cytology specimens. In this brief review, testing of biomarkers is discussed using cytology specimens.
Collapse
Affiliation(s)
- Deepali Jain
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
4
|
Zhang Y, Qiao WB, Shan L. Expression and functional characterization of FOXM1 in non-small cell lung cancer. Onco Targets Ther 2018; 11:3385-3393. [PMID: 29928129 PMCID: PMC6001838 DOI: 10.2147/ott.s162523] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objectives FOXM1 is a key member of the FOX transcription factor family, which plays a vital role in a series of physiological processes. In the present study, non-small cell lung cancer (NSCLC) patients and cell lines were studied to explore the correlation between FOXM1 expression and this malignancy. Materials and methods The expression status of FOXM1 was detected in 128 cases of NSCLC tissues and NSCLC cell lines. The relationship of FOXM1 expression and clinicopathological features of NSCLC patients was evaluated by us. In addition, we also explored the biological functions of FOXM1 in NSCLC cell lines. Results The FOXM1 is highly expressed in NSCLC tissues and cell lines. FOXM1 expression was closely correlated with lymph node status and TNM stage. Cox regression analysis were performed to demonstrate the prognosis role of FOXM1. Conclusion FOXM1 conferred a proliferation and invasion advantage to NSCLC cell. The FOXM1 can be regarded as an important molecular marker in NSCLC prognosis.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Thoracic Oncology, Tumor Hospital Affiliated to Xinjiang Medical University, Xinjiang, People's Republic of China
| | - Wen-Bin Qiao
- Department of Thoracic Oncology, Tumor Hospital Affiliated to Xinjiang Medical University, Xinjiang, People's Republic of China
| | - Li Shan
- Department of Thoracic Oncology, Tumor Hospital Affiliated to Xinjiang Medical University, Xinjiang, People's Republic of China
| |
Collapse
|
5
|
Pelosi G, Scarpa A, Forest F, Sonzogni A. The impact of immunohistochemistry on the classification of lung tumors. Expert Rev Respir Med 2016; 10:1105-21. [PMID: 27617475 DOI: 10.1080/17476348.2017.1235975] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION To highlight the role of immunohistochemistry to lung cancer classification on the basis of existing guidelines and future perspectives. AREAS COVERED Four orienting key-issues were structured according to an extensive review on the English literature: a) cancer subtyping; b) best biomarkers and rules to follow; c) negative and positive profiling; d) suggestions towards an evidence-based proposal for lung cancer subtyping. A sparing material approach based on a limited number of specific markers is highly desirable. It includes p40 for squamous cell carcinoma ('no p40, no squamous'), TTF1 for adenocarcinoma, synaptophysin for neuroendocrine tumors and vimentin for sarcomatoid carcinoma. A close relationship between genotype and phenotype also supports a diagnostic role for negative profiles. Expert commentary: Highly specific and sensitive IHC markers according to positive and negative diagnostic algorithms seem appropriate for individual patients' lung cancer subtyping.
Collapse
Affiliation(s)
- Giuseppe Pelosi
- a Department of Oncology and Hemato-Oncology , Università degli Studi di Milano , Milan , Italy
| | - Aldo Scarpa
- b Department of Pathology and Diagnostics , University and Hospital Trust of Verona , Verona , Italy.,c ARC-Net Research Centre , University and Hospital Trust of Verona , Verona , Italy
| | - Fabien Forest
- d Department of Pathology , University Hospital Center (CHU), North Hospital , Saint Etienne , France
| | - Angelica Sonzogni
- e Department of Pathology and Laboratory Medicine , Fondazione IRCCS Istituto Nazionale Tumori , Milan , Italy
| |
Collapse
|
6
|
Penault-Llorca F, Tixier L, Perrot L, Cayre A. [Strategy for molecular testing in pulmonary carcinoma]. Ann Pathol 2016; 36:73-9. [PMID: 26778816 DOI: 10.1016/j.annpat.2015.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 11/08/2015] [Indexed: 12/22/2022]
Abstract
Nowadays, the analysis of theranostic molecular markers is central in the management of lung cancer. As those tumors are diagnosed in two third of the cases at an advanced stage, molecular screening is frequently performed on "small samples". The screening strategy starts by an accurate histopathological characterization, including on biopsies or cytological specimens. WHO 2015 provided a new classification for small biopsy and cytology, defining categories such as non-small cell carcinoma (NSCC), favor adenocarcinoma (TTF1 positive), or favor squamous cell carcinoma (p40 positive). Only the NSCC tumors, non-squamous, are eligible to molecular testing. A strategy aiming at tissue sparing for the small biopsies has to be organized. Tests corresponding to available drugs are prioritized. Blank slides will be prepared for immunohistochemistry and in situ hybridization based tests such as ALK. DNA will then be extracted for the other tests, EGFR mutation screening first associated or not to KRAS. Then, the emerging biomarkers (HER2, ROS1, RET, BRAF…) as well as potentially other markers in case of clinical trials, can been tested. The spread of next generation sequencing technologies, with a very sensitive all-in-one approach will allow the identification of minority clones. Eventually, the development of liquid biopsies will provide the opportunity to monitor the apparition of resistance clones during treatment. This non-invasive approach allows patients with a contraindication to perform biopsy or with non-relevant biopsies to access to molecular screening.
Collapse
Affiliation(s)
- Frédérique Penault-Llorca
- Département de pathologie, centre Jean-Perrin, 58, rue Montalembert, 63011 Clermont-Ferrand, France.
| | - Lucie Tixier
- Département de pathologie, centre Jean-Perrin, 58, rue Montalembert, 63011 Clermont-Ferrand, France
| | - Loïc Perrot
- Département de pathologie, centre Jean-Perrin, 58, rue Montalembert, 63011 Clermont-Ferrand, France
| | - Anne Cayre
- Département de pathologie, centre Jean-Perrin, 58, rue Montalembert, 63011 Clermont-Ferrand, France
| |
Collapse
|
7
|
Truini A, Santos Pereira P, Cavazza A, Spagnolo P, Nosseir S, Longo L, Jukna A, Lococo F, Vincenzi G, Bogina G, Tiseo M, Rossi G. Classification of different patterns of pulmonary adenocarcinomas. Expert Rev Respir Med 2015; 9:571-86. [PMID: 26313326 DOI: 10.1586/17476348.2015.1083428] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The epidemic increase of adenocarcinoma histology accounting for more than 50% of primary lung malignancies and the advent of effective molecular targeted-therapies against specific gene alterations characterizing this tumor type have led to the reconsideration of the pathologic classification of lung cancer. The new 2015 WHO classification provided the basis for a multidisciplinary approach emphasizing the close correlation among clinical, radiologic and molecular characteristics and histopathologic pattern of lung adenocarcinoma. The terms 'bronchioloalveolar carcinoma' and 'mixed adenocarcinoma' have been eliminated, introducing the concepts of 'adenocarcinoma in situ', 'minimally invasive adenocarcinoma' and the use of descriptive predominant patterns in invasive adenocarcinomas (lepidic, acinar, papillary, solid and micropapillary patterns). 'Invasive mucinous adenocarcinoma' is the new definition for mucinous bronchioloalveolar carcinoma, and some variants of invasive adenocarcinoma have been included, namely colloid, enteric and fetal-type adenocarcinomas. A concise update of the immunomorphologic, radiological and molecular characteristics of the different histologic patterns of lung adenocarcinoma is reported here.
Collapse
Affiliation(s)
- Anna Truini
- a 1 Lung Cancer Unit, IRCCS AOU San Martino - IST and Dipartimento di Medicina Interna e Specialità Mediche (DIMI), Università di Genova, Genova, Italy
| | - Poliana Santos Pereira
- b 2 Operative Unit of Pathologic Anatomy Hospital "Maggiore della Carità" of Novara, Novara, Italy
| | - Alberto Cavazza
- c 3 Department of Oncology and Advanced Technologies, Operative Unit of Oncology, Arcispedale S. Maria Nuova/ I.R.C.C.S., Reggio Emilia, Reggio Emilia, Italy
| | - Paolo Spagnolo
- d 4 Medical University Clinic, Canton Hospital Baselland, and University of Basel, Basel, Switzerland
| | - Sofia Nosseir
- e 5 Section of Pathologic Anatomy, University Hospital Policlinico of Modena, Modena, Italy
| | - Lucia Longo
- f 6 Medical Oncology Unit, Civic Hospital "Ramazzini", Carpi, Carpi, Italy
| | - Agita Jukna
- g 7 Pathology Institute, Pauls Stradins Clinical University Hospital, Riga, Riga, Latvia
| | - Filippo Lococo
- h 8 Department of Surgery, Operative Unit of Thoracic Surgery, Arcispedale S. Maria Nuova/ I.R.C.C.S., Reggio Emilia, Reggio Emilia, Italy
| | - Giada Vincenzi
- i 9 Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Bogina
- j 10 Section of Pathologic Anatomy, Hospital "Don Calabria", Negrar, Verona, Italy
| | - Marcello Tiseo
- k 11 Division of Medical Oncology University Hospital, Parma, Italy
| | - Giulio Rossi
- l 12 University Hospital of Modena, Modena, Italy
| |
Collapse
|
8
|
Tang ER, Schreiner AM, Pua BB. Advances in lung adenocarcinoma classification: a summary of the new international multidisciplinary classification system (IASLC/ATS/ERS). J Thorac Dis 2014; 6:S489-501. [PMID: 25349701 DOI: 10.3978/j.issn.2072-1439.2014.09.12] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/26/2014] [Indexed: 11/14/2022]
Abstract
Due to advances in the understanding of lung adenocarcinoma since the advent of its 2004 World Health System classification, an international multidisciplinary panel [sponsored by the International Association for the Study of Lung Cancer (IASLC), American Thoracic Society (ATS), and European Respiratory Society (ERS)] has recently updated the classification system for lung adenocarcinoma, the most common histologic type of lung cancer. Here, we summarize and highlight the new criteria and terminology, certain aspects of its clinical relevance and its potential treatment impact, and future avenues of research related to the new system.
Collapse
Affiliation(s)
- Elizabeth R Tang
- 1 Department of Radiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA ; 2 Department of Pathology, 3 Division of Interventional Radiology, Department of Radiology, Weill Cornell Medical College, NewYork-Presbyterian Hospital, 525 East 68th Street, New York, NY 10065, USA
| | - Andrew M Schreiner
- 1 Department of Radiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA ; 2 Department of Pathology, 3 Division of Interventional Radiology, Department of Radiology, Weill Cornell Medical College, NewYork-Presbyterian Hospital, 525 East 68th Street, New York, NY 10065, USA
| | - Bradley B Pua
- 1 Department of Radiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA ; 2 Department of Pathology, 3 Division of Interventional Radiology, Department of Radiology, Weill Cornell Medical College, NewYork-Presbyterian Hospital, 525 East 68th Street, New York, NY 10065, USA
| |
Collapse
|
9
|
Pelosi G, Papotti M, Rindi G, Scarpa A. Unraveling tumor grading and genomic landscape in lung neuroendocrine tumors. Endocr Pathol 2014; 25:151-64. [PMID: 24771462 DOI: 10.1007/s12022-014-9320-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Currently, grading in lung neuroendocrine tumors (NETs) is inherently defined by the histological classification based on cell features, mitosis count, and necrosis, for which typical carcinoids (TC) are low-grade malignant tumors with long life expectation, atypical carcinoids (AC) intermediate-grade malignant tumors with more aggressive clinical behavior, and large cell NE carcinomas (LCNEC) and small cell lung carcinomas (SCLC) high-grade malignant tumors with dismal prognosis. While Ki-67 antigen labeling index, highlighting the proportion of proliferating tumor cells, has largely been used in digestive NETs for assessing prognosis and assisting therapy decisions, the same marker does not play an established role in the diagnosis, grading, and prognosis of lung NETs. Next generation sequencing techniques (NGS), thanks to their astonishing ability to process in a shorter timeframe up to billions of DNA strands, are radically revolutionizing our approach to diagnosis and therapy of tumors, including lung cancer. When applied to single genes, panels of genes, exome, or the whole genome by using either frozen or paraffin tissues, NGS techniques increase our understanding of cancer, thus realizing the bases of precision medicine. Data are emerging that TC and AC are mainly altered in chromatin remodeling genes, whereas LCNEC and SCLC are also mutated in cell cycle checkpoint and cell differentiation regulators. A common denominator to all lung NETs is a deregulation of cell proliferation, which represents a biological rationale for morphologic (mitoses and necrosis) and molecular (Ki-67 antigen) parameters to successfully serve as predictors of tumor behavior (i.e., identification of pathological entities with clinical correlation). It is envisaged that a novel grading system in lung NETs based on the combined assessment of mitoses, necrosis, and Ki-67 LI may offer a better stratification of prognostic classes, realizing a bridge between molecular alterations, morphological features, and clinical behavior.
Collapse
Affiliation(s)
- Giuseppe Pelosi
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy,
| | | | | | | |
Collapse
|