1
|
Wahnou H, Limami Y, Duval RE, Ismail B, Léger DY, Sol V, Liagre B. Photodynamic anti-cancer therapy and arachidonic acid metabolism: State of the art in 2024. ANNALES PHARMACEUTIQUES FRANÇAISES 2025:S0003-4509(25)00042-2. [PMID: 40020873 DOI: 10.1016/j.pharma.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Photodynamic therapy (PDT) has emerged as a promising and evolving modality in cancer treatment leveraging light-sensitive compounds known as photosensitizers to selectively induce cell death in malignant tissues through the generation of reactive oxygen species (ROS). This review delves into the intricate mechanisms of PDT highlighting the pivotal role of photosensitizers and the resultant oxidative stress that damages cancer cells. It explores the versatile applications of PDT across various cancer types alongside the advantages and limitations inherent to this therapy. Recent technological advancements including improved photosensitizers and novel light delivery systems are also discussed. Additionally the review examines the critical role of arachidonic acid (AA) metabolism in cancer progression detailing the cyclooxygenase, lipoxygenase and cytochrome P450 pathways and their contributions to tumor biology. By elucidating the interplay between PDT and AA metabolism the review underscores the potential of targeting AA metabolic pathways to enhance PDT efficacy. Finally it provides clinical and translational perspectives highlighting ongoing research and future directions aimed at optimizing PDT for improved cancer treatment outcomes.
Collapse
Affiliation(s)
- Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, BP2693 Maarif, Casablanca, Morocco.
| | - Youness Limami
- Institute of Health Sciences, Hassan First University, Settat, Morocco.
| | | | - Bassel Ismail
- College of Health and Medical Technology, Medical Laboratories Technology Department, Alayen Iraqi University, Thi-Qar 64001, Iraq.
| | - David Yannick Léger
- Université de Limoges, LABCiS UR 22722, faculté de Pharmacie, 87000 Limoges, France.
| | - Vincent Sol
- Université de Limoges, LABCiS UR 22722, faculté de Pharmacie, 87000 Limoges, France.
| | - Bertrand Liagre
- Université de Limoges, LABCiS UR 22722, faculté de Pharmacie, 87000 Limoges, France.
| |
Collapse
|
2
|
Singh J, Hussain Y, Meena A, Sinha RA, Luqman S. Asiatic acid impedes NSCLC progression by inhibiting COX-2 and modulating PI3K signaling. FEBS Lett 2024; 598:3036-3052. [PMID: 39394402 DOI: 10.1002/1873-3468.15027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 10/13/2024]
Abstract
Non-small cell lung cancer comprises up to 85% of lung cancer cases and has a poor prognosis. At present, there are still no effective treatments for this illness. Evidence suggests that the prostaglandin [cyclooxygenase-2 (COX-2)] and leukotriene [lipoxygenase-5 (5-LOX)] pathways are involved in lung cancer carcinogenesis. Therefore, novel agents that target COX-2 and 5-LOX may have therapeutic potential. In the present study, we examined the role of asiatic acid (AA), a triterpenoid saponin, in targeting the protein kinases responsible for lung cancer proliferation and mobility. The experimental data revealed that AA inhibited the growth of lung cancer cells (> 50%) and it significantly impeded the proliferation of lung cancer cells by inhibiting COX-2, which results in downregulation of the phosphotidyl inositol-3 kinase/protein kinase B/mammalian target of rapamycin signaling pathway, leading to an induction of cytotoxic autophagy-mediated apoptosis. Mechanistically, the expression of mitogen-activated protein kinase/extracellular signal-regulated kinase, hypoxia-inducible factor-1 and vascular endothelial growth factor is downregulated by AA, thereby reducing cell mobility and invasion. It also shows negative osmotic fragility on healthy human erythrocytes. It is concluded that AA may be a viable therapeutic drug for non-small cell lung cancer treatment, which opens new opportunities for synthesizing analogues.
Collapse
Affiliation(s)
- Jyoti Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Yusuf Hussain
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Raza W, Meena A, Luqman S. THF induces apoptosis by downregulating initiation, promotion, and progression phase biomarkers in skin and lung carcinoma. J Biochem Mol Toxicol 2024; 38:e23838. [PMID: 39243196 DOI: 10.1002/jbt.23838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024]
Abstract
3,5,7-Trihydroxy-2-phenylchromen-4-one (THF) possesses a diverse range of pharmacological activities. Evidence suggests that THF exerts anticancer activity by distinct mechanisms of action. This study explores the anticancer potential of THF in human lung (A549) and skin (A431) cancer cells by employing different antiproliferative assays. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, neutral red uptake, sulphorhodamine B, and cell motility assays were used to confirm the anticancer potential of THF. Cell target-based and quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays were used to explore the effect of THF on the initiation, promotion and progression phase biomarkers of carcinogenesis. THF suppresses the activity of lipoxygenase-5 up to ~40% in both A549 and A431 cells and up to ~50% hyaluronidase activity in A549 cells. qRT-PCR assay reveals that THF inhibits the activity of phosphatidyl inositol-3 kinase/protein kinase B/mammalian target of rapamycin in both cell lines, which is responsible for the initiation of cancer. It also arrests the G2/M phase of the cell cycle in A431 cells and increases the sub-diploid population in both A549 and A431 cell lines which leads to cell death. Annexin V-FITC assay confirmed that THF induces apoptosis and necrosis in A431 and A549 cell lines. Further investigation revealed that THF not only enhances reactive oxygen species production but also modulates mitochondrial membrane potential in both cell lines. It significantly inhibits S-180 tumour formation at 5 and 10 mg/kg bw, i.p. dose. An acute skin toxicity study on mice showed that erythema and edema scores are within the acceptable range, besides acceptable drug-likeness properties and non-toxic effects on human erythrocytes. Conclusively, THF showed potent anticancer activity on skin and lung carcinoma cell lines, suppressed the level of the biomarkers and inhibited tumour growth in mice.
Collapse
Affiliation(s)
- Waseem Raza
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Gao S, Wei G, Ma Q, Wang X, Wang S, Niu Y. Causal relationship between anti-inflammatory drugs and cancer: a pan-cancer study with Mendelian randomization. Front Genet 2024; 15:1392745. [PMID: 38854429 PMCID: PMC11156997 DOI: 10.3389/fgene.2024.1392745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
Background Numerous epidemiological studies have elucidated the intricate connection between inflammation and cancer, highlighting how sustained inflammatory responses can fuel carcinogenesis by fostering proliferation, angiogenesis, and metastasis, while dampening immune responses and sensitivity to chemotherapy. Previous clinical investigations have underscored the potential of anti-inflammatory medications in either preventing or mitigating tumor formation. Here, the causal relationship between anti-inflammatory drugs and cancer was further explored through Mendelian randomization studies. Methods Employing Mendelian randomization, we scrutinized the causal links between three anti-inflammatory drugs-NSAIDs, Aspirin, and Anilide-and 37 types of cancer. We primarily utilized inverse variance weighting (IVW) as the primary analytical approach to delineate the causal association between these drugs and cancer types. Concurrently, sensitivity analyses were conducted to ascertain the absence of horizontal pleiotropy and heterogeneity. Results Our investigation revealed a discernible causal relationship between certain anti-inflammatory drugs and a subset of cancers, albeit without a pervasive impact across all cancer types. Specifically, NSAIDs exhibited a risk-reducing effect on non-small cell lung cancer (OR: 0.76, 95% CI: 0.59-0.97, p-value: 0.03) and gastric cancer (OR: 0.57, 95% CI: 0.34-0.98, p-value: 0.04). Conversely, aspirin was associated with an increased risk of oral malignant tumors (OR: 2.18, 95% CI: 1.13-4.21, p-value: 0.02). Notably, no statistically significant findings were observed for anilide drugs (p < 0.05). Conclusion We identified several cancers with potential causal links to NSAIDs, including non-small cell lung cancer and gastric cancer. Despite our extensive analysis, we did not identify a substantial causal relationship between the use of anti-inflammatory drugs and the development of various cancers.
Collapse
Affiliation(s)
- Shen Gao
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Guojiang Wei
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qianwang Ma
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xue Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Sen Wang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuanjie Niu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
5
|
Luís JM, Files R, Cardoso C, Pimenta J, Maia G, Silva F, Queiroga FL, Prada J, Pires I. Immunohistochemical Expression Levels of Epidermal Growth Factor Receptor, Cyclooxygenase-2, and Ki-67 in Canine Cutaneous Squamous Cell Carcinomas. Curr Issues Mol Biol 2024; 46:4951-4967. [PMID: 38785565 PMCID: PMC11119584 DOI: 10.3390/cimb46050297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Squamous cell carcinoma (SCC) stands as the second most prevalent skin cancer in dogs, primarily attributed to UV radiation exposure. Affected areas typically include regions with sparse hair and pale or depigmented skin. The significance of spontaneous canine cutaneous SCC as a model for its human counterpart is underscored by its resemblance. This study assesses the expression of key markers-Epidermal Growth Factor Receptor (EGFR), Cyclooxygenase-2 (Cox-2), and Ki-67-in canine cutaneous SCC. Our objective is to investigate the association between their expression levels and classical clinicopathological parameters, unraveling the intricate relationships among these molecular markers. In our retrospective analysis of 37 cases, EGFR overexpression manifested in 43.2% of cases, while Cox-2 exhibited overexpression in 97.3%. The EGFR, Cox-2 overexpression, and Ki-67 proliferation indices, estimated through immunohistochemistry, displayed a significant association with the histological grade, but only EGFR labeling is associated with the presence of lymphovascular emboli. The Ki-67 labeling index expression exhibited an association with EGFR and Cox-2. These findings propose that EGFR, Cox-2, and Ki-67 hold promise as valuable markers in canine SCC. EGFR, Cox-2, and Ki-67 may serve as indicators of disease progression, offering insights into the malignancy of a lesion. The implications extend to the potential therapeutic targeting of EGFR and Cox-2 in managing canine SCC. Further exploration of these insights is warranted due to their translational relevance and the development of targeted interventions in the context of canine SCC.
Collapse
Affiliation(s)
- João Miguel Luís
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (J.M.L.); (R.F.); (G.M.); (J.P.)
| | - Rita Files
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (J.M.L.); (R.F.); (G.M.); (J.P.)
| | - Cláudia Cardoso
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (J.M.L.); (R.F.); (G.M.); (J.P.)
| | - José Pimenta
- Animal and Veterinary Research Centre (CECAV) and Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- CIVG—Vasco da Gama Research Center/EUVG, Vasco da Gama University School, 3020-210 Coimbra, Portugal
| | - Gabriela Maia
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (J.M.L.); (R.F.); (G.M.); (J.P.)
| | - Filipe Silva
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (J.M.L.); (R.F.); (G.M.); (J.P.)
- Animal and Veterinary Research Centre (CECAV) and Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Felisbina L. Queiroga
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (J.M.L.); (R.F.); (G.M.); (J.P.)
- Animal and Veterinary Research Centre (CECAV) and Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Centre for the Study of Animal Science, CECA-ICETA, University of Porto, 4099-002 Porto, Portugal
| | - Justina Prada
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (J.M.L.); (R.F.); (G.M.); (J.P.)
- Animal and Veterinary Research Centre (CECAV) and Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Isabel Pires
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (J.M.L.); (R.F.); (G.M.); (J.P.)
- Animal and Veterinary Research Centre (CECAV) and Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| |
Collapse
|
6
|
Santiso A, Heinemann A, Kargl J. Prostaglandin E2 in the Tumor Microenvironment, a Convoluted Affair Mediated by EP Receptors 2 and 4. Pharmacol Rev 2024; 76:388-413. [PMID: 38697857 DOI: 10.1124/pharmrev.123.000901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 05/05/2024] Open
Abstract
The involvement of the prostaglandin E2 (PGE2) system in cancer progression has long been recognized. PGE2 functions as an autocrine and paracrine signaling molecule with pleiotropic effects in the human body. High levels of intratumoral PGE2 and overexpression of the key metabolic enzymes of PGE2 have been observed and suggested to contribute to tumor progression. This has been claimed for different types of solid tumors, including, but not limited to, lung, breast, and colon cancer. PGE2 has direct effects on tumor cells and angiogenesis that are known to promote tumor development. However, one of the main mechanisms behind PGE2 driving cancerogenesis is currently thought to be anchored in suppressed antitumor immunity, thus providing possible therapeutic targets to be used in cancer immunotherapies. EP2 and EP4, two receptors for PGE2, are emerging as being the most relevant for this purpose. This review aims to summarize the known roles of PGE2 in the immune system and its functions within the tumor microenvironment. SIGNIFICANCE STATEMENT: Prostaglandin E2 (PGE2) has long been known to be a signaling molecule in cancer. Its presence in tumors has been repeatedly associated with disease progression. Elucidation of its effects on immunological components of the tumor microenvironment has highlighted the potential of PGE2 receptor antagonists in cancer treatment, particularly in combination with immune checkpoint inhibitor therapeutics. Adjuvant treatment could increase the response rates and the efficacy of immune-based therapies.
Collapse
Affiliation(s)
- Ana Santiso
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
7
|
Kim SJ, Kery C, An J, Rineer J, Bobashev G, Matthews AK. Racial/Ethnic disparities in exposure to neighborhood violence and lung cancer risk in Chicago. Soc Sci Med 2024; 340:116448. [PMID: 38043441 PMCID: PMC10836639 DOI: 10.1016/j.socscimed.2023.116448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/31/2023] [Accepted: 11/19/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Despite the lower prevalence and frequency of smoking, Black adults are disproportionately affected by lung cancer. Exposure to chronic stress generates heightened immune responses, which creates a cell environment conducive to lung cancer development. Residents in poor and segregated neighborhoods are exposed to increased neighborhood violence, and chronic exposure to violence may have downstream physiological stress responses, which may explain racial disparities in lung cancer in predominantly Black urban communities. METHODS We utilized retrospective electronic medical records of patients who underwent a screening or diagnostic test for lung cancer at an academic medical center in Chicago to examine the associations between lung cancer diagnosis and individual characteristics (age, gender, race/ethnicity, and smoking status) and neighborhood-level homicide rate. We then used a synthetic population to estimate the neighborhood-level lung cancer risk to understand spatial clusters of increased homicide rates and lung cancer risk. RESULTS Older age and former/current smoking status were associated with increased odds of lung cancer diagnosis. Hispanic patients were more likely than White patients to be diagnosed with lung cancer, but there was no statistical difference between Black and White patients in lung cancer diagnosis. The odds of being diagnosed with lung cancer were significantly higher for patients living in areas with the third and fourth quartiles of homicide rates compared to the second quartile of homicide rates. Furthermore, significant spatial clusters of increased lung cancer risk and homicide rates were observed on Chicago's South and West sides. CONCLUSIONS Neighborhood violence was associated with an increased risk of lung cancer. Black residents in Chicago are disproportionately exposed to neighborhood violence, which may partially explain the existing racial disparity in lung cancer. Incorporating neighborhood violence exposure into lung cancer risk models may help identify high-risk individuals who could benefit from lung cancer screening.
Collapse
Affiliation(s)
- Sage J Kim
- University of Illinois at Chicago, School of Public Health, Division of Health Policy and Administration, Chicago, IL, USA.
| | | | - Jinghua An
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| | - James Rineer
- Geospatial Science & Technology Program, RTI International, Research Triangle Park, NC, USA.
| | | | | |
Collapse
|
8
|
Wang Y, Sun Y, Hu Y, Xiao Z. Bibliometric Analysis of Anesthetic Drugs' Effects on Immune Function- Current Knowledge, Hotspots and Future Perspectives. Drug Des Devel Ther 2023; 17:3219-3230. [PMID: 37908313 PMCID: PMC10615110 DOI: 10.2147/dddt.s433629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023] Open
Abstract
Objective The objective of this study is to conduct a bibliometric analysis of the present status, areas of focus, and upcoming developments in the research of anesthetic drugs and their impact on immune function, along with other related research domains. Methods From January 1, 2008 to June 9, 2023, A thorough exploration of anesthetic drug-related literature pertaining to immune function was carried out through the utilization of the Web of Science. The bibliometric analysis was predominantly executed by means of CiteSpace, GraphPad Prism 8.0, and the acquisition of data regarding the country, institution, author, journal, and keywords associated with each publication. Results This study analyzed a comprehensive total of 318 publications, consisting of 228 articles and 90 reviews, to determine the publication output of anesthetic drugs on immune function. Notably, China exhibited the highest publication output with (109, 34.28%) articles. Among the institutions analyzed, Harvard University was found to be the most productive with (12, 3.77%) publications. The study findings indicate that Buggy, Donal J (5, 1.57%) and Yuki, Koichi (5, 1.57%) had the highest publication records. Anesthesiology was the most frequently cited journal with a total of (206) citations. The results also revealed that "surgery" was the most frequently used keyword, appearing (48 times), followed by "general anesthesia" (41 times) and "breast cancer" (37 times). The study has identified several current areas of interest, with a particular emphasis on "metastasis", "inflammation", "recurrence", "anesthesia technique", and "induction". It is anticipated that forthcoming research endeavors will concentrate on exploring the impacts of isoflurane, sevoflurane, and ketamine on immune function. Conclusion This study provided a thorough analysis of the research trends and developments in investigating the impact of anesthetic drugs on immune function, incorporating pertinent research and collaborative entities such as authors, institutions, and countries.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian City, Liaoning Province, People’s Republic of China
| | - Ye Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian City, Liaoning Province, People’s Republic of China
| | - Yunxiang Hu
- School of Graduates, Dalian Medical University, Dalian City, Liaoning Province, People’s Republic of China
- Department of Orthopedics, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian City, Liaoning Province, People’s Republic of China
| | - Zhaoyang Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian City, Liaoning Province, People’s Republic of China
| |
Collapse
|
9
|
James A, Akash K, Sharma A, Bhattacharyya S, Sriamornsak P, Nagraik R, Kumar D. Himalayan flora: targeting various molecular pathways in lung cancer. Med Oncol 2023; 40:314. [PMID: 37787816 DOI: 10.1007/s12032-023-02171-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/21/2023] [Indexed: 10/04/2023]
Abstract
The fatal amplification of lung cancer across the globe and the limitations of current treatment strategies emphasize the necessity for substitute therapeutics. The incorporation of phyto-derived components in chemo treatment holds promise in addressing those challenges. Despite the significant progressions in lung cancer therapeutics, the complexities of molecular mechanism and pathways underlying this disease remain inadequately understood, necessitating novel biomarker targeting. The Himalayas, abundant in diverse plant varieties with established chemotherapeutic potential, presents a promising avenue for investigating potential cures for lung carcinoma. The vast diversity of phytocompounds herein can be explored for targeting the disease. This review delves into the multifaceted targets of lung cancer and explores the established phytochemicals with their specific molecular targets. It emphasizes comprehending the intricate pathways that govern effective therapeutic interventions for lung cancer. Through this exploration of Himalayan flora, this review seeks to illuminate potential breakthroughs in lung cancer management using natural compounds. The amalgamation of Himalayan plant-derived compounds with cautiously designed combined therapeutic approaches such as nanocarrier-mediated drug delivery and synergistic therapy offers an opportunity to redefine the boundaries of lung cancer treatment by reducing the drug resistance and side effects and enabling an effective targeted delivery of drugs. Furthermore, additional studies are obligatory to understand the possible derivation of natural compounds used in current lung cancer treatment from plant species within the Himalayan region.
Collapse
Affiliation(s)
- Abija James
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - K Akash
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Avinash Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sanjib Bhattacharyya
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, 400715, Chongqing, People's Republic of China
- Department of Sciences, Nirma University, Ahmedabad, Gujarat, 382481, India
| | | | - Rupak Nagraik
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
10
|
Holme JA, Vondráček J, Machala M, Lagadic-Gossmann D, Vogel CFA, Le Ferrec E, Sparfel L, Øvrevik J. Lung cancer associated with combustion particles and fine particulate matter (PM 2.5) - The roles of polycyclic aromatic hydrocarbons (PAHs) and the aryl hydrocarbon receptor (AhR). Biochem Pharmacol 2023; 216:115801. [PMID: 37696458 PMCID: PMC10543654 DOI: 10.1016/j.bcp.2023.115801] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Air pollution is the leading cause of lung cancer after tobacco smoking, contributing to 20% of all lung cancer deaths. Increased risk associated with living near trafficked roads, occupational exposure to diesel exhaust, indoor coal combustion and cigarette smoking, suggest that combustion components in ambient fine particulate matter (PM2.5), such as polycyclic aromatic hydrocarbons (PAHs), may be central drivers of lung cancer. Activation of the aryl hydrocarbon receptor (AhR) induces expression of xenobiotic-metabolizing enzymes (XMEs) and increase PAH metabolism, formation of reactive metabolites, oxidative stress, DNA damage and mutagenesis. Lung cancer tissues from smokers and workers exposed to high combustion PM levels contain mutagenic signatures derived from PAHs. However, recent findings suggest that ambient air PM2.5 exposure primarily induces lung cancer development through tumor promotion of cells harboring naturally acquired oncogenic mutations, thus lacking typical PAH-induced mutations. On this background, we discuss the role of AhR and PAHs in lung cancer development caused by air pollution focusing on the tumor promoting properties including metabolism, immune system, cell proliferation and survival, tumor microenvironment, cell-to-cell communication, tumor growth and metastasis. We suggest that the dichotomy in lung cancer patterns observed between smoking and outdoor air PM2.5 represent the two ends of a dose-response continuum of combustion PM exposure, where tumor promotion in the peripheral lung appears to be the driving factor at the relatively low-dose exposures from ambient air PM2.5, whereas genotoxicity in the central airways becomes increasingly more important at the higher combustion PM levels encountered through smoking and occupational exposure.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air Quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic
| | - Miroslav Machala
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | - Eric Le Ferrec
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, 0213 Oslo, Norway.
| |
Collapse
|
11
|
Attiq A, Afzal S. Trinity of inflammation, innate immune cells and cross-talk of signalling pathways in tumour microenvironment. Front Pharmacol 2023; 14:1255727. [PMID: 37680708 PMCID: PMC10482416 DOI: 10.3389/fphar.2023.1255727] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
Unresolved inflammation is a pathological consequence of persistent inflammatory stimulus and perturbation in regulatory mechanisms. It increases the risk of tumour development and orchestrates all stages of tumorigenesis in selected organs. In certain cancers, inflammatory processes create the appropriate conditions for neoplastic transformation. While in other types, oncogenic changes pave the way for an inflammatory microenvironment that leads to tumour development. Of interest, hallmarks of tumour-promoting and cancer-associated inflammation are striking similar, sharing a complex network of stromal (fibroblasts and vascular cells) and inflammatory immune cells that collectively form the tumour microenvironment (TME). The cross-talks of signalling pathways initially developed to support homeostasis, change their role, and promote atypical proliferation, survival, angiogenesis, and subversion of adaptive immunity in TME. These transcriptional and regulatory pathways invariably contribute to cancer-promoting inflammation in chronic inflammatory disorders and foster "smouldering" inflammation in the microenvironment of various tumour types. Besides identifying common target sites of numerous cancer types, signalling programs and their cross-talks governing immune cells' plasticity and functional diversity can be used to develop new fate-mapping and lineage-tracing mechanisms. Here, we review the vital molecular mechanisms and pathways that establish the connection between inflammation and tumour development, progression, and metastasis. We also discussed the cross-talks between signalling pathways and devised strategies focusing on these interaction mechanisms to harness synthetic lethal drug combinations for targeted cancer therapy.
Collapse
Affiliation(s)
- Ali Attiq
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Sheryar Afzal
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, King Faisal University, Al Ahsa, Saudi Arabia
| |
Collapse
|
12
|
Wang Z, Wang T, Chen X, Cheng J, Wang L. Pterostilbene regulates cell proliferation and apoptosis in non-small-cell lung cancer via targeting COX-2. Biotechnol Appl Biochem 2023; 70:106-119. [PMID: 35231150 DOI: 10.1002/bab.2332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/05/2022] [Indexed: 11/11/2022]
Abstract
Non-small-cell lung cancer (NSCLC), occupying a great proportion of lung cancer, threatens the health of patients, and the cyclooxygenase-2 (COX-2) expression is found to be upregulated in lung cancer. Pterostilbene (PTE) is perceived as a novel method for clinical therapy due to its high performance. However, the mechanism underlying and the interaction between PTE and COX-2 remain vague. We simulated radiation circumstances and transfected cells with the interference of PTE and COX-2. Our results showed that radiation or PTE treatment alone restrained cell proliferation and viability while stimulating cell apoptosis, and the above properties were strengthened when the two were in combination. The COX-2 expression was promoted by radiation but was reduced by PTE. PTE reversed the effects of radiation on the COX-2 expression. COX-2 knockdown suppressed COX-2 expression and proliferation and enhanced apoptosis of cells suffering radiation, while COX-2 overexpression reversed the inhibition of PTE. Our study suggested PTE regulated NSCLC cell proliferation and apoptosis via targeting COX-2, which might shed a light on cancer therapy.
Collapse
Affiliation(s)
- Zhimin Wang
- Department of Integrated Chinese and Western Medicine, Taizhou Central Hospital (Taizhou University Hospital), Jiaojiang District, Taizhou City, China
| | - Tingting Wang
- Department of Integrated Chinese and Western Medicine, Taizhou Central Hospital (Taizhou University Hospital), Jiaojiang District, Taizhou City, China
| | - Xu Chen
- Department of Integrated Chinese and Western Medicine, Taizhou Central Hospital (Taizhou University Hospital), Jiaojiang District, Taizhou City, China
| | - Jing Cheng
- Department of Integrated Chinese and Western Medicine, Taizhou Central Hospital (Taizhou University Hospital), Jiaojiang District, Taizhou City, China
| | - Lijuan Wang
- Respiratory and Critical Care Medicine Department, Taizhou Central Hospital (Taizhou University Hospital), Jiaojiang District, Taizhou City, China
| |
Collapse
|
13
|
Multi-Target Potential of Berberine as an Antineoplastic and Antimetastatic Agent: A Special Focus on Lung Cancer Treatment. Cells 2022; 11:cells11213433. [PMID: 36359829 PMCID: PMC9655513 DOI: 10.3390/cells11213433] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
Despite therapeutic advancements, lung cancer remains the principal cause of cancer mortality in a global scenario. The increased incidence of tumor reoccurrence and progression and the highly metastatic nature of lung cancer are of great concern and hence require the investigation of novel therapies and/or medications. Naturally occurring compounds from plants serve as important resources for novel drugs for cancer therapy. Amongst these phytochemicals, Berberine, an alkaloid, has been extensively explored as a potential natural anticancer therapeutic agent. Several studies have shown the effectiveness of Berberine in inhibiting cancer growth and progression mediated via several different mechanisms, which include cell cycle arrest, inducing cell death by apoptosis and autophagy, inhibiting cell proliferation and invasion, as well as regulating the expression of microRNA, telomerase activity, and the tumor microenvironment, which usually varies for different cancer types. In this review, we aim to provide a better understanding of molecular insights of Berberine and its various derivative-induced antiproliferative and antimetastatic effects against lung cancer. In conclusion, the Berberine imparts its anticancer efficacy against lung cancers via modulation of several signaling pathways involved in cancer cell viability and proliferation, as well as migration, invasion, and metastasis.
Collapse
|
14
|
Chemopreventive Properties of Black Raspberries and Strawberries in Esophageal Cancer Review. Antioxidants (Basel) 2022; 11:antiox11091815. [PMID: 36139889 PMCID: PMC9495642 DOI: 10.3390/antiox11091815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/02/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
Esophageal cancer is one of the most fetal malignancies in the world. Esophageal squamous cell carcinoma (SCC) and esophageal adenocarcinoma (AC) are two main types of esophageal cancer and each with distinct epidemiological, etiological and histopathological characteristics. The continued global prevalence of tobacco use and alcohol consumption, coupled with limited intake of fresh fruits and vegetables, ensures that esophageal cancer will remain one of the major health threats. In addition to promoting quitting smoking and alcohol abuse, one of the strategies of cancer prevention is to identify foods, food components, or dietary patterns that can prevent or delay the onset of esophageal cancer. A food-based approach has the advantage of a complex of mixtures of bioactive components simultaneously targeting multiple processes in carcinogenesis. We have employed a preclinical rodent model of esophageal SCC to assess the effects of black raspberries (BRB) and strawberries. Our investigations demonstrate that BRB and strawberries are potent inhibitors of esophageal cancer. To prepare for this review, a literature search was performed to screen BRB and strawberries against esophageal cancer using electronic databases from PubMed, Science Direct and Google Scholar. Search was conducted covering the period from January 2000 to June 2022. Our present review has provided a systematic review about chemopreventive effects of BRB and strawberries in esophageal cancer by collecting and compiling diverse research findings from the above sources. In this review, we discussed the anti-tumor potentials of BRB and strawberries in esophageal SCC and esophageal AC separately. For each cancer type, we discuss animal models and research findings from both animal bioassays and human clinical studies. We also discuss the potential mechanisms of action of berries and their key bioactive components.
Collapse
|
15
|
Zhao X, Cui L, Zhang Y, Guo C, Deng L, Wen Z, Lu Z, Shi X, Xing H, Liu Y, Zhang Y. Screening for Potential Therapeutic Agents for Non-Small Cell Lung Cancer by Targeting Ferroptosis. Front Mol Biosci 2022; 9:917602. [PMID: 36203872 PMCID: PMC9532010 DOI: 10.3389/fmolb.2022.917602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Ferroptosis is a form of non-apoptotic and iron-dependent cell death originally identified in cancer cells. Recently, emerging evidence showed that ferroptosis-targeting therapy could be a novel promising anti-tumour treatment. However, systematic analyses of ferroptosis-related genes for the prognosis of non-small cell lung cancer (NSCLC) and the development of antitumor drugs exploiting the ferroptosis process remain rare. This study aimed to identify genes related to ferroptosis and NSCLC and to initially screen lead compounds that induce ferroptosis in tumor cells. We downloaded mRNA expression profiles and NSCLC clinical data from The Cancer Genome Atlas database to explore the prognostic role of ferroptosis-related genes. Four prognosis-associated ferroptosis-related genes were screened using univariate Cox regression analysis and the lasso Cox regression analysis, which could divide patients with NSCLC into high- and low-risk groups. Then, based on differentially expressed risk- and ferroptosis-related genes, the negatively correlated lead compound flufenamic acid (FFA) was screened through the Connective Map database. This project confirmed that FFA induced ferroptosis in A549 cells and inhibited growth and migration in a dose-dependent manner through CCK-8, scratch, and immunofluorescence assays. In conclusion, targeting ferroptosis might be a therapeutic alternative for NSCLC.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Lijuan Cui
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yushan Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Chao Guo
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Lijiao Deng
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Zhitong Wen
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Zhihong Lu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Xiaoyuan Shi
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Haojie Xing
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yunfeng Liu, ; Yi Zhang, , orcid.org/0000-0003-0305-3127
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yunfeng Liu, ; Yi Zhang, , orcid.org/0000-0003-0305-3127
| |
Collapse
|
16
|
Choi H, Hwang W. Perioperative Inflammatory Response and Cancer Recurrence in Lung Cancer Surgery: A Narrative Review. Front Surg 2022; 9:888630. [PMID: 35898583 PMCID: PMC9309428 DOI: 10.3389/fsurg.2022.888630] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/24/2022] [Indexed: 11/14/2022] Open
Abstract
While surgical resection is the gold standard treatment for solid tumors, cancer recurrence after surgery is common. Immunosurveillance of remnant tumor cells is an important protective mechanism. Therefore, maintenance of anti-tumor cell activity and proper levels of inflammatory mediators is crucial. An increasing body of evidence suggests that surgery itself and perioperative interventions could affect these pathophysiological responses. Various factors, such as the extent of tissue injury, perioperative medications such as anesthetics and analgesics, and perioperative management including transfusions and methods of mechanical ventilation, modulate the inflammatory response in lung cancer surgery. This narrative review summarizes the pathophysiological mechanisms involved in cancer recurrence after surgery and perioperative management related to cancer recurrence after lung cancer surgery.
Collapse
|
17
|
EGFR and COX-2 Dual Inhibitor: The Design, Synthesis, and Biological Evaluation of Novel Chalcones. Molecules 2022; 27:molecules27041158. [PMID: 35208952 PMCID: PMC8876975 DOI: 10.3390/molecules27041158] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/29/2022] Open
Abstract
For most researchers, discovering new anticancer drugs to avoid the adverse effects of current ones, to improve therapeutic benefits and to reduce resistance is essential. Because the COX-2 enzyme plays an important role in various types of cancer leading to malignancy enhancement, inhibition of apoptosis, and tumor-cell metastasis, an indispensable objective is to design new scaffolds or drugs that possess combined action or dual effect, such as kinase and COX-2 inhibition. The start compounds A1 to A6 were prepared through the diazo coupling of 3-aminoacetophenone with a corresponding phenol and then condensed with two new chalcone series, C7–18. The newly synthesized compounds were assessed against both COX-2 and epidermal growth factor receptor (EGFR) for their inhibitory effect. All novel compounds were screened for cytotoxicity against five cancer cell lines. Compounds C9 and G10 exhibited potent EGFR inhibition with IC50 values of 0.8 and 1.1 µM, respectively. Additionally, they also displayed great COX-2 inhibition with IC50 values of 1.27 and 1.88 µM, respectively. Furthermore, the target compounds were assessed for their cytotoxicity against pancreatic ductal cancer (Panc-1), lung cancer (H-460), human colon cancer (HT-29), human malignant melanoma (A375) and pancreatic cancer (PaCa-2) cell lines. Interestingly, compounds C10 and G12 exhibited the strongest cytotoxic effect against PaCa-2 with average IC50 values of 0.9 and 0.8 µM, respectively. To understand the possible binding modes of the compounds under investigation with the receptor cites of EGFR and COX-2, a virtual docking study was conducted.
Collapse
|
18
|
Agraval H, Sharma JR, Prakash N, Yadav UCS. Fisetin suppresses cigarette smoke extract-induced epithelial to mesenchymal transition of airway epithelial cells through regulating COX-2/MMPs/β-catenin pathway. Chem Biol Interact 2022; 351:109771. [PMID: 34864006 DOI: 10.1016/j.cbi.2021.109771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/10/2021] [Accepted: 12/01/2021] [Indexed: 11/27/2022]
Abstract
Cigarette smoke exposure leads to upregulation of cyclooxygenase-2 (COX-2), an inducible enzyme that synthesizes prostaglandin E2 (PGE2) and promotes airway inflammation. COX-2 overexpression is frequently implicated in inflammation, invasion, metastasis, and epithelial-mesenchymal transition (EMT). However, its detailed molecular mechanism in cigarette smoke induced EMT is not clear. Further, fisetin, a bioflavonoid, exhibits antioxidant and anti-inflammatory properties, but its effect in modulating COX-2-mediated inflammation and downstream sequelae remains unexplored. Therefore, we have investigated the mechanism of cigarette smoke-induced COX-2-mediated EMT in airway epithelial cells and examined the role of fisetin in controlling this aberration. MTT, trypan blue staining, gelatin zymography, Western blotting, invasion, wound healing, and tumor sphere formation assays in cigarette smoke extract (CSE) and/or fisetin treated airway epithelial cells, and in-silico molecular docking studies were performed. Results revealed that CSE exposure increased the expression and activity of COX-2, MMP-2/9, and β-catenin and also enhanced expression of EMT markers leading to higher migration and invasion potential of airway epithelial cells. A specific COX-2 inhibitor NS-398 as well as fisetin treatment reversed the expression of EMT biomarkers, reduced the activity of MMP-2/9, and blocked the migration and invasion potential induced by CSE. Further, PGE2 also increased MMPs activity, invasion, and migration potential similar to CSE, which were significantly reversed by fisetin. In-silico studies showed a high binding affinity of fisetin to key EMT associated proteins, validating its anti-EMT potential. Thus, our study firstly unearths the mechanism of CSE-induced EMT in airway epithelial cells via COX-2/MMP/β-catenin pathway, and secondly, it reveals that fisetin could significantly reverse CSE-induced EMT by inhibiting COX-2, indicating that fisetin could be an effective drug candidate for cigarette smoke-induced lung dysfunction.
Collapse
Affiliation(s)
- Hina Agraval
- Metabolic Disorders and Inflammatory Pathologies Laboratory (MDIPL), School of Life Sciences, Central University of Gujarat, Sector 30, Gandhinagar, Gujarat, 382030, India
| | - Jiten R Sharma
- Metabolic Disorders and Inflammatory Pathologies Laboratory (MDIPL), School of Life Sciences, Central University of Gujarat, Sector 30, Gandhinagar, Gujarat, 382030, India
| | - Nutan Prakash
- Department of Biotechnology, Atmiya University, Rajkot, Gujarat, 360005, India
| | - Umesh C S Yadav
- Special Center for Molecular Medicine, and Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
19
|
Ackerman RS, Luddy KA, Icard BE, Piñeiro Fernández J, Gatenby RA, Muncey AR. The Effects of Anesthetics and Perioperative Medications on Immune Function: A Narrative Review. Anesth Analg 2021; 133:676-689. [PMID: 34100781 DOI: 10.1213/ane.0000000000005607] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Preclinical and clinical studies have sought to better understand the effect of anesthetic agents, both volatile and intravenous, and perioperative adjuvant medications on immune function. The immune system has evolved to incorporate both innate and adaptive components, which are delicately interwoven and essential for host defense from pathogens and malignancy. This review summarizes the complex and nuanced relationship that exists between each anesthetic agent or perioperative adjuvant medication studied and innate and adaptive immune function with resultant clinical implications. The most commonly used anesthetic agents were chosen for review including volatile agents (sevoflurane, isoflurane, desflurane, and halothane), intravenous agents (propofol, ketamine, etomidate, and dexmedetomidine), and perioperative adjuvant medications (benzodiazepines, opioids, nonsteroidal anti-inflammatory drugs [NSAIDs], and local anesthetic agents). Patients who undergo surgery experience varying combinations of the aforementioned anesthetic agents and adjuncts, depending on the type of surgery and their comorbidities. Each has unique effects on immunity, which may be more or less ideal depending on the clinical situation. Further study is needed to better understand the clinical effects of these relationships so that patient-specific strategies can be developed to improve surgical outcomes.
Collapse
Affiliation(s)
- Robert S Ackerman
- From the Department of Anesthesiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Benjamin E Icard
- University of South Florida Morsani College of Medicine, Tampa, Florida
| | | | - Robert A Gatenby
- the Department of Cancer Biology and Evolution.,Department of Radiology
| | - Aaron R Muncey
- Department of Anesthesiology, H. Lee Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
20
|
Sadiq M, Pang L, Johnson M, Sathish V, Zhang Q, Wang D. 2D Nanomaterial, Ti 3C 2 MXene-Based Sensor to Guide Lung Cancer Therapy and Management. BIOSENSORS-BASEL 2021; 11:bios11020040. [PMID: 33557033 PMCID: PMC7913740 DOI: 10.3390/bios11020040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/19/2022]
Abstract
Major advances in cancer control can be greatly aided by early diagnosis and effective treatment in its pre-invasive state. Lung cancer (small cell and non-small cell) is a leading cause of cancer-related deaths among both men and women around the world. A lot of research attention has been directed toward diagnosing and treating lung cancer. A common method of lung cancer treatment is based on COX-2 (cyclooxygenase-2) inhibitors. This is because COX-2 is commonly overexpressed in lung cancer and also the abundance of its enzymatic product prostaglandin E2 (PGE2). Instead of using traditional COX-2 inhibitors to treat lung cancer, here, we introduce a new anti-cancer strategy recently developed for lung cancer treatment. It adopts more abundant omega-6 (ω-6) fatty acids such as dihomo-γ-linolenic acid (DGLA) in the daily diet and the commonly high levels of COX-2 expressed in lung cancer to promote the formation of 8-hydroxyoctanoic acid (8-HOA) through a new delta-5-desaturase (D5Di) inhibitor. The D5Di does not only limit the metabolic product, PGE2, but also promote the COX-2 catalyzed DGLA peroxidation to form 8-HOA, a novel anti-cancer free radical byproduct. Therefore, the measurement of the PGE2 and 8-HOA levels in cancer cells can be an effective method to treat lung cancer by providing in-time guidance. In this paper, we mainly report on a novel sensor, which is based on a newly developed functionalized nanomaterial, 2-dimensional nanosheets, or Ti3C2 MXene. The preliminary results have proven to sensitively, selectively, precisely, and effectively detect PGE2 and 8-HOA in A549 lung cancer cells. The capability of the sensor to detect trace level 8-HOA in A549 has been verified in comparison with the traditional gas chromatography–mass spectrometry (GC–MS) method. The sensing principle could be due to the unique structure and material property of Ti3C2 MXene: a multilayered structure and extremely large surface area, metallic conductivity, and ease and versatility in surface modification. All these make the Ti3C2 MXene-based sensor selectively adsorb 8-HOA molecules through effective charge transfer and lead to a measurable change in the conductivity of the material with a high signal-to-noise ratio and excellent sensitivity.
Collapse
Affiliation(s)
- Mahek Sadiq
- Biomedical Engineering Program, North Dakota State University, Fargo, ND 58108, USA;
| | - Lizhi Pang
- Department of Pharmaceutical Science, North Dakota State University, Fargo, ND 58108, USA; (L.P.); (V.S.)
| | - Michael Johnson
- Materials and Nanotechnology Program, North Dakota State University, Fargo, ND 58108, USA; (M.J.); (Q.Z.)
| | - Venkatachalem Sathish
- Department of Pharmaceutical Science, North Dakota State University, Fargo, ND 58108, USA; (L.P.); (V.S.)
| | - Qifeng Zhang
- Materials and Nanotechnology Program, North Dakota State University, Fargo, ND 58108, USA; (M.J.); (Q.Z.)
- Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND 58102, USA
| | - Danling Wang
- Biomedical Engineering Program, North Dakota State University, Fargo, ND 58108, USA;
- Materials and Nanotechnology Program, North Dakota State University, Fargo, ND 58108, USA; (M.J.); (Q.Z.)
- Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND 58102, USA
- Correspondence: ; Tel.: +1-701-231-8396
| |
Collapse
|
21
|
In Vitro and In Silico Evaluation of Anticancer Activity of New Indole-Based 1,3,4-Oxadiazoles as EGFR and COX-2 Inhibitors. Molecules 2020; 25:molecules25215190. [PMID: 33171861 PMCID: PMC7664637 DOI: 10.3390/molecules25215190] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) are crucial targetable enzymes in cancer management. Therefore, herein, new 2-[(5-((1H-indol-3-yl)methyl)-1,3,4-oxadiazol-2-yl)thio]-N-(thiazol/benzothiazol-2-yl)acetamides (2a-i) were designed and synthesized as EGFR and COX-2 inhibitors. The cytotoxic effects of compounds 2a-i on HCT116 human colorectal carcinoma, A549 human lung adenocarcinoma, and A375 human melanoma cell lines were determined using MTT assay. 2-[(5-((1H-Indol-3-yl)methyl)-1,3,4-oxadiazol-2-yl)thio]-N-(6-ethoxybenzothiazol-2-yl)acetamide (2e) exhibited the most significant anticancer activity against HCT116, A549, and A375 cell lines with IC50 values of 6.43 ± 0.72 μM, 9.62 ± 1.14 μM, and 8.07 ± 1.36 μM, respectively, when compared with erlotinib (IC50 = 17.86 ± 3.22 μM, 19.41 ± 2.38 μM, and 23.81 ± 4.17 μM, respectively). Further mechanistic assays demonstrated that compound 2e enhanced apoptosis (28.35%) in HCT116 cells more significantly than erlotinib (7.42%) and caused notable EGFR inhibition with an IC50 value of 2.80 ± 0.52 μM when compared with erlotinib (IC50 = 0.04 ± 0.01 μM). However, compound 2e did not cause any significant COX-2 inhibition, indicating that this compound showed COX-independent anticancer activity. The molecular docking study of compound 2e emphasized that the benzothiazole ring of this compound occupied the allosteric pocket in the EGFR active site. In conclusion, compound 2e is a promising EGFR inhibitor that warrants further clinical investigations.
Collapse
|
22
|
Al Abdulmonem W, Rasheed Z, Aljohani ASM, Omran OM, Rasheed N, Alkhamiss A, A M Al Salloom A, Alhumaydhi F, Alblihed MA, Al Ssadh H, Khan MI, Fernández N. Absence of CD74 Isoform at 41kDa Prevents the Heterotypic Associations between CD74 and CD44 in Human Lung Adenocarcinoma-derived Cells. Immunol Invest 2020; 50:891-905. [PMID: 32646312 DOI: 10.1080/08820139.2020.1790594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lung cancer is a leading cause of cancer-associated death in all over the globe. This study was undertaken to determine the expression and interaction of membrane-bound receptors CD74 and CD44 in human lung adenocarcinoma cells and their associated signaling was also attempted. Levels of CD74 and CD44 were studied in human lung adenocarcinoma-evolved cells A549 and H460. CD74-mediated downstream signaling was studied by the nuclear-transcription-factor NF-κB and prostaglandin E2 (PGE2) production. Flow-cytometric analysis showed that both CD74 and CD44 were perfectly expressed in A549 cells. Importantly, Western immunoblotting showed that A549 cells expressed only two isoforms of CD74 at 33 and 35 kDa but isoform at 41 kDa was absent. These results were verified in H460 cells. Confocal microscopy showed CD74 and CD44 was colocalized but heterotypic interaction between them was missing in both A549 and H460 cells. Activation of NF-κB and production of PGE2 in human lung cancer cells were comparable with other cancer cells. In conclusion, this is the first study that shows A549 and H460 cells expressed two distinctive isoforms of CD74 but isoform at 41 kDa was absent. Due to the absence of this isoform, the direct physical interaction between them CD74 and CD44 was lacking. Furthermore, the data also demonstrated that lacking of direct physical interaction between CD74 and CD44 had no effect on NF-κB activation and PGE2 production indicating that CD74-mediated downstream signaling occurs either through coreceptors or indirect interaction with CD44 in human lung cancer cells. ABBREVIATION CD: cluster of differentiation; SCLC: small cell lung cancer; NSCLC: nonsmall cell lung cancer; SCC: squamous cell carcinoma; ADC: adenocarcinoma; LCC: large cell carcinoma.
Collapse
Affiliation(s)
- Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Zafar Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Ola M Omran
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Naila Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Abdullah Alkhamiss
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | | | - Fahad Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohamd A Alblihed
- Department of Medical Biochemistry, School of Medicine Taif University, Taif, Saudi Arabia
| | - Hussain Al Ssadh
- School of Biological Sciences, University of Essex, Colchester, UK
| | - Muhammad Ismail Khan
- Faculty of Medicine, School of Public Health, University of Queensland, Brisbane, Australia
| | - Nelson Fernández
- School of Biological Sciences, University of Essex, Colchester, UK
| |
Collapse
|
23
|
(-)-Oleocanthal as a Dual c-MET-COX2 Inhibitor for the Control of Lung Cancer. Nutrients 2020; 12:nu12061749. [PMID: 32545325 PMCID: PMC7353354 DOI: 10.3390/nu12061749] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022] Open
Abstract
Lung cancer (LC) represents the topmost mortality-causing cancer in the U.S. LC patients have overall poor survival rate with limited available treatment options. Dysregulation of the mesenchymal epithelial transition factor (c-MET) and cyclooxygenase 2 (COX2) initiates aggressive LC profile in a subset of patients. The Mediterranean extra-virgin olive oil (EVOO)-rich diet already documented to reduce multiple malignancies incidence. (-)-Oleocanthal (OC) is a naturally occurring phenolic secoiridoid exclusively occurring in EVOO and showed documented anti-breast and other cancer activities via targeting c-MET. This study shows the novel ability of OC to suppress LC progression and metastasis through dual targeting of c-MET and COX-2. Western blot analysis and COX enzymatic assay showed significant reduction in the total and activated c-MET levels and inhibition of COX1/2 activity in the lung adenocarcinoma cells A549 and NCI-H322M, in vitro. In addition, OC treatment caused a dose-dependent inhibition of the HGF-induced LC cells migration. Daily oral treatment with 10 mg/kg OC for 8 weeks significantly suppressed the LC A549-Luc progression and prevented metastasis to brain and other organs in a nude mouse tail vein injection model. Further, microarray data of OC-treated lung tumors showed a distinct gene signature that confirmed the dual targeting of c-MET and COX2. Thus, the EVOO-based OC is an effective lead with translational potential for use as a prospective nutraceutical to control LC progression and metastasis.
Collapse
|
24
|
Ashraf-Uz-Zaman M, Bhalerao A, Mikelis CM, Cucullo L, German NA. Assessing the Current State of Lung Cancer Chemoprevention: A Comprehensive Overview. Cancers (Basel) 2020; 12:E1265. [PMID: 32429547 PMCID: PMC7281533 DOI: 10.3390/cancers12051265] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
Chemoprevention of lung cancer is thought to significantly reduce the risk of acquiring these conditions in the subpopulation of patients with underlying health issues, such as chronic obstructive pulmonary disorder and smoking-associated lung problems. Many strategies have been tested in the previous decades, with very few translating to successful clinical trials in specific subpopulations of patients. In this review, we analyze these strategies, as well as new approaches that have emerged throughout the last few years, including synthetic lethality concept and microbiome-induced regulation of lung carcinogenesis. Overall, the continuous effort in the area of lung chemoprevention is required to develop practical therapeutical approaches. Given the inconsistency of results obtained in clinical trials targeting lung cancer chemoprevention in various subgroups of patients that differ in the underlying health condition, race, and gender, we believe that individualized approaches will have more promise than generalized treatments.
Collapse
Affiliation(s)
- Md Ashraf-Uz-Zaman
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (M.A.-U.-Z.); (A.B.); (C.M.M.); (L.C.)
| | - Aditya Bhalerao
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (M.A.-U.-Z.); (A.B.); (C.M.M.); (L.C.)
| | - Constantinos M. Mikelis
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (M.A.-U.-Z.); (A.B.); (C.M.M.); (L.C.)
- Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (M.A.-U.-Z.); (A.B.); (C.M.M.); (L.C.)
- Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Nadezhda A. German
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (M.A.-U.-Z.); (A.B.); (C.M.M.); (L.C.)
- Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
25
|
Aslan A, Hussein YT, Gok O, Beyaz S, Erman O, Baspinar S. Ellagic acid ameliorates lung damage in rats via modulating antioxidant activities, inhibitory effects on inflammatory mediators and apoptosis-inducing activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7526-7537. [PMID: 31885062 DOI: 10.1007/s11356-019-07352-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Phytochemicals is considered one of the most effective and safe alternative therapy against oxidative linked lung diseases. Ellagic acid (EA), an important component of fruits, nuts, and vegetables, are partly responsible for their beneficial health effects against oxidation-related diseases. In the present study, we investigated the ameliorative effect of EA on lung damage induced by carbon tetrachloride (CCl4) in Wistar male albino rats. Thirty-six male rats (n = 36, 8-week old) were divided into 4 groups, each with 9 rats. The groups were: Control group: received standard diet; EA group: administered with EA (10 mg/kg body weight, intraperitoneal); CCl4 group: administered with CCl4 (1.5 mg/kg body weight, intraperitoneal); EA+CCl4 group: administered with EA and CCl4. . The rats were decapitated at the end of experimental period of 8 weeks and the lung tissues were examined. CCl4-induced rats showed elevation in the expressions of inflammatory proteins, nuclear factor kappa b (NF-κB), cyclooxygenase-2 (COX-2), and pro-inflammatory cytokine, tumor necrosis factor alpha (TNF-α); and the indicator of lipid peroxidation, malondialdehyde (MDA). Intraperitoneal administration of EA significantly reduced the levels of these markers. EA administration increased the protein expression levels of nuclear factor erythroid 2-related factor 2 (Nrf-2) and enhanced the activity of glutathione (GSH) and catalase enzyme (CAT). In addition, EA administration increased the expression levels of the executioner protein of apoptosis, caspase-3, and decreasing pro-survival protein, B cell lymphoma-2 (Bcl-2). In conclusion, these results establishes the protective role of EA in the treatment of lung damage and that in the future, this may have the potential to be used as a medication for the prevention or attenuation of lung diseases. Graphical abstract.
Collapse
Affiliation(s)
- Abdullah Aslan
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey.
| | - Yousif Taha Hussein
- Faculty of Science, Department of Biology, Firat University, Elazig, Turkey
- Nursing Department, Halabja Technical Institute, Sulaimani Polytechnic University, Sulaimani, Iraq
| | - Ozlem Gok
- Faculty of Science, Department of Biology, Firat University, Elazig, Turkey
| | - Seda Beyaz
- Faculty of Science, Department of Biology, Firat University, Elazig, Turkey
| | - Orhan Erman
- Faculty of Science, Department of Biology, Firat University, Elazig, Turkey
| | - Serpil Baspinar
- Health Services Vocational High School, Department of Medical Imaging, Firat University, Elazig, Turkey
| |
Collapse
|
26
|
Lee R, Choi YJ, Jeong MS, Park YI, Motoyama K, Kim MW, Kwon SH, Choi JH. Hyaluronic Acid-Decorated Glycol Chitosan Nanoparticles for pH-Sensitive Controlled Release of Doxorubicin and Celecoxib in Nonsmall Cell Lung Cancer. Bioconjug Chem 2020; 31:923-932. [DOI: 10.1021/acs.bioconjchem.0c00048] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ruda Lee
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan
| | - Yu Jin Choi
- Korea Basic Science Institute, Chuncheon 24341, Republic of Korea
| | | | - Yong Il Park
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 860-8555, Japan
| | - Min Woo Kim
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan
| | - Seung-Hae Kwon
- Korea Basic Science Institute, Seoul 02841, Republic of Korea
| | - Jung Hoon Choi
- Department of Anatomy & Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
27
|
Zhang W, Yi L, Shen J, Zhang H, Luo P, Zhang J. Comparison of the benefits of celecoxib combined with anticancer therapy in advanced non-small cell lung cancer: A meta-analysis. J Cancer 2020; 11:1816-1827. [PMID: 32194793 PMCID: PMC7052875 DOI: 10.7150/jca.35003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Studies have reported that advanced NSCLC benefits from celecoxib combined with systematic treatment. However, the optimal combination with different treatments remains unclear. A meta-analysis was conducted to explore treatment combinations. Methods: We searched the relevant literature via PubMed, EMBASE, the Cochrane Library and PMC. The data for the overall response rate (ORR), overall survival (OS), progression-free survival (PFS), and adverse effects were obtained. Subgroup analysis was performed according to the treatment pattern. Statistical analyses were carried out using Review Manager 5.3 software. Results: A total of 18 eligible studies were included, with 1178 advanced NSCLC patients. Subgroup analysis revealed that celecoxib combined with chemotherapy or tyrosine kinase inhibitors (TKIs) significantly increased the ORR, with no significant difference between the two groups. Celecoxib combined with chemotherapy improved OS-6 (OR=0.65, 95% CI 0.59-0.71, P<0.001), while OS-6 was not changed with celecoxib combined with TKIs (OR=0.53, 95% CI 0.31-0.73, P=0.82). Differences were apparent between the chemotherapy and TKIs regarding OS-6 (P=0.0392). Celecoxib combined with chemotherapy significantly prolonged OS-12 (OR=0.39, 95% CI 0.33-0.45, P<0.001). In terms of OS-12, there was no significant improvement when celecoxib was combined with radiotherapy or TKIs. Celecoxib combined with chemotherapy or TKIs significantly improved PFS-6 and PFS-12, with no obvious difference in terms of PFS between the two groups. Additionally, celecoxib combined with chemotherapy or TKI treatment increased the incidence of adverse events, with no significant differences between the two groups. Conclusions: Celecoxib combined with chemotherapy or TKIs improved the ORR, with no significant differences between the two groups. In terms of OS, celecoxib combined with chemotherapy was superior to TKIs or radiotherapy. Accordingly, celecoxib combined with chemotherapy increased hematological toxicity and cardiovascular events.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Lilan Yi
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Jie Shen
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Hongman Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| |
Collapse
|
28
|
Wan Mohd Tajuddin WNB, Lajis NH, Abas F, Othman I, Naidu R. Mechanistic Understanding of Curcumin's Therapeutic Effects in Lung Cancer. Nutrients 2019; 11:E2989. [PMID: 31817718 PMCID: PMC6950067 DOI: 10.3390/nu11122989] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/22/2019] [Accepted: 11/30/2019] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is among the most common cancers with a high mortality rate worldwide. Despite the significant advances in diagnostic and therapeutic approaches, lung cancer prognoses and survival rates remain poor due to late diagnosis, drug resistance, and adverse effects. Therefore, new intervention therapies, such as the use of natural compounds with decreased toxicities, have been considered in lung cancer therapy. Curcumin, a natural occurring polyphenol derived from turmeric (Curcuma longa) has been studied extensively in recent years for its therapeutic effects. It has been shown that curcumin demonstrates anti-cancer effects in lung cancer through various mechanisms, including inhibition of cell proliferation, invasion, and metastasis, induction of apoptosis, epigenetic alterations, and regulation of microRNA expression. Several in vitro and in vivo studies have shown that these mechanisms are modulated by multiple molecular targets such as STAT3, EGFR, FOXO3a, TGF-β, eIF2α, COX-2, Bcl-2, PI3KAkt/mTOR, ROS, Fas/FasL, Cdc42, E-cadherin, MMPs, and adiponectin. In addition, limitations, strategies to overcome curcumin bioavailability, and potential side effects as well as clinical trials were also reviewed.
Collapse
Affiliation(s)
- Wan Nur Baitty Wan Mohd Tajuddin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (W.N.B.W.M.T.); (I.O.)
| | - Nordin H. Lajis
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia; (N.H.L.); (F.A.)
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia; (N.H.L.); (F.A.)
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (W.N.B.W.M.T.); (I.O.)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (W.N.B.W.M.T.); (I.O.)
| |
Collapse
|
29
|
Dhanjal NI, Sharma S, Skalny AV, Skalnaya MG, Ajsuvakova OP, Tinkov AA, Zhang F, Guo X, Prabhu KS, Tejo Prakash N. Selenium-rich maize modulates the expression of prostaglandin genes in lipopolysaccharide-stimulated RAW264.7 macrophages. Food Funct 2019; 10:2839-2846. [PMID: 31062009 DOI: 10.1039/c9fo00186g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cell signaling is necessary for the organs to co-ordinate with the whole body and it includes response to external stimuli, inflammation, hormonal secretions and other various metabolic functions. In the present study, we have focused on the inflammatory signals modulated by the reactive oxygen and nitrogen species (RONS). Under homeostatic conditions, these species turn on the COX-1-dependent arachidonic acid (AA) pathway towards the release of anti-inflammatory enzymes. However, the excess release of these ions induces negative effects in the form of inflammation by turning on the COX-2-dependent AA pathway to release pro-inflammatory enzymes. In the present study, we observed the shunting of the COX-2-dependent AA pathway towards the release of anti-inflammatory enzymes with the supplementation of organic dietary selenium in the form of seleniferous maize extracts. We observed that 500 nM selenium concentration in Se-maize extracts downregulated the COX-2 and mPGES-1 expressions by 3.8- and 3.2-fold and upregulated the GPx-1 and H-PGDS expressions by 5.0- and 5.4-fold, respectively. To facilitate more availability of Se from the dietary matrices, Se-maize extracts were incubated with rMETase. It was observed that the enzyme-treated cells increased the downregulation of COX-2 and mPGES-1 expressions by 24.8- and 21.0-fold and the upregulation of GPx-1 and H-PGDS expressions by 13.2- and 16.5-fold, respectively.
Collapse
|
30
|
Joanna B, Jolanta B, Agnieszka G, Diana HZ, Krystyna S. Vitamin D, linoleic acid, arachidonic acid and COX-2 in colorectal cancer patients in relation to disease stage, tumour localisation and disease progression. Arab J Gastroenterol 2019; 20:121-126. [PMID: 31272909 DOI: 10.1016/j.ajg.2019.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/06/2019] [Accepted: 05/26/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND STUDY AIMS Evidence shows that vitamin D and cyclooxygenase type 2 (COX-2) might play role in aetiology/progression of cancer. It is suggested that antitumour effect of vitamin D depends on vitamin D-receptor (VDR) expression. Aim of the study was to determine vitamin D and polyunsaturated fatty acids in colorectal cancer patients. PATIENTS AND METHODS A total of 39 patients with colorectal cancer (mean ± SD age: 65.5 ± 6.8 years) and 25 controls (mean ± SD age: 51.0 ± 6.9 years) were studied. 25-hydroxycholecalciferol-25(OH)D3 in serum was quantitatively determined by high-performance liquid chromatography (HPLC). Levels of linoleic acid (LA) and arachidonic acid (AA) of serum phospholipids were measured by gas-chromatography (GC). Expression of VDR and COX-2 in normal colonic mucosa and tumour tissue was measured by real time polymerase chain reaction (RT-PCR). RESULTS The mean value of 25(OH)D3 was significantly lower in the colorectal cancer patients with early stages of the disease and in patients with tumour confined to the rectum compared to control group (p < 0.02, p < 0.03, respectively). The higher concentration of AA (patients with early stages of the disease) and lower concentration of LA (patients with the advanced stages of the disease) was noticed compared to the control group. For the patients with the early stages of the disease the higher mean fold change of mRNA VDR and the lower mean fold change of mRNA COX-2 was noticed (p < 0.03, p < 0.02, respectively). CONCLUSION The assessment of vitamin D status in patients with colorectal cancer should include measurement of mRNA VDR expression in tumour tissue.
Collapse
Affiliation(s)
- Berska Joanna
- Department of Clinical Biochemistry, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Wielicka St. 265, Krakow 30-663, Poland.
| | - Bugajska Jolanta
- Department of Clinical Biochemistry, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Wielicka St. 265, Krakow 30-663, Poland
| | - Grabowska Agnieszka
- Department of Medical Genetics, Chair of Pediatrics, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Wielicka St. 265, Krakow 30-663, Poland
| | - Hodorowicz-Zaniewska Diana
- First Department of Surgery, Jagiellonian University College of Medicine, Krakow, Kopernika St. 40, Krakow 31-501, Poland
| | - Sztefko Krystyna
- Department of Clinical Biochemistry, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Wielicka St. 265, Krakow 30-663, Poland
| |
Collapse
|
31
|
Lapumnuaypol K, Tiu A, Thongprayoon C, Wijarnpreecha K, Ungprasert P, Mao MA, Cheungpasitporn W. Effects of aspirin and non-steroidal anti-inflammatory drugs on the risk of cholangiocarcinoma: a meta-analysis. QJM 2019; 112:421-427. [PMID: 30753687 DOI: 10.1093/qjmed/hcz039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/26/2018] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Non-steroidal anti-inflammatory drugs (NSAIDs) can suppress the proliferation of cholangiocarcinoma (CCA) cells in vitro through inhibition of cyclooxygenase-2. However, the effects of aspirin and NSAIDs on the risk of CCA remain unclear. We performed this meta-analysis to assess the risk of biliary tract cancers in patients who take aspirin and/or NSAIDs. METHODS A systematic review was conducted utilizing MEDLINE, EMBASE, Cochrane databases from inception through October 2017 to identify studies that assessed the association of aspirin and/or NSAIDs use with risk of biliary tract cancers including CCA, gallbladder cancer and ampulla of Vater cancer. Effect estimates from the studies were extracted and combined using the random-effect, generic inverse variance method of DerSimonian and Laird. RESULTS Five observational studies with a total of 9 200 653 patients were enrolled. The pooled OR of CCA in patients with aspirin use was 0.56 (95% CI, 0.32-0.96). Egger's regression asymmetry test was performed and showed no publication bias for the association between aspirin use and CCA with P = 0.42. There was no significant association between NSAIDs use and CCA, with a pooled OR of 0.79 (95% CI, 0.28-2.21). One study showed a significant association between aspirin use and reduced risk of gallbladder cancer with OR of 0.37 (0.17-0.80). However, there was no significant association between aspirin and ampulla of Vater cancer with OR of 0.22 (0.03-1.65). CONCLUSIONS Our study demonstrates a significant association between aspirin use and a 0.56-fold decreased risk of CCA. However, there is no association between the use of NSAIDs and CCA.
Collapse
Affiliation(s)
- K Lapumnuaypol
- Department of Internal Medicine, Albert Einstein Medical Center, PA, USA
| | - A Tiu
- Department of Internal Medicine, Albert Einstein Medical Center, PA, USA
| | - C Thongprayoon
- Department of Nephrology, Mayo Clinic, Nephrology and Hypertension, Rochester, MN, USA
| | - K Wijarnpreecha
- Department of Gastroenterology, Mayo Clinic Hospital Jacksonville, Gastroenterology, Jacksonville, FL, USA
| | - P Ungprasert
- Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - M A Mao
- Department of Nephrology, Mayo Clinic, Nephrology and Hypertension, Rochester, MN, USA
| | - W Cheungpasitporn
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, MS, USA
| |
Collapse
|
32
|
Ravi Kiran Ammu VVV, Garikapati KK, Krishnamurthy PT, Chintamaneni PK, Pindiprolu SKSS. Possible role of PPAR-γ and COX-2 receptor modulators in the treatment of Non-Small Cell lung carcinoma. Med Hypotheses 2019; 124:98-100. [PMID: 30798928 DOI: 10.1016/j.mehy.2019.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/03/2019] [Indexed: 12/12/2022]
Abstract
Non-Small Cell lung cancer (NSCLC) accounts for 85% of total lung cancers worldwide, affecting more than 1.5 million people every year. Recent studies reported that lung adenocarcinoma express Peroxisome Proliferator Activated Receptor-γ (PPAR-γ) which is believed to be inactivated due to cytoplasmic accumulation or somatic 'loss of function' of the gene. PPAR-γ reported to play an important role in cell proliferation, cell differentiation and apoptosis via inhibition of NF-kβ pathway. Adenocarcinoma also overexpress cyclooxygenase-2 (COX-2), which is reported to promote angiogenesis and metastasis via TX-A2 production. Therefore, we hypothesize that activation of PPAR-γ (through PPAR-γ agonists) and inhibition of COX-2 (through COX-2 inhibitors) will have beneficial effects in the treatment of NSCLC.
Collapse
Affiliation(s)
- V V V Ravi Kiran Ammu
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Rocklands, Udhagamandalam, Tamil Nadu 643 001, India
| | - Kusuma Kumari Garikapati
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Rocklands, Udhagamandalam, Tamil Nadu 643 001, India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Rocklands, Udhagamandalam, Tamil Nadu 643 001, India.
| | - Pavan Kumar Chintamaneni
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Rocklands, Udhagamandalam, Tamil Nadu 643 001, India
| | - Sai Kiran S S Pindiprolu
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Rocklands, Udhagamandalam, Tamil Nadu 643 001, India
| |
Collapse
|
33
|
Jiang W, Wang L, Zhang J, Shen H, Dong W, Zhang T, Li X, Wang K, Du J. Effects of postoperative non-steroidal anti-inflammatory drugs on long-term survival and recurrence of patients with non-small cell lung cancer. Medicine (Baltimore) 2018; 97:e12442. [PMID: 30278522 PMCID: PMC6181525 DOI: 10.1097/md.0000000000012442] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used to relieve postoperative fever, surgery pain, and inflammation. In addition, NSAIDs have anticancer activity and may reduce the risk and mortality of several cancers. However, the association between postoperative NSAIDs and the clinical outcome of non-small cell lung cancer (NSCLC) patients with fever after surgery is not fully understood. We performed a retrospective study of NSCLC patients who underwent surgery between July 2011 and June 2012, aiming to evaluate the effect of postoperative NSAIDs on overall survival (OS) and progression-free survival (PFS). Differences in clinical data between the postoperative NSAIDs group and non-NSAIDs groups were analyzed by Chi-square tests. Kaplan-Meier curves method and Cox regression analysis were conducted for survival analysis. The primary and secondary endpoints were OS and PFS, respectively. This retrospective study included 347 NSCLC patients. There were no significant differences in the clinical characteristics between the NSAIDs group and non-NSAIDs group except for age (P = .024) and differential degree (P = .040). Administration of postoperative NSAIDs was related to longer OS (hazards ratio [HR] 0.528, 95% confidence interval [CI] 0.278-0.884, P = .006) and longer PFS (HR 0.557, 95% CI 0.317-0.841, P = .002) in the multivariate Cox regression model. Subgroup analysis showed statistically significant differences in elderly individuals, male subjects, low smoking index, poor differentiation, and non-adenocarcinoma subgroups, respectively. In conclusion, the administration of postoperative NSAIDs was related to longer OS and PFS in NSCLC patients with postoperative fever.
Collapse
Affiliation(s)
- Wensheng Jiang
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
- Department of Cardiothoracic Surgery, Yantaishan Hospital, Yantai
| | - Liguang Wang
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
| | - Jiangang Zhang
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
| | - Hongchang Shen
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
| | | | - Tiehong Zhang
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
| | | | - Kai Wang
- Department of Healthcare Respiratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
- Department of Thoracic Surgery
| |
Collapse
|
34
|
Yi L, Zhang W, Zhang H, Shen J, Zou J, Luo P, Zhang J. Systematic review and meta-analysis of the benefit of celecoxib in treating advanced non-small-cell lung cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2455-2466. [PMID: 30122902 PMCID: PMC6086108 DOI: 10.2147/dddt.s169627] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background The clinical benefit of a selective cyclooxygenase-2 inhibitor, celecoxib, combined with anticancer therapy in advanced non-small-cell lung cancer (NSCLC) remains unclear. A meta-analysis was performed to address the efficacy and safety of celecoxib in patients with advanced NSCLC. Materials and methods Three databases, including PubMed, EMBASE, and the Cochrane Library, were systematically searched for available literature until March 1, 2018. Data on tumor response rates, one-year survival, overall survival, progression-free survival, and toxicities were extracted from the included randomized clinical trials. Subgroup analysis was carried out according to the line of treatment. Review Manager 5.3 software was applied to conduct the meta-analysis. Results A total of 7 randomized controlled trials involving 1,559 patients with advanced NSCLC were enrolled for analysis. The pooled overall response rate (ORR) of celecoxib added to systemic therapy was not significantly improved (risk ratio [RR] =1.14, 95% CI =0.96–1.35, P=0.13). Additionally, no differences were observed between the celecoxib and placebo groups regarding 1-year survival (RR =0.99, 95% CI =0.88–1.12, P=0.91). Subgroup analysis showed that adding celecoxib to the first-line treatment significantly improved the ORR (RR =1.21, 95% CI =1.01–1.44, P=0.04) and partial response rate (RR =1.26, 95% CI =1.01–1.58, P=0.04). The aggregated Kaplan–Meier analysis found no significant difference between celecoxib and placebo regarding the 5-year overall survival (median, 12.9 vs 12.5 months, P=0.553) and 5-year progression-free survival (median, 7.4 vs 7.2 months, P=0.641). The increased RR of leukopenia (RR =1.25, 95% CI =1.03–1.50) and thrombocytopenia (RR =1.39, 95% CI =1.11–1.75) indicated that celecoxib increased hematologic toxicities (grade ≥III). However, celecoxib did not increase the related risks of thrombosis or embolism (RR =1.26, 95% CI =0.66–2.39) and cardiac ischemia (RR =1.16, 95% CI =0.39–3.44). Conclusion Celecoxib had no benefit on survival indices for advanced NSCLC but improved the ORR of first-line treatment. Additionally, celecoxib increased the rate of hematologic toxicities without increasing the risk of cardiovascular events.
Collapse
Affiliation(s)
- Lilan Yi
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Wei Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Hongman Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Jie Shen
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Jingwen Zou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| |
Collapse
|
35
|
Chen C, Yang D, Zeng Q, Luo L, Cai C. PF-2341066 combined with celecoxib promotes apoptosis and inhibits proliferation in human cholangiocarcinoma QBC939 cells. Exp Ther Med 2018; 15:4543-4549. [PMID: 29725387 PMCID: PMC5920157 DOI: 10.3892/etm.2018.5967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 02/02/2018] [Indexed: 12/24/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a malignant tumor with high incidence and an average age of onset of 50-70 years old. However, at present there is no effective treatment for this disease. The aim of the present study was to investigate the effects of a c-Met inhibitor, PF-2341066 and a cyclooxygenase-2 (COX-2) inhibitor, celecoxib, on c-Met and COX-2 expression, proliferation and apoptosis. The results demonstrated that c-Met and COX-2 are highly expressed in hepatobiliary calculus with cholangiocarcinoma. PF-2341066 was able to downregulate the expression of c-Met and COX-2 in a dose-dependent manner at the mRNA and protein levels in human cholangiocarcinoma QBC939 cells. Furthermore, combined treatment with PF-2341066 with celecoxib downregulated the mRNA expression of both genes, inhibited cell proliferation and promoted cell apoptosis. It was also demonstrated that PF-2341066 and celecoxib treatment was able to restrict the expression of vascular endothelial growth factor (VEGF). The results of the present study suggest that PF-2341066 and celecoxib may inhibit the development of cholangiocarcinoma by downregulating the expression of c-Met and COX-2 to inhibit cell proliferation, promote apoptosis and prevent VEGF-mediated tumor angiogenesis. Co-treatment with PF-2341066 and celecoxib may be a potential therapeutic strategy for hepatobiliary calculus with cholangiocarcinoma.
Collapse
Affiliation(s)
- Chen Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, Changsha, Hunan 410002, P.R. China
| | - Dinghua Yang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qinghua Zeng
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital, Changsha, Hunan 410002, P.R. China
| | - Liang Luo
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, Changsha, Hunan 410002, P.R. China
| | - Chengzhi Cai
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, Changsha, Hunan 410002, P.R. China
| |
Collapse
|
36
|
Dai P, Li J, Ma XP, Huang J, Meng JJ, Gong P. Efficacy and safety of COX-2 inhibitors for advanced non-small-cell lung cancer with chemotherapy: a meta-analysis. Onco Targets Ther 2018; 11:721-730. [PMID: 29440919 PMCID: PMC5804138 DOI: 10.2147/ott.s148670] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background The study of cyclooxygenase-2 (COX-2) inhibitors is now mired in controversy. We performed a meta-analysis to assess the efficacy and safety profile of COX-2 inhibitors in patients with advanced non-small-cell lung cancer (NSCLC). Patients and methods A literature search of PubMed, EMBASE, the Cochrane Central databases, and ClinicalTrials.gov, up until March 26, 2017, identified relevant randomized controlled trials. Data analysis was performed using Stata 12.0. Results Six eligible trials (1,794 patients) were selected from the 407 studies that were identified initially. A significant difference, favoring COX-2 inhibitors plus chemotherapy over chemotherapy alone, was observed in the overall response rate (relative risk [RR] =1.25, 95% confidence interval [CI]: 1.06-1.48). Further, we conducted two subgroup analyses according to the type of COX-2 inhibitors (celecoxib, rofecoxib, or apricoxib) and treatment line (first or second chemotherapy). The first-line treatment includes: NP (changchun red bean + cisplatin or carboplatin), GP (double fluorine cytidine + cisplatin or carboplatin), or TP (paclitaxel + cisplatin or carboplatin, docetaxel + cisplatin or carboplatin). The second-line treatment includes two internationally recognized compounds, one is docetaxel and the other is the pemetrexed, both of which are individually selected. In subgroup analysis, significantly increased overall response rate (ORR) results were found for rofecoxib plus chemotherapy (RR =1.56, 95% CI: 1.08-2.25) and COX-2 inhibitor given with first-line chemotherapy (RR =1.27, 95% CI: 1.07-1.50). However, there was no difference between COX-2 inhibitors plus chemotherapy and chemotherapy alone in overall survival (hazard ratio [HR] =1.04, 95% CI: 0.91-1.18), progression-free survival (HR =0.97, 95% CI: 0.86-1.10), and 1-year survival rate (RR =1.03, 95% CI: 0.89-1.20). Toxicity did not differ significantly between COX-2 inhibitors plus chemotherapy and chemotherapy alone with the exception of leukopenia (RR =1.21, 95% CI: 1.03-1.42), thrombocytopenia (RR =1.32, 95% CI: 1.04-1.67), and cardiovascular events (RR =2.39, 95% CI: 1.06-5.42). The results of the Egger's test indicated no significant difference in primary outcomes. Conclusion COX-2 inhibitors improved ORR of advanced NSCLC with chemotherapy, but had no effect on survival indices. Moreover, COX-2 inhibitors may lead to higher rates of hematologic toxicities and cardiovascular events.
Collapse
Affiliation(s)
- Ping Dai
- Department of Oncology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, People's Republic of China
| | - Jing Li
- Department of Oncology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, People's Republic of China
| | - Xiao-Ping Ma
- Department of Oncology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, People's Republic of China
| | - Jian Huang
- Department of Oncology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, People's Republic of China
| | - Juan-Juan Meng
- Department of Oncology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, People's Republic of China
| | - Ping Gong
- Department of Oncology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, People's Republic of China
| |
Collapse
|
37
|
Monoglyceride lipase gene knockout in mice leads to increased incidence of lung adenocarcinoma. Cell Death Dis 2018; 9:36. [PMID: 29348400 PMCID: PMC5833374 DOI: 10.1038/s41419-017-0188-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/30/2017] [Accepted: 11/22/2017] [Indexed: 12/11/2022]
Abstract
Monoglyceride lipase (MGL) is a recently discovered cancer-related protein. The role of MGL in tumorigenesis remains to be fully elucidated. We have previously shown that MGL expression was reduced or absent in multiple human malignancies, and overexpression of MGL inhibited cancer cell growth. Here, we have generated the MGL knockout mice to further investigate the role of MGL in tumorigenesis in vivo. Our results indicate that MGL-deficient (MGL+/−, MGL−/−) mice exhibited a higher incidence of neoplasia in multiple organs, including the lung, spleen, liver and lymphoid tissues. Interestingly, lung neoplasms were the most common neoplastic changes in the MGL-deficient mice. Importantly, MGL-deficient animals developed premalignant high-grade dysplasia and adenocarcinomas in their lungs. Investigation of the MGL expression status in lung cancer specimens from patients also revealed that MGL expression was significantly reduced in the majority of primary human lung cancers when compared to corresponding matched normal tissues. Furthermore, mouse embryonic fibroblasts (MEFs) from MGL-deficient animals showed characteristics of cellular transformation including increased cell proliferation, foci formation and anchorage-independent growth. Our results also indicate that MGL deficiency was associated with activation of EGFR and ERK. In addition, pro-inflammatory molecules COX-2 and TNF-α were also activated in the MGL-deficient lung tissues. Thus, our results provide new insights into the novel role of MGL as an important negative regulator of EGFR, COX-2 and TNF-α. Accordingly, EGFR and COX-2/TNF-α activation/induction is expected to play important roles in MGL deficiency-driven lung tumors. Collectively, our results implicate the tumor suppressive role of MGL in preventing tumor development in vivo, particularly in context to the lung cancer, and highlight its role as a potential tumor suppressor.
Collapse
|
38
|
Kim B, Kim J, Kim YS. Celecoxib induces cell death on non-small cell lung cancer cells through endoplasmic reticulum stress. Anat Cell Biol 2017; 50:293-300. [PMID: 29354301 PMCID: PMC5768566 DOI: 10.5115/acb.2017.50.4.293] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) is an enzyme induced by various proinflammatory and mitogenic stimuli. Celecoxib is a selective inhibitor of COX-2 that have been shown to affect cell growth and apoptosis. Lung cancer cells expressing COX-2 is able to be a target of celecoxib, this study focuses on investigating that celecoxib induces apoptosis via endoplasmic reticulum (ER) stress on lung cancer cells. We investigated whether celecoxib induced apoptosis on non-small cell lung cancer cell line, A549 and H460. The 50 µM of celecoxib increased apoptotic cells and 100 µM of celecoxib significantly induced apoptosis. To check involvement of caspase cascade, pretreatment of z-VAD-fmk blocked celecoxib-induced apoptosis. However, caspase-3, -8, and -9 were not activated, but cleavage of non-classical caspase-4 was detected using western blot. As checking ER stress associated molecules, celecoxib did not increase expressions of growth arrest and DNA damage inducible protein 34, activating transcription factor 4, and spliced X-box binding protiens-1, but increase of both glucose-regulated protein 78 (GRP78) and C/EBP homologous transcription factor were detected. Salubrinal, inhibitor of eIF2 and siRNA for IRE1 did not alter celecoxib-induced apoptosis. Instead, celecoxib-induced apoptosis might be deeply associated with ER stress depending on GRP78 because siRNA for GRP78 enhanced apoptosis. Taken together, celecoxib triggered ER stress on lung cancer cells and celecoxib-induced apoptosis might be involved in both non-classical caspase-4 and GRP78.
Collapse
Affiliation(s)
- Bomi Kim
- Department of Pathology, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Jayoung Kim
- Department of Anatomy and Research Center for Tumor Immunology, Inje University College of Medicine, Busan, Korea
| | - Yeong Seok Kim
- Department of Anatomy and Research Center for Tumor Immunology, Inje University College of Medicine, Busan, Korea
| |
Collapse
|
39
|
Kim J, Hong SW, Kim S, Kim D, Hur DY, Jin DH, Kim B, Kim YS. Cyclooxygenase-2 expression is induced by celecoxib treatment in lung cancer cells and is transferred to neighbor cells via exosomes. Int J Oncol 2017; 52:613-620. [PMID: 29345286 DOI: 10.3892/ijo.2017.4227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/08/2017] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is one of most common types of cancer worldwide. Lung cancer results in a death higher rate each year compared to colon, breast and prostate cancer combined. Celecoxib is a selective inhibitor of cyclooxygenase-2 (COX‑2), an enzyme of which the expression is induced by various stimuli, such as inflammation. In addition, celecoxib triggers COX-2 loading on exosomes. Exosomes are small vesicles composed of a lipid bilayer membrane and are found in most biological fluids, such as blood breast milk and urine. In this study, we focused on exosomes containing COX-2 proteins from lung cancer cells to determine their involvement in the interaction with neighbor cells following treatment with celecoxib. We found that celecoxib induced COX-2 expression in both the cytosol and exosomes in lung cancer cells. Exosomes from celecoxib-treated lung cancer cell culture supernatant were isolated and incubated with several types of cells. The THP-1, monocytic leukemia cell line effectively absorbed COX-2 by lung cancer cell-derived exosomes. Following incubation with exosomes, the COX-2 protein level was increased in the THP-1 cells; however, COX-2 mRNA expression was not affected. Moreover, prostaglandin E2 (PGE2) and vascular endothelial growth factor (VEGF) production by THP-1 cells was increased following incubation with exosomes from celecoxib-treated lung cancer cells. Conditioned medium from THP-1 following incubation with exosomes promoted formation in EA.hy926 cells. Taken together, our findings suggest that celecoxib induces COX-2 expression in lung cancer cells, and that highly expressed COX-2 in exosomes can be transferred to other cells.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of Anatomy and Research Center for Tumor Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Seung-Woo Hong
- Department of Anatomy and Research Center for Tumor Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Seonghan Kim
- Department of Anatomy and Research Center for Tumor Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Daejin Kim
- Department of Anatomy and Research Center for Tumor Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Dae Young Hur
- Department of Anatomy and Research Center for Tumor Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Dong-Hoon Jin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Bomi Kim
- Department of Pathology, Haeundae Paik Hospital, College of Medicine, Inje University, Busan 48108, Republic of Korea
| | - Yeong Seok Kim
- Department of Anatomy and Research Center for Tumor Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| |
Collapse
|
40
|
Krishnamachary B, Stasinopoulos I, Kakkad S, Penet MF, Jacob D, Wildes F, Mironchik Y, Pathak AP, Solaiyappan M, Bhujwalla ZM. Breast cancer cell cyclooxygenase-2 expression alters extracellular matrix structure and function and numbers of cancer associated fibroblasts. Oncotarget 2017; 8:17981-17994. [PMID: 28152501 PMCID: PMC5392301 DOI: 10.18632/oncotarget.14912] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/27/2016] [Indexed: 01/21/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) is a critically important mediator of inflammation that significantly influences tumor angiogenesis, invasion, and metastasis. We investigated the role of COX-2 expressed by triple negative breast cancer cells in altering the structure and function of the extracellular matrix (ECM). COX-2 downregulation effects on ECM structure and function were investigated using magnetic resonance imaging (MRI) and second harmonic generation (SHG) microscopy of tumors derived from triple negative MDA-MB-231 breast cancer cells, and a derived clone stably expressing a short hairpin (shRNA) molecule downregulating COX-2. MRI of albumin-GdDTPA was used to characterize macromolecular fluid transport in vivo and SHG microscopy was used to quantify collagen 1 (Col1) fiber morphology. COX-2 downregulation decreased Col1 fiber density and altered macromolecular fluid transport. Immunohistochemistry identified significantly fewer activated cancer associated fibroblasts (CAFs) in low COX-2 expressing tumors. Metastatic lung nodules established by COX-2 downregulated cells were infrequent, smaller, and contained fewer Col1 fibers.COX-2 overexpression studies were performed with tumors derived from triple negative SUM-149 breast cancer cells lentivirally transduced to overexpress COX-2. SHG microscopy identified significantly higher Col1 fiber density in COX-2 overexpressing tumors with an increase of CAFs. These data expand upon the roles of COX-2 in shaping the structure and function of the ECM in primary and metastatic tumors, and identify the potential role of COX-2 in modifying the number of CAFs in tumors that may have contributed to the altered ECM.
Collapse
Affiliation(s)
- Balaji Krishnamachary
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD 21205, USA
| | - Ioannis Stasinopoulos
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD 21205, USA
| | - Samata Kakkad
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD 21205, USA
| | - Marie-France Penet
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD 21205, USA.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Desmond Jacob
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD 21205, USA
| | - Flonne Wildes
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD 21205, USA
| | - Yelena Mironchik
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD 21205, USA
| | - Arvind P Pathak
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD 21205, USA.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Meiyappan Solaiyappan
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD 21205, USA
| | - Zaver M Bhujwalla
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD 21205, USA.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
41
|
Akimova T, Zhang T, Negorev D, Singhal S, Stadanlick J, Rao A, Annunziata M, Levine MH, Beier UH, Diamond JM, Christie JD, Albelda SM, Eruslanov EB, Hancock WW. Human lung tumor FOXP3+ Tregs upregulate four "Treg-locking" transcription factors. JCI Insight 2017; 2:94075. [PMID: 28814673 DOI: 10.1172/jci.insight.94075] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/19/2017] [Indexed: 12/15/2022] Open
Abstract
Experimental data indicate that FOXP3+ Tregs can markedly curtail host antitumor immune responses, but the properties of human intratumoral Tregs are still largely unknown, in part due to significant methodologic problems. We studied the phenotypic, functional, epigenetic, and transcriptional features of Tregs in 92 patients with non-small-cell lung cancer, comparing the features of Tregs within tumors versus corresponding blood, lung, and lymph node samples. Intratumoral Treg numbers and suppressive function were significantly increased compared with all other sites but did not display a distinctive phenotype by flow cytometry. However, by undertaking simultaneous evaluation of mRNA and protein expression at the single-cell level, we demonstrated that tumor Tregs have a phenotype characterized by upregulated expression of FOXP3 mRNA and protein as well as significantly increased expression of EOS, IRF4, SATB1, and GATA1 transcription factor mRNAs. Expression of these "Treg-locking" transcription factors was positively correlated with levels of FOXP3 mRNA, with highest correlations for EOS and SATB1. EOS had an additional, FOXP3 mRNA-independent, positive correlation with FOXP3 protein in tumor Tregs. Our study identifies distinctive features of intratumoral Tregs and suggests that targeting Treg-locking transcription factors, especially EOS, may be of clinical importance for antitumor Treg-based therapy.
Collapse
Affiliation(s)
- Tatiana Akimova
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tianyi Zhang
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dmitri Negorev
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sunil Singhal
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jason Stadanlick
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Abhishek Rao
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael Annunziata
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew H Levine
- Department of Surgery, Penn Transplant Institute, Hospital of the University of Pennsylvania and University of Pennsylvania, Philadelphia, Pennsylvania, USA. Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ulf H Beier
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joshua M Diamond
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and
| | - Jason D Christie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and.,Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steven M Albelda
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and
| | - Evgeniy B Eruslanov
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wayne W Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
42
|
GPR171 expression enhances proliferation and metastasis of lung cancer cells. Oncotarget 2016; 7:7856-65. [PMID: 26760963 PMCID: PMC4884959 DOI: 10.18632/oncotarget.6856] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/02/2016] [Indexed: 01/22/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are among the most significant therapeutic targets and some of them promote the growth and metastasis of cancer. Here, we show that an increase in the levels of GPR171 is crucial for lung cancer tumor progression in vitro and in vivo. Immunostaining of clinical samples indicated that GPR171 was overexpressed in 46.8% of lung carcinoma tissues. Depletion of GPR171 with an anti-GPR171 antibody decreased proliferation of lung carcinoma cells and attenuated tumor progression in a mouse xenograft model. Knockdown of GPR171 also inhibited migration and invasion of the lung cancer cell lines. Notably, inhibition of GPR171 synergistically enhanced the tumoricidal activity of an epidermal growth factor receptor (EGFR) inhibitor in lung cancer cells. These results indicate that GPR171 blockade is a promising antineoplastic strategy and provide a preclinical rationale for combined inhibition of GPR171 and EGFR.
Collapse
|
43
|
Zhou X, Li D, Wang X, Zhang B, Zhu H, Zhao J. Galectin-1 is overexpressed in CD133+ human lung adenocarcinoma cells and promotes their growth and invasiveness. Oncotarget 2016; 6:3111-22. [PMID: 25605013 PMCID: PMC4413641 DOI: 10.18632/oncotarget.3076] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/18/2014] [Indexed: 01/06/2023] Open
Abstract
Previous studies demonstrated that a subpopulation of cancer cells, which are CD133 positive (CD133+) feature higher invasive and metastatic abilities, are called cancer stem cells (CSCs). By using tumor cells derived from patients with lung adenocarcinoma, we found that galectin-1 is highly overexpressed in the CD133+ cancer cells as compared to the normal cancer cells (CD133-) from the same patients. We overexpressed galectin-1 in CD133- cancer cells and downregulated it in CSCs. We found that overexpression of galectin-1 promoted invasiveness of CD133- cells, while knockdown of galectin-1 suppressed proliferation, colony formation and invasiveness of CSCs. Furthermore, tumor growth was significantly inhibited in CSCs xenografts with knockdown of galectin-1 as compared to CSCs treated with scramble siRNAs. Biochemical studies revealed that galectin-1 knockdown led to the suppression of COX-2/PGE2 and AKT/mTOR pathways, indicating galectin-1 might control the phenotypes of CSCs by regulating these signaling pathways. Finally, a retrospective study revealed that galectin-1 levels in blood circulation negatively correlates with overall survival and positively correlates with lymph node metastasis of the patients. Taken together, these findings suggested that galectin-1 plays a major role on the tumorigenesis and invasiveness of CD133+ cancer cells and might serve as a potential therapeutic target for treatment of human patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Xuefeng Zhou
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Dan Li
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xianguo Wang
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Bo Zhang
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jinping Zhao
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
44
|
Zhou YY, Hu ZG, Zeng FJ, Han J. Clinical Profile of Cyclooxygenase-2 Inhibitors in Treating Non-Small Cell Lung Cancer: A Meta-Analysis of Nine Randomized Clinical Trials. PLoS One 2016; 11:e0151939. [PMID: 27007231 PMCID: PMC4805232 DOI: 10.1371/journal.pone.0151939] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/07/2016] [Indexed: 01/27/2023] Open
Abstract
Background Evidence on the benefits of combining cyclooxygenase-2 inhibitor (COX-2) in treating non-small cell lung cancer (NSCLC) is still controversial. We investigated the efficacy and safety profile of cyclooxygenase-2 inhibitors in treating NSCLC. Methods The first meta-analysis of eligible studies was performed to assess the effect of COX-2 inhibitors for patients with NSCLC on the overall response rate (ORR), overall survival (OS), progression-free survival (PFS), one-year survival, and toxicities. The fixed-effects model was used to calculate the pooled RR and HR and between-study heterogeneity was assessed. Subgroup analyses were conducted according to the type of COX-2 inhibitors, treatment pattern, and treatment line. Results Nine randomized clinical trials, comprising 1679 patents with NSCLC, were included in the final meta-analysis. The pooled ORR of patients who have NSCLC with COX-2 inhibitors was significantly higher than that without COX-2 inhibitors. In subgroup analysis, significantly increased ORR results were found on celecoxib (RR = 1.29, 95% CI: 1.09, 1.51), rofecoxib (RR = 1.61, 95% CI: 1.14, 2.28), chemotherapy (RR = 1.40, 95% CI: 1.20, 1.63), and first-line treatment (RR = 1.39, 95% CI: 1.19, 1.63). However, COX-2 inhibitors had no effect on the one-year survival, OS, and PFS. Increased RR of leucopenia (RR = 1.21, 95% CI: 1.01, 1.45) and thrombocytopenia (RR = 1.36, 95% CI: 1.06, 1.76) suggested that COX-2 inhibitors increased hematologic toxicities (grade ≥ 3) of chemotherapy Conclusions COX-2 inhibitors increased ORR of advanced NSCLC and had no impact on survival indices, but it may increase the risk of hematologic toxicities associated with chemotherapy.
Collapse
Affiliation(s)
- Yuan Yuan Zhou
- Department of Respiratory medicine, The first College of Clinical Medicine science, Three Gorges University, Yichang, 443003, People’s Republic of China
| | - Zhi Gang Hu
- Department of Respiratory medicine, The first College of Clinical Medicine science, Three Gorges University, Yichang, 443003, People’s Republic of China
| | - Fan Jun Zeng
- Department of Respiratory medicine, The first College of Clinical Medicine science, Three Gorges University, Yichang, 443003, People’s Republic of China
- * E-mail:
| | - Jiao Han
- Department of Respiratory medicine, The first College of Clinical Medicine science, Three Gorges University, Yichang, 443003, People’s Republic of China
| |
Collapse
|
45
|
Dash R, Uddin MMN, Hosen SZ, Rahim ZB, Dinar AM, Kabir MSH, Sultan RA, Islam A, Hossain MK. Molecular docking analysis of known flavonoids as duel COX-2 inhibitors in the context of cancer. Bioinformation 2015; 11:543-9. [PMID: 26770028 PMCID: PMC4702032 DOI: 10.6026/97320630011543] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/16/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) catalyzed synthesis of prostaglandin E2 and it associates with tumor growth, infiltration, and metastasis in preclinical experiments. Known inhibitors against COX-2 exhibit toxicity. Therefore, it is of interest to screen natural compounds like flavanoids against COX-2. Molecular docking using 12 known flavanoids against COX-2 by FlexX and of ArgusLab were performed. All compounds showed a favourable binding energy of >-10 KJ/mol in FlexX and > -8 kcal/mol in ArgusLab. However, this data requires in vitro and in vivo verification for further consideration.
Collapse
Affiliation(s)
- Raju Dash
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong-4000, Bangladesh
| | | | - S.M. Zahid Hosen
- Molecular Modeling & Drug Design Laboratory (MMDDL), Pharmacology Research
Division, Bangladesh Council of Scientific & Industrial Research (BCSIR), Chittagong-4220, Bangladesh
| | - Zahed Bin Rahim
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong-4000, Bangladesh
| | - Abu Mansur Dinar
- Quality Control Operations, Square Pharmaceutical Ltd, Bangladesh
| | | | - Ramiz Ahmed Sultan
- Department of Pharmacy, University of Chittagong, Chittagong-4331, Bangladesh
| | - Ashekul Islam
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong-4331, Bangladesh
| | - Md Kamrul Hossain
- Department of Pharmacy, University of Chittagong, Chittagong-4331, Bangladesh
| |
Collapse
|
46
|
Liu R, Xu KP, Tan GS. Cyclooxygenase-2 inhibitors in lung cancer treatment: Bench to bed. Eur J Pharmacol 2015; 769:127-33. [DOI: 10.1016/j.ejphar.2015.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/27/2015] [Accepted: 11/04/2015] [Indexed: 01/09/2023]
|
47
|
Co-targeting c-Met and COX-2 leads to enhanced inhibition of lung tumorigenesis in a murine model with heightened airway HGF. J Thorac Oncol 2015; 9:1285-93. [PMID: 25057941 DOI: 10.1097/jto.0000000000000245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND The hepatocyte growth factor (HGF)/c-Met pathway is often dysregulated in non-small-cell lung cancer (NSCLC). HGF activation of c-Met induces cyclooxygenase-2 (COX-2), resulting in downstream stimulation by prostaglandin E2 of additional pathways. Targeting both c-Met and COX-2 might lead to enhanced antitumor effects by blocking signaling upstream and downstream of c-Met. METHODS Effects of crizotinib or celecoxib alone or in combination were tested in NSCLC cells in vitro and in mice transgenic for airway expression of human HGF. RESULTS Proliferation and invasion of NSCLC cells treated with a combination of crizotinib and celecoxib were significantly lower compared with single treatments. Transgenic mice showed enhanced COX-2 expression localized to preneoplastic areas following exposure to the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, which was not present without carcinogen exposure. This shows that COX-2 activity is present during lung tumor development in a high HGF environment. After 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone treatment, a significant decrease in the number of lung tumors per animal was observed after 13-week treatments of crizotinib, celecoxib, or the combination compared with placebo (p < 0.001). With combination treatment, the number of tumors was also significantly lower than single agent treatment (p < 0.001). In the resulting lung tumors, P-c-Met, COX-2, prostaglandin E2, and P-MAPK were significantly downmodulated by combination treatment compared with single treatment. Expression of the epithelial-mesenchymal transition markers E-cadherin and snail was also modulated by combination treatment. CONCLUSIONS In the presence of high HGF, dual inhibition of c-Met and COX-2 may enhance antitumor effects. This combination may have clinical potential in NSCLCs with high HGF/c-Met expression or epithelial-mesenchymal transition phenotype.
Collapse
|
48
|
Szade A, Grochot-Przeczek A, Florczyk U, Jozkowicz A, Dulak J. Cellular and molecular mechanisms of inflammation-induced angiogenesis. IUBMB Life 2015; 67:145-59. [PMID: 25899846 DOI: 10.1002/iub.1358] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/20/2015] [Indexed: 02/06/2023]
Abstract
Blood vessel formation is a fundamental process for the development of organism and tissue regeneration. Of importance, angiogenesis occurring during postnatal development is usually connected with inflammation. Here, we review how molecular and cellular mechanisms underlying inflammatory reactions regulate angiogenesis. Inflamed tissues are characterized by hypoxic conditions and immune cell infiltration. In this review, we describe an interplay of hypoxia-inducible factors (HIFs), HIF1 and HIF2, as well as NF-κB and nitric oxide in the regulation of angiogenesis. The mobilization of macrophages and the differential role of M1 and M2 macrophage subsets in angiogenesis are also discussed. Next, we present the current knowledge about microRNA regulation of inflammation in the context of new blood vessel formation. Finally, we describe how the mechanisms involved in inflammation influence tumor angiogenesis. We underlay and discuss the role of NF-E2-related factor 2/heme oxygenase-1 pathway as crucial in the regulation of inflammation-induced angiogenesis.
Collapse
Affiliation(s)
- Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | | | |
Collapse
|
49
|
DiNicolantonio JJ, McCarty MF, Chatterjee S, Lavie CJ, O'Keefe JH. A higher dietary ratio of long-chain omega-3 to total omega-6 fatty acids for prevention of COX-2-dependent adenocarcinomas. Nutr Cancer 2014; 66:1279-84. [PMID: 25356937 DOI: 10.1080/01635581.2014.956262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Compelling evidence that daily low-dose aspirin decreases risk for a number of adenocarcinomas likely reflects the fact that a modest but consistent inhibition of cyclooxygenase-2 (COX-2) activity can have a meaningful protective impact on risk for such cancers. The cancer-promoting effects of COX-2 are thought to be mediated primarily by prostaglandin E2 (PGE2), synthesized from arachidonic acid. The long-chain omega-3s eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), abundant in many fatty fish, can interfere with the availability of arachidonate to COX-2 by multiple complementary mechanisms; moreover, the PGE3 produced by COX-2 from EPA is a competitive inhibitor of the receptors activated by PGE2. These considerations have given rise to the hypothesis that a high dietary intake of EPA/DHA, relative to omega-6 (from which arachidonate is generated), should lessen risk for a number of adenocarcinomas by impeding PGE2 production and activity-while not posing the risk to vascular health associated with COX-2-specific nonsteroidal antiinflammatory agents. Analyses that focus on studies in which the upper category of fish consumption (not fried or salt-preserved) is 2 or more servings weekly, and on studies that evaluate the association of long-term fish oil supplementation with cancer risk yields a number of findings that are consistent with the hypothesis. Further studies of this nature may help to clarify the impact of adequate regular intakes of long-chain omega-3 on cancer risk, and perhaps provide insight into the dose-dependency of this effect.
Collapse
|
50
|
Yadav VR, Sahoo K, Awasthi V. Preclinical evaluation of 4-[3,5-bis(2-chlorobenzylidene)-4-oxo-piperidine-1-yl]-4-oxo-2-butenoic acid, in a mouse model of lung cancer xenograft. Br J Pharmacol 2014; 170:1436-48. [PMID: 24102070 DOI: 10.1111/bph.12406] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/30/2013] [Accepted: 08/29/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE 4-[3,5-Bis(2-chlorobenzylidene)-4-oxo-piperidine-1-yl]-4-oxo-2-butenoic acid CLEFMA is a new anti-cancer molecule. Here, we investigated changes in apoptosis and inflammatory markers during CLEFMA-induced tumour suppression. EXPERIMENTAL APPROACH Lung adenocarcinoma H441 and A549, and normal lung fibroblast CCL151 cell lines were used, along with a xenograft model of H441 cells implanted in mice. Tumour tissues were analysed by immunoblotting, immunohistochemistry and/or biochemical assays. The ex vivo results were confirmed by performing selected assays in cultured cells. KEY RESULTS CLEFMA-induced cell death was associated with cleavage of caspases 3/9 and PARP. In vivo, CLEFMA treatment resulted in a dose-dependent suppression of tumour growth and (18) F-fluorodeoxyglucose uptake in tumours, along with a reduction in the expression of the proliferation marker Ki-67. In tumour tissue homogenates, the anti-apoptotic markers (cellular inhibitor of apoptosis protein-1(cIAP1), Bcl-xL, Bcl-2, and survivin) were inhibited and the pro-apoptotic Bax and BID were up-regulated. Further, CLEFMA decreased translocation of phospho-p65-NF-κB into the nucleus. In vitro, it inhibited the DNA-binding and transcriptional activity of NF-κB. It also reduced the expression of COX-2 in tumours and significantly depressed serum TNF-α and IL-6 levels. These effects of CLEFMA were accompanied by a reduced transcription and/or translation of the invasion markers VEGF, MMP9, MMP10, Cyclin D1 and ICAM-1. CONCLUSIONS AND IMPLICATIONS Overall, CLEFMA inhibited growth of lung cancer xenografts and this tumour suppression was associated with NF-κB-regulated anti-inflammatory and anti-metastatic effects.
Collapse
Affiliation(s)
- Vivek R Yadav
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | | |
Collapse
|