1
|
Nauman MC, Won JH, Petiwala SM, Vemu B, Lee H, Sverdlov M, Johnson JJ. α-Mangostin Promotes In Vitro and In Vivo Degradation of Androgen Receptor and AR-V7 Splice Variant in Prostate Cancer Cells. Cancers (Basel) 2023; 15:2118. [PMID: 37046780 PMCID: PMC10093438 DOI: 10.3390/cancers15072118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
A major limitation of current prostate cancer pharmacotherapy approaches is the inability of these compounds to target androgen receptor variants or mutants that develop during prostate cancer progression. The demand for novel therapeutics to prevent, slow, and treat prostate cancer is significant because FDA approved anti-androgens are associated with adverse events and can eventually drive drug-resistant prostate cancer. This study evaluated α-mangostin for its novel ability to degrade the androgen receptor and androgen receptor variants. α-Mangostin is one of more than 70 isoprenylated xanthones isolated from Garcinia mangostana that we have been evaluating for their anticancer potential. Prostate cancer cells treated with α-mangostin exhibited decreased levels of wild-type and mutated androgen receptors. Immunoblot, immunoprecipitation, and transfection experiments demonstrated that the androgen receptor was ubiquitinated and subsequently degraded via the proteasome, which we hypothesize occurs with the assistance of BiP, an ER chaperone protein that we have shown to associate with the androgen receptor. We also evaluated α-mangostin for its antitumor activity and promotion of androgen receptor degradation in vivo. In summary, our study demonstrates that androgen receptor degradation occurs through the novel activation of BiP and suggests a new therapeutic approach for prostate cancer.
Collapse
Affiliation(s)
- Mirielle C. Nauman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jong Hoon Won
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sakina M. Petiwala
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Bhaskar Vemu
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hyun Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
- Biophysics Core at Research Resource Center, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Maria Sverdlov
- Research Histology and Tissue Imaging Core, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jeremy J. Johnson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
2
|
Bosland MC, Schlicht MJ, Deng Y, Lü J. Effect of Dietary Methylseleninic Acid and Se-Methylselenocysteine on Carcinogen-Induced, Androgen-Promoted Prostate Carcinogenesis in Rats. Nutr Cancer 2022; 74:3761-3768. [PMID: 35762420 DOI: 10.1080/01635581.2022.2093387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Selenomethionine (SeMet) did not prevent prostate cancer in the SELECT trial and in two hormone-driven rat models. However, we have shown that daily oral bolus administration of next-generation selenium forms, methylseleninic acid (MSeA) and Se-methylselenocysteine (MSeC) at 3 mg Se/kg body weight, inhibits prostate carcinogenesis in the TRAMP and pten-deficient mouse models and In Vivo growth of human prostate cancer cells. Here, we determined whether these Se forms prevent prostate cancer in a chemically induced-androgen promoted carcinogenesis rat model in which SeMet was not preventive. WU rats were treated with methylnitrosourea, and one week later, slow-release testosterone implants when they were randomized to groups fed AIN-93M diet supplemented with 3 ppm selenium as MSeA or MSeC or control diet. Mean survival, tumor incidence in all accessory sex glands combined (dorsolateral and anterior prostate plus seminal vesicle) and the incidence of tumors confined to dorsolateral and/or anterior prostate were not statistically significantly different among the groups. Thus, MSeA and MSeC feeding was not preventive in this model. The contrast with the inhibitory effects of MSeA and MSeC in mouse models may be due to differences in carcinogenic mechanisms, selenium dosage, delivery mode, and pharmacokinetics or fundamental rat-mouse differences in selenium metabolism.
Collapse
Affiliation(s)
- Maarten C Bosland
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Michael J Schlicht
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yibin Deng
- Department of Urology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Junxuan Lü
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
3
|
Gasmi A, Bjørklund G, Noor S, Semenova Y, Dosa A, Pen JJ, Menzel A, Piscopo S, Wirth N, Costea DO. Nutritional and surgical aspects in prostate disorders. Crit Rev Food Sci Nutr 2022:1-17. [PMID: 35021909 DOI: 10.1080/10408398.2021.2013158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Prostate disorders are commonplace in medicine, especially in older men, with prostatitis, benign prostatic hyperplasia, and prostate cancer being the most abundant pathologies. The complexity of this organ, however, turns treatment into a challenge. In this review, we aim to provide insight into the efficacy of alternative treatments, which are not normally used in conventional medicine, with a particular focus on nutrients. In order to understand why and how nutrition can be beneficial in diseases of the prostate, we give an overview of the known characteristics and features of this organ. Then, we provide a summary of the most prevalent prostate illnesses. Finally, we propose nutrition-based treatment in each of these prostate problems, based on in-depth research concerning its effects in this context, with an emphasis on surgery. Overall, we plead for an upgrade of this form of alternative treatment to a fully recognized mode of therapy for the prostate.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France.,Laboratoire Interuniversitaire de Biologie de la Motricité, Université Lyon 1, Villeurbanne, France
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - Sadaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Yuliya Semenova
- Department of Neurology, Ophthalmology, ENT, Semey Medical University, Semey, Kazakhstan.,CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | - Alexandru Dosa
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| | - Joeri J Pen
- Diabetes Clinic, Department of Internal Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Department of Nutrition, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Salva Piscopo
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | | | | |
Collapse
|
4
|
Ahmed M, Goh C, Saunders E, Cieza-Borrella C, Kote-Jarai Z, Schumacher FR, Eeles R. Germline genetic variation in prostate susceptibility does not predict outcomes in the chemoprevention trials PCPT and SELECT. Prostate Cancer Prostatic Dis 2020; 23:333-342. [PMID: 31776447 PMCID: PMC7237354 DOI: 10.1038/s41391-019-0181-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 06/02/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND The development of prostate cancer can be influenced by genetic and environmental factors. Numerous germline SNPs influence prostate cancer susceptibility. The functional pathways in which these SNPs increase prostate cancer susceptibility are unknown. Finasteride is currently not being used routinely as a chemoprevention agent but the long term outcomes of the PCPT trial are awaited. The outcomes of the SELECT trial have not recommended the use of chemoprevention in preventing prostate cancer. This study investigated whether germline risk SNPs could be used to predict outcomes in the PCPT and SELECT trial. METHODS Genotyping was performed in European men entered into the PCPT trial (n = 2434) and SELECT (n = 4885). Next generation genotyping was performed using Affymetrix® Eureka™ Genotyping protocols. Logistic regression models were used to test the association of risk scores and the outcomes in the PCPT and SELECT trials. RESULTS Of the 100 SNPs, 98 designed successfully and genotyping was validated for samples genotyped on other platforms. A number of SNPs predicted for aggressive disease in both trials. Men with a higher polygenic score are more likely to develop prostate cancer in both trials, but the score did not predict for other outcomes in the trial. CONCLUSION Men with a higher polygenic risk score are more likely to develop prostate cancer. There were no interactions of these germline risk SNPs and the chemoprevention agents in the SELECT and PCPT trials.
Collapse
Affiliation(s)
- Mahbubl Ahmed
- The Institute of Cancer Research, Royal Marsden Hospital, NHS Foundation Trust, 123 Old Brompton Road, London, SW7 3RP, UK.
| | - Chee Goh
- The Institute of Cancer Research, Royal Marsden Hospital, NHS Foundation Trust, 123 Old Brompton Road, London, SW7 3RP, UK
| | - Edward Saunders
- The Institute of Cancer Research, Royal Marsden Hospital, NHS Foundation Trust, 123 Old Brompton Road, London, SW7 3RP, UK
| | - Clara Cieza-Borrella
- The Institute of Cancer Research, Royal Marsden Hospital, NHS Foundation Trust, 123 Old Brompton Road, London, SW7 3RP, UK
| | - Zsofia Kote-Jarai
- The Institute of Cancer Research, Royal Marsden Hospital, NHS Foundation Trust, 123 Old Brompton Road, London, SW7 3RP, UK
| | - Fredrick R Schumacher
- Department of Epidemiology and Biostatistics, Case Western Reserve University; Seidman Cancer Center, University Hospitals, Cleveland, OH, USA
| | - Ros Eeles
- The Institute of Cancer Research, Royal Marsden Hospital, NHS Foundation Trust, 123 Old Brompton Road, London, SW7 3RP, UK
| |
Collapse
|
5
|
Van Rompay MI, Curtis Nickel J, Ranganathan G, Kantoff PW, Solomon KR, Lund JL, McKinlay JB. Impact of 5α-reductase inhibitor and α-blocker therapy for benign prostatic hyperplasia on prostate cancer incidence and mortality. BJU Int 2018; 123:511-518. [PMID: 30216624 DOI: 10.1111/bju.14534] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To investigate the use of 5α-reductase inhibitors (5ARIs) and α-blockers among men with benign prostatic hyperplasia (BPH) in relation to prostate cancer (PCa) incidence, severity and mortality. PATIENTS AND METHODS A retrospective 20-year cohort study in men residing in Saskatchewan, aged 40-89 years, with a BPH-coded medical claim between 1995 and 2014, was conducted. Cox proportional hazards regression was used to compare incidence of PCa diagnosis, metastatic PCa, Gleason score 8-10 PCa, and PCa mortality among 5ARI users (n = 4 571), α-blocker users (n = 7 764) and non-users (n = 11 677). RESULTS In comparison with both non-users and α-blocker users, 5ARI users had a ~40% lower risk of a PCa diagnosis (11.0% and 11.4% vs 5.8%, respectively), and α-blocker users had an 11% lower risk of a PCa diagnosis compared with non-users. Overall, the incidence of metastatic PCa and PCa mortality was not significantly different among 5ARI or α-blocker users compared with non-users (adjusted hazard ratios [HR] of metastatic PCa: 1.12 and 1.13, respectively, and PCa mortality: 1.11 and 1.18, respectively, P > 0.05 for both drugs), but both 5ARI and a-blocker users had ~30% higher risk of Gleason score 8-10 cancer, adjusted HR 1.37, 95% confidence interval [CI] 1.03-1.82, P = 0.03, and adjusted HR 1.28, 95% CI 1.03-1.59, P = 0.02, respectively compared with non-users. CONCLUSION The use of 5ARIs was associated with lower risk of PCa diagnosis, regardless of comparison group. Risk of high grade PCa was higher among both 5ARI users and α-blocker users compared with non-users; however, this did not translate into higher risk of PCa mortality.
Collapse
Affiliation(s)
| | - J Curtis Nickel
- Kingston General Hospital, Queen's University, Kingston, ON, Canada
| | | | - Philip W Kantoff
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Keith R Solomon
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, USA.,Departments of Orthopaedic Surgery and Urology, Boston Children's Hospital, Boston, MA, USA
| | - Jennifer L Lund
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John B McKinlay
- HealthCore-NERI, Watertown, MA, USA.,Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
6
|
Rivero JR, Thompson IM, Liss MA, Kaushik D. Chemoprevention in Prostate Cancer: Current Perspective and Future Directions. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a030494. [PMID: 29311128 DOI: 10.1101/cshperspect.a030494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chemoprevention of prostate cancer aims to reduce the mortality as well as the public burden of overdetection, which increases anxiety, cost, and morbidity related to the disease. The role of 5-α-reductase inhibitors has been well investigated and shown to decrease the risk of prostate cancer. No current evidence exists to encourage the use of nutrients or vitamins as chemopreventive agents. The modulation of inflammation is one of the most promising targets for chemoprevention of prostate cancer.
Collapse
Affiliation(s)
- J Ricardo Rivero
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Ian M Thompson
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229.,Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Michael A Liss
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229.,Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Dharam Kaushik
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229.,Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| |
Collapse
|
7
|
Yan Q, Chen X, Gong H, Qiu P, Xiao X, Dang S, Hong A, Ma Y. Delivery of a TNF-α-derived peptide by nanoparticles enhances its antitumor activity by inducing cell-cycle arrest and caspase-dependent apoptosis. FASEB J 2018; 32:fj201800377R. [PMID: 30161002 DOI: 10.1096/fj.201800377r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prostate cancer is the second-most common malignancy of the male genitourinary system. TNF-α has attracted intense attention as a potential therapeutic agent against various cancers. However, its therapeutic application is restricted by short half life and severe toxic side-effects. In this study, we constructed a stable nanodrug, called TNF-α-derived polypeptide (P16)-conjugated, chitosan (CTS)-modified selenium nanoparticle (SC; SCP), which is composed of SC as a slow-release carrier conjugated to P16. SCP had significant inhibitory effects on multiple types of tumor cells, especially DU145 prostate cancer cells, but not on RWPE-1 normal human prostate epithelial cells. SCP could induce G0/G1 cell-cycle arrest and apoptosis in DU145 cells more effectively than could P16 and TNF-α. In DU145 xenograft tumor models, SCP exerted much stronger antitumor effects than P16 or estramustine (the clinical drug for prostate cancer) but caused fewer toxic side-effects. In addition, SCP significantly inhibited proliferation and accelerated apoptosis in DU145 xenograft tumors. Further mechanistic studies revealed that SCP exerted antitumor effects via activation of the p38 MAPK/JNK pathway, thus inducing G0/G1 cell-cycle arrest and caspase-dependent apoptosis. These findings suggest that SCP may represent a potential long-lasting therapeutic agent for human prostate cancer with fewer side effects.-Yan, Q., Chen, X., Gong, H., Qiu, P., Xiao, X., Dang, S., Hong, A., Ma, Y. Delivery of a TNF-α-derived peptide by nanoparticles enhances its antitumor activity by inducing cell-cycle arrest and caspase-dependent apoptosis.
Collapse
Affiliation(s)
- Qiuxia Yan
- Department of Cellular Biology, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Institute of Biomedicine, Jinan University, Guangzhou, China
- Center for Reproductive Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Xueming Chen
- Department of Cellular Biology, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Huizhen Gong
- Department of Cellular Biology, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Pei Qiu
- Department of Cellular Biology, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Xing Xiao
- Department of Cellular Biology, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Shiying Dang
- Department of Cellular Biology, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - An Hong
- Department of Cellular Biology, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Yi Ma
- Department of Cellular Biology, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Institute of Biomedicine, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Pioglitazone, a Peroxisome Proliferator-Activated Receptor γ Agonist, Suppresses Rat Prostate Carcinogenesis. Int J Mol Sci 2016; 17:ijms17122071. [PMID: 27973395 PMCID: PMC5187871 DOI: 10.3390/ijms17122071] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/24/2016] [Accepted: 12/02/2016] [Indexed: 12/13/2022] Open
Abstract
Pioglitazone (PGZ), a peroxisome proliferator-activated receptor γ agonist, which is known as a type 2 diabetes drug, inhibits cell proliferation in various cancer cell lines, including prostate carcinomas. This study focused on the effect of PGZ on prostate carcinogenesis using a transgenic rat for an adenocarcinoma of prostate (TRAP) model. Adenocarcinoma lesions as a percentage of overall lesions in the ventral prostate were significantly reduced by PGZ treatment in a dose-dependent manner. The number of adenocarcinomas per given area in the ventral prostate was also significantly reduced by PGZ treatment. The Ki67 labeling index in the ventral prostate was also significantly reduced by PGZ. Decreased cyclin D1 expression in addition to the inactivation of both p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)κB were detected in PGZ-treated TRAP rat groups. In LNCaP, a human androgen-dependent prostate cancer cell line, PGZ also inhibited cyclin D1 expression and the activation of both p38 MAPK and NFκB. The suppression of cultured cell growth was mainly regulated by the NFκB pathway as detected using specific inhibitors in both LNCaP and PC3, a human androgen-independent prostate cancer cell line. These data suggest that PGZ possesses a chemopreventive potential for prostate cancer.
Collapse
|
9
|
Golabek T, Bukowczan J, Sobczynski R, Leszczyszyn J, Chlosta PL. The role of micronutrients in the risk of urinary tract cancer. Arch Med Sci 2016; 12:436-47. [PMID: 27186192 PMCID: PMC4848374 DOI: 10.5114/aoms.2016.59271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/20/2014] [Indexed: 12/13/2022] Open
Abstract
Prostate, bladder and kidney cancers remain the most common urological malignancies worldwide, and the prevention and treatment of these diseases pose a challenge to clinicians. In recent decades, many studies have been conducted to assess the association between supplementation with selected vitamins and elements and urinary tract tumour initiation and development. Here, we review the relationship between vitamins A, B, D, and E, in addition to calcium, selenium, and zinc, and the risk of developing prostate, kidney and bladder cancer. A relatively consistent body of evidence suggests that large daily doses of calcium (> 2,000 mg/day) increase the risk of prostate cancer. Similarly, supplementation with 400 IU/day of vitamin E carries a significant risk of prostate cancer. However, there have been many conflicting results regarding the effect of these nutrients on kidney and bladder neoplasms. Moreover, the role of other compounds in urinary tract carcinogenesis needs further clarification.
Collapse
Affiliation(s)
- Tomasz Golabek
- Department of Urology, Jagiellonian University Medical College, Krakow, Poland
| | - Jakub Bukowczan
- Department of Endocrinology and Diabetes, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, United Kingdom
| | - Robert Sobczynski
- Department of Cardiovascular Surgery and Transplantology, The John Paul II Hospital, Krakow, Poland
| | | | - Piotr L Chlosta
- Department of Urology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
10
|
Friis S, Kesminiene A, Espina C, Auvinen A, Straif K, Schüz J. European Code against Cancer 4th Edition: Medical exposures, including hormone therapy, and cancer. Cancer Epidemiol 2015; 39 Suppl 1:S107-19. [PMID: 26390952 DOI: 10.1016/j.canep.2015.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/27/2015] [Accepted: 08/06/2015] [Indexed: 12/13/2022]
Abstract
The 4th edition of the European Code against Cancer recommends limiting - or avoiding when possible - the use of hormone replacement therapy (HRT) because of the increased risk of cancer, nevertheless acknowledging that prescription of HRT may be indicated under certain medical conditions. Current evidence shows that HRT, generally prescribed as menopausal hormone therapy, is associated with an increased risk of cancers of the breast, endometrium, and ovary, with the risk pattern depending on factors such as the type of therapy (oestrogen-only or combined oestrogen-progestogen), duration of treatment, and initiation according to the time of menopause. Carcinogenicity has also been established for anti-neoplastic agents used in cancer therapy, immunosuppressants, oestrogen-progestogen contraceptives, and tamoxifen. Medical use of ionising radiation, an established carcinogen, can provide major health benefits; however, prudent practices need to be in place, with procedures and techniques providing the needed diagnostic information or therapeutic gain with the lowest possible radiation exposure. For pharmaceutical drugs and medical radiation exposure with convincing evidence on their carcinogenicity, health benefits have to be balanced against the risks; potential increases in long-term cancer risk should be considered in the context of the often substantial and immediate health benefits from diagnosis and/or treatment. Thus, apart from HRT, no general recommendations on reducing cancer risk were given for carcinogenic drugs and medical radiation in the 4th edition of European Code against Cancer. It is crucial that the application of these measures relies on medical expertise and thorough benefit-risk evaluation. This also pertains to cancer-preventive drugs, and self-medication with aspirin or other potential chemopreventive drugs is strongly discouraged because of the possibility of serious, potentially lethal, adverse events.
Collapse
Affiliation(s)
- Søren Friis
- Danish Cancer Society Research Center, Danish Cancer Society, Strandboulevarden 49, 2100 Copenhagen, Denmark; Department of Public Health, University of Copenhagen, 2100 Copenhagen, and Department of Clinical Epidemiology, Faculty of Health, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Ausrele Kesminiene
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon, France
| | - Carolina Espina
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon, France
| | - Anssi Auvinen
- School of Health Sciences, University of Tampere, FI-33014 Tampere, Finland; STUK-Radiation and Nuclear Safety Authority, Research and Environmental Surveillance, FI-00881 Helsinki, Finland
| | - Kurt Straif
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon, France
| | - Joachim Schüz
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon, France.
| |
Collapse
|
11
|
Balekundri U, Sajjan SS, Madagi SB. Two dimensional quantitative structure activity relationship models for 5alpha-reductase type 2 inhibitors. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2015. [DOI: 10.1007/s40005-015-0173-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Park E, Kwon HY, Jung JH, Jung DB, Jeong A, Cheon J, Kim B, Kim SH. Inhibition of Myeloid Cell Leukemia 1 and Activation of Caspases Are Critically Involved in Gallotannin-induced Apoptosis in Prostate Cancer Cells. Phytother Res 2015. [DOI: 10.1002/ptr.5371 pmid: 26014377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Eunkyung Park
- Graduate School of East-West Medical Science; Kyung Hee University; 1732 Deogyeong-daero, Giheung-gu Yongin 446-701 South Korea
| | - Hee Young Kwon
- College of Korean Medicine; Kyung Hee University; 1 Hoegi-dong, Dongdaemun-gu Seoul 130-701 South Korea
| | - Ji Hoon Jung
- College of Korean Medicine; Kyung Hee University; 1 Hoegi-dong, Dongdaemun-gu Seoul 130-701 South Korea
| | - Deok-Beom Jung
- College of Korean Medicine; Kyung Hee University; 1 Hoegi-dong, Dongdaemun-gu Seoul 130-701 South Korea
| | - Arong Jeong
- College of Korean Medicine; Kyung Hee University; 1 Hoegi-dong, Dongdaemun-gu Seoul 130-701 South Korea
| | - Jinhong Cheon
- School of Korean Medicine; Pusan National University; Busandaehak-ro 49, Mulgeum-eup Yangsan-si Gyeongsangnam-do 626-870 South Korea
| | - Bonglee Kim
- College of Korean Medicine; Kyung Hee University; 1 Hoegi-dong, Dongdaemun-gu Seoul 130-701 South Korea
| | - Sung-Hoon Kim
- College of Korean Medicine; Kyung Hee University; 1 Hoegi-dong, Dongdaemun-gu Seoul 130-701 South Korea
| |
Collapse
|
13
|
Park E, Kwon HY, Jung JH, Jung DB, Jeong A, Cheon J, Kim B, Kim SH. Inhibition of Myeloid Cell Leukemia 1 and Activation of Caspases Are Critically Involved in Gallotannin-induced Apoptosis in Prostate Cancer Cells. Phytother Res 2015; 29:1225-36. [DOI: 10.1002/ptr.5371] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Eunkyung Park
- Graduate School of East-West Medical Science; Kyung Hee University; 1732 Deogyeong-daero, Giheung-gu Yongin 446-701 South Korea
| | - Hee Young Kwon
- College of Korean Medicine; Kyung Hee University; 1 Hoegi-dong, Dongdaemun-gu Seoul 130-701 South Korea
| | - Ji Hoon Jung
- College of Korean Medicine; Kyung Hee University; 1 Hoegi-dong, Dongdaemun-gu Seoul 130-701 South Korea
| | - Deok-Beom Jung
- College of Korean Medicine; Kyung Hee University; 1 Hoegi-dong, Dongdaemun-gu Seoul 130-701 South Korea
| | - Arong Jeong
- College of Korean Medicine; Kyung Hee University; 1 Hoegi-dong, Dongdaemun-gu Seoul 130-701 South Korea
| | - Jinhong Cheon
- School of Korean Medicine; Pusan National University; Busandaehak-ro 49, Mulgeum-eup Yangsan-si Gyeongsangnam-do 626-870 South Korea
| | - Bonglee Kim
- College of Korean Medicine; Kyung Hee University; 1 Hoegi-dong, Dongdaemun-gu Seoul 130-701 South Korea
| | - Sung-Hoon Kim
- College of Korean Medicine; Kyung Hee University; 1 Hoegi-dong, Dongdaemun-gu Seoul 130-701 South Korea
| |
Collapse
|
14
|
Lacy JM, Kyprianou N. A tale of two trials: The impact of 5α-reductase inhibition on prostate cancer (Review). Oncol Lett 2014; 8:1391-1396. [PMID: 25202340 PMCID: PMC4156162 DOI: 10.3892/ol.2014.2388] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 07/01/2014] [Indexed: 01/06/2023] Open
Abstract
The use of 5α-reductase inhibitors (5α-RIs) as prostate cancer chemoprevention agents is controversial. Two large randomized trials, the Prostate Cancer Prevention Trial (PCPT) and the Reduction by Dutasteride of Prostate Cancer Events (REDUCE) Trial, have both shown a decreased incidence of prostate cancer in patients administered with 5α-RIs. Both studies showed, however, an increased risk of higher-grade prostate cancer. Numerous studies have since analyzed the inherent biases in these landmark studies and have used mathematical modeling to estimate the true incidence of prostate cancer and the risk for high-grade prostate cancer in patients undergoing 5α-RI treatment. All primary publications associated with the PCPT and REDUCE studies were reviewed in detail. Pertinent references from the above publications were assessed and a literature search of all published articles associated with PCPT, REDUCE or 5α-RIs as chemopreventative agents through October 2013 was performed using Pubmed/Medline. PCPT and REDUCE both showed a significant decrease in the incidence of prostate cancer following the administration of 5α-reductase inhibitor, as compared with placebo, suggesting that 5α-RIs may be effective agents for prostate cancer chemoprevention. Inherent biases in the design of these two studies may have caused an artificial increase in the number of high-grade cancers reported. Mathematical models, that integrated data from these trials, revealed neither an increased nor decreased risk of high-grade disease when taking these biases into consideration. Moderately strong evidence exists that 5α-RIs may reduce the risk of prostate cancer. PCPT and REDUCE showed a decreased prevalence of prostate cancer in patients taking 5α-RIs. Urologists should have a working knowledge of these studies and discuss with patients the risks and benefits of 5α-RI treatment. Further studies to evaluate the cost-effectiveness of chemoprevention with 5α-RIs and appropriate patient selection are warranted.
Collapse
Affiliation(s)
- John M Lacy
- Department of Urology, University of Kentucky College of Medicine, Lexington, KY 40536-0293, USA
| | - Natasha Kyprianou
- Department of Urology, University of Kentucky College of Medicine, Lexington, KY 40536-0293, USA ; Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536-0293, USA
| |
Collapse
|
15
|
Li J, Chong T, Wang Z, Chen H, Li H, Cao J, Zhang P, Li H. A novel anti‑cancer effect of resveratrol: reversal of epithelial‑mesenchymal transition in prostate cancer cells. Mol Med Rep 2014; 10:1717-24. [PMID: 25069516 PMCID: PMC4148361 DOI: 10.3892/mmr.2014.2417] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 06/09/2014] [Indexed: 11/06/2022] Open
Abstract
Carcinoma progression is associated with the loss of epithelial features and the acquisition of a mesenchymal phenotype, a process known as epithelial-mesenchymal transition (EMT). Resveratrol, a natural polyphenolic compound found in grapes, berries and peanuts, has a wide range of pharmacological properties, including anti-tumor metastasis properties. The underlying mechanism through which resveratrol inhibits metastasis of prostate cancer (PCa) is not yet fully understood; however, it is thought to be associated with the disruption of EMT. In the present study, lipopolysaccharide (LPS) was used to trigger EMT in PC-3 and LNCaP PCa cell lines, and the cell lines were subsequently treated with resveratrol. The results demonstrated that exposure of PC-3 and LNCaP cells to LPS resulted in morphological alterations characteristic of EMT, as well as an increase in the expression of the mesenchymal marker vimentin and a decrease in the expression of E-cadherin. In addition, LPS exposure resulted in an increase in cell motility, along with an upregulation of the transcription factor glioma-associated oncogene homolog 1 (Gli1). However, treatment with resveratrol inhibited LPS-induced morphological changes, decreased the expression of LPS-induced markers of EMT and inhibited the expression of Gli1, resulting in the inhibition of in vitro cell motility and invasiveness. These results provide a novel perspective for the anti-invasion mechanism of resveratrol, suggesting that the effect is in part due to its ability to inhibit the EMT process through the Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Jianping Li
- Department of Urology, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Tie Chong
- Department of Urology, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ziming Wang
- Department of Urology, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Haiwen Chen
- Department of Urology, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hecheng Li
- Department of Urology, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jun Cao
- Department of Urology, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Peng Zhang
- Department of Urology, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hongliang Li
- Department of Urology, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
16
|
Ting H, Deep G, Agarwal C, Agarwal R. The strategies to control prostate cancer by chemoprevention approaches. Mutat Res 2014; 760:1-15. [PMID: 24389535 DOI: 10.1016/j.mrfmmm.2013.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/23/2013] [Accepted: 12/12/2013] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCA) is the most commonly diagnosed cancer in men in the United States with growing worldwide incidence. Despite intensive investment in improving early detection, PCA often escapes timely detection and mortality remains high; this malignancy being the second highest cancer-associated mortality in American men. Collectively, health care costs of PCA results in an immense financial burden that is only expected to grow. Additionally, even in cases of successful treatment, PCA is associated with long-term and pervasive effects on patients. A proactive alternative to treat PCA is to prevent its occurrence and progression prior to symptomatic malignancy. This may serve to address the issue of burgeoning healthcare costs and increasing number of sufferers. One potential regimen in service of this alternative is PCA chemoprevention. Here, chemical compounds with cancer preventive efficacy are identified on the basis of their potential in a host of categories: their historical medicinal use, correlation with reduced risk in population studies, non-toxicity, their unique chemical properties, or their role in biological systems. PCA chemopreventive agents are drawn from multiple broad classes of chemicals, themselves further subdivided based on source or potential effect, with most derived from natural products. Many such compounds have shown efficacy, varying from inhibiting deregulated PCA cell signaling, proliferation, epithelial to mesenchymal transition (EMT), invasion, metastasis, tumor growth and angiogenesis and inducing apoptosis. Overall, these chemopreventive agents show great promise in PCA pre-clinical models, though additional work remains to be done in effectively translating these findings into clinical use.
Collapse
Affiliation(s)
- Harold Ting
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States
| | - Gagan Deep
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States; University of Colorado Cancer Center, University of Colorado, Aurora, CO, United States
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States; University of Colorado Cancer Center, University of Colorado, Aurora, CO, United States
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States; University of Colorado Cancer Center, University of Colorado, Aurora, CO, United States.
| |
Collapse
|
17
|
Dorai T, Diouri J, O'Shea O, Doty SB. Curcumin Inhibits Prostate Cancer Bone Metastasis by Up-Regulating Bone Morphogenic Protein-7 in Vivo.. ACTA ACUST UNITED AC 2014; 5:369-386. [PMID: 24949215 DOI: 10.4236/jct.2014.54044] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A number of studies have focused on the beneficial properties of Curcumin (diferuloyl methane, used in South Asian cuisine and traditional medicine) such as the chemoprevention of cancer. Recent studies have also indicated that this material has significant benefits for the treatment of cancer and is currently undergoing several clinical trials. We have been interested in the application of this compound as a therapeutic agent for advanced prostate cancer, particularly the skeletal complications in this malignancy. Our earlier work indicated that this compound could inhibit the osteomimetic properties which occur in castration resistant prostate cancer cells, by interfering with the common denominators between these cancer cells and the bone cells in the metastatic tumor microenvironment, namely the osteoblasts and the osteoclast. We predicted that curcumin could break the vicious cycle of reciprocal stimulation that results in uncontrolled osteolysis in the bony matrix. In this work, we have evaluated the potential of this compound in inhibiting the bone metastasis of hormone refractory prostate cancer cells in an established animal model. Our results strongly suggest that curcumin modulates the TGF-β signaling that occurs due to bone matrix degradation by up-regulating the metastasis inhibitory bone morphogenic protein-7 (BMP- 7). This enhancement of BMP-7 in the context of TGF-βin the tumor microenvironment is shown to enhance the mesenchymal-to-epithelial transition. Most importantly, we show that as a result of BMP-7 up-regulation, a novel brown/beige adipogenic differentiation program is also up-regu- lated which plays a role in the inhibition of bone metastasis. Our results suggest that curcumin may subvert the TGF-βsignaling to an alternative adipogenic differentiation program in addition to the previously established interference with the osteomimetic properties, thus inhibiting the bone metastatic processes in a chemopreventive as well as therapeutic setting.
Collapse
Affiliation(s)
- Thambi Dorai
- Department of Urology, New York Medical College, Valhalla, USA
| | - Janane Diouri
- Analytical Microscopy Laboratory, Hospital for Special Surgery, New York, USA
| | - Orla O'Shea
- Analytical Microscopy Laboratory, Hospital for Special Surgery, New York, USA
| | - Stephen B Doty
- Analytical Microscopy Laboratory, Hospital for Special Surgery, New York, USA
| |
Collapse
|