1
|
González A, Fullaondo A, Odriozola A. Microbiota-associated mechanisms in colorectal cancer. ADVANCES IN GENETICS 2024; 112:123-205. [PMID: 39396836 DOI: 10.1016/bs.adgen.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, ranking third in terms of incidence and second as a cause of cancer-related death. There is growing scientific evidence that the gut microbiota plays a key role in the initiation and development of CRC. Specific bacterial species and complex microbial communities contribute directly to CRC pathogenesis by promoting the neoplastic transformation of intestinal epithelial cells or indirectly through their interaction with the host immune system. As a result, a protumoural and immunosuppressive environment is created conducive to CRC development. On the other hand, certain bacteria in the gut microbiota contribute to protection against CRC. In this chapter, we analysed the relationship of the gut microbiota to CRC and the associations identified with specific bacteria. Microbiota plays a key role in CRC through various mechanisms, such as increased intestinal permeability, inflammation and immune system dysregulation, biofilm formation, genotoxin production, virulence factors and oxidative stress. Exploring the interaction between gut microbiota and tumourigenesis is essential for developing innovative therapeutic approaches in the fight against CRC.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| |
Collapse
|
2
|
Alvarez-Arzola R, Oliver L, Messmer MM, Twum DYF, Lee KP, Muhitch JB, Mesa C, Abrams SI. A Bacterial and Ganglioside-based Nanoparticle Initiates Reprogramming of Macrophages and Promotes Antitumor Phenotypes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:475-486. [PMID: 38117752 DOI: 10.4049/jimmunol.2300256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/19/2023] [Indexed: 12/22/2023]
Abstract
Macrophages represent the most abundant immune component of the tumor microenvironment and often exhibit protumorigenic (M2-like) phenotypes that contribute to disease progression. Despite their generally accepted protumorigenic role, macrophages can also display tumoricidal (or M1-like) behavior, revealing that macrophages can be functionally reprogrammed, depending on the cues received within the tumor microenvironment. Moreover, such plasticity may be achieved by pharmacologic or biologic interventions. To that end, we previously demonstrated that a novel immunomodulator termed the "very small size particle" (VSSP) facilitates maturation of dendritic cells and differentiation of myeloid-derived suppressor cells to APCs with reduced suppressive activity in cancer models. VSSP was further shown to act in the bone marrow to drive the differentiation of progenitors toward monocytes, macrophages, and dendritic cells during emergency myelopoiesis. However, the underlying mechanisms for VSSP-driven alterations in myeloid differentiation and function remained unclear. In this study, in mouse models, we focused on macrophages and tested the hypothesis that VSSP drives macrophages toward M1-like functional states via IRF8- and PU.1-dependent mechanisms. We further hypothesized that such VSSP-mediated actions would be accompanied by enhanced antitumor responses. Overall, we showed that (1) VSSP drives naive or M2-derived macrophages to M1-like states, (2) the M1-like state induced by VSSP occurs via IRF8- and PU.1-dependent mechanisms, and (3) single-agent VSSP induces an antitumor response that is accompanied by alterations in the intratumoral myeloid compartment. These results provide a deeper mechanistic underpinning of VSSP and strengthen its use to drive M1-like responses in host defense, including cancer.
Collapse
Affiliation(s)
- Rydell Alvarez-Arzola
- Department of Immunoregulation, Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | - Liliana Oliver
- Department of Immunoregulation, Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | | | - Danielle Y F Twum
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Kelvin P Lee
- IU Simon Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Jason B Muhitch
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Circe Mesa
- Innovative Immunotherapy Alliance S.A., Mariel, Artemisa, Cuba
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| |
Collapse
|
3
|
Chaudhri A, Bu X, Wang Y, Gomez M, Torchia JA, Hua P, Hung SH, Davies MA, Lizee GA, von Andrian U, Hwu P, Freeman GJ. The CX3CL1-CX3CR1 chemokine axis can contribute to tumor immune evasion and blockade with a novel CX3CR1 monoclonal antibody enhances response to anti-PD-1 immunotherapy. Front Immunol 2023; 14:1237715. [PMID: 37771579 PMCID: PMC10524267 DOI: 10.3389/fimmu.2023.1237715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
CX3CL1 secreted in the tumor microenvironment serves as a chemoattractant playing a critical role in metastasis of CX3CR1 expressing cancer cells. CX3CR1 can be expressed in both cancer and immune-inhibitory myeloid cells to facilitate their migration. We generated a novel monoclonal antibody against mouse CX3CR1 that binds to CX3CR1 and blocks the CX3CL1-CX3CR1 interaction. We next explored the immune evasion strategies implemented by the CX3CL1-CX3CR1 axis and find that it initiates a resistance program in cancer cells that results in 1) facilitation of tumor cell migration, 2) secretion of soluble mediators to generate a pro-metastatic niche, 3) secretion of soluble mediators to attract myeloid populations, and 4) generation of tumor-inflammasome. The CX3CR1 monoclonal antibody reduces migration of tumor cells and decreases secretion of immune suppressive soluble mediators by tumor cells. In combination with anti-PD-1 immunotherapy, this CX3CR1 monoclonal antibody enhances survival in an immunocompetent mouse colon carcinoma model through a decrease in tumor-promoting myeloid populations. Thus, this axis is involved in the mechanisms of resistance to anti-PD-1 immunotherapy and the combination therapy can overcome a portion of the resistance mechanisms to anti-PD-1.
Collapse
Affiliation(s)
- Apoorvi Chaudhri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Xia Bu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Yunfei Wang
- Department of Clinical Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Michael Gomez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - James A. Torchia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Ping Hua
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Shao-Hsi Hung
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Michael A. Davies
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gregory A. Lizee
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ulrich von Andrian
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, United States
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Patrick Hwu
- Department of Clinical Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Alvarez-Arzola R, Bancaro N, Lai P, Attanasio G, Pellegrini L, Troiani M, Colucci M, Mosole S, Pasquini E, Alimonti A, Mesa C. VSSP-activated macrophages mediate senescence and tumor inhibition in a preclinical model of advanced prostate cancer. Cell Commun Signal 2023; 21:76. [PMID: 37055829 PMCID: PMC10100133 DOI: 10.1186/s12964-023-01095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/07/2023] [Indexed: 04/15/2023] Open
Abstract
Androgen deprivation therapy (ADT) is a standard therapy for prostate cancer (PCa). Though disseminated disease is initially sensitive to ADT, an important fraction of the patients progresses to castration-resistant prostate cancer (CRPC). For this reason, the identification of novel effective therapies for treating CRPC is needed. Immunotherapeutic strategies focused on macrophages as antitumor effectors, directly enhancing their tumoricidal potential at the tumor microenvironment or their adoptive transfer after ex vivo activation, have arisen as promising therapies in several cancer types. Despite several approaches centered on the activation of tumor-associated macrophages (TAMs) in PCa are under investigation, to date there is no evidence of clinical benefit in patients. In addition, the evidence of the effectiveness of macrophage adoptive transfer on PCa is poor. Here we find that VSSP, an immunomodulator of the myeloid system, decreases TAMs and inhibits prostatic tumor growth when administered to castrated Pten-deficient prostate tumor-bearing mice. In mice bearing castration-resistant Ptenpc-/-; Trp53pc-/- tumors, VSSP administration showed no effect. Nevertheless, adoptive transfer of macrophages activated ex vivo with VSSP inhibited Ptenpc-/-; Trp53pc-/- tumor growth through reduction of angiogenesis and tumor cell proliferation and induction of senescence. Taken together, our results highlight the rationale of exploiting macrophage functional programming as a promising strategy for CRPC therapy, with particular emphasis on ex vivo-activated proinflammatory macrophage adoptive transfer. Video abstract.
Collapse
Affiliation(s)
- Rydell Alvarez-Arzola
- Department of Immunoregulation, Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba.
| | - Nicoló Bancaro
- Department of Molecular Oncology, Institute of Oncology Research (IOR), 6500, Bellinzona, Switzerland
| | - Ping Lai
- Department of Molecular Oncology, Institute of Oncology Research (IOR), 6500, Bellinzona, Switzerland
| | - Giuseppe Attanasio
- Department of Molecular Oncology, Institute of Oncology Research (IOR), 6500, Bellinzona, Switzerland
| | - Laura Pellegrini
- Department of Molecular Oncology, Institute of Oncology Research (IOR), 6500, Bellinzona, Switzerland
| | - Martina Troiani
- Department of Molecular Oncology, Institute of Oncology Research (IOR), 6500, Bellinzona, Switzerland
| | - Manuel Colucci
- Department of Molecular Oncology, Institute of Oncology Research (IOR), 6500, Bellinzona, Switzerland
| | - Simone Mosole
- Department of Molecular Oncology, Institute of Oncology Research (IOR), 6500, Bellinzona, Switzerland
| | - Emiliano Pasquini
- Department of Molecular Oncology, Institute of Oncology Research (IOR), 6500, Bellinzona, Switzerland
| | - Andrea Alimonti
- Department of Molecular Oncology, Institute of Oncology Research (IOR), 6500, Bellinzona, Switzerland
- Faculty of Medicine, Università della Svizzera Italiana, 1011, Lugano, Switzerland
- Department of Medicine, University of Padua, 35131, Padua, Italy
- Medical Oncology, Oncology Institute of Southern Switzerland, 6500, Bellinzona, Switzerland
| | - Circe Mesa
- Innovative Immunotherapy Alliance S.A., Mariel, Artemisa, Cuba
| |
Collapse
|
5
|
Hou X, Zheng Z, Wei J, Zhao L. Effects of gut microbiota on immune responses and immunotherapy in colorectal cancer. Front Immunol 2022; 13:1030745. [PMID: 36426359 PMCID: PMC9681148 DOI: 10.3389/fimmu.2022.1030745] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/24/2022] [Indexed: 08/13/2023] Open
Abstract
Accumulating evidence suggests that gut microbial dysbiosis is implicated in colorectal cancer (CRC) initiation and progression through interaction with host immune system. Given the intimate relationship between the gut microbiota and the antitumor immune responses, the microbiota has proven to be effective targets in modulating immunotherapy responses of preclinical CRC models. However, the proposed putative mechanisms of how these bacteria affect immune responses and immunotherapy efficacy remains obscure. In this review, we summarize recent findings of clinical gut microbial dysbiosis in CRC patients, the reciprocal interactions between gut microbiota and the innate and/or the adaptive immune system, as well as the effect of gut microbiota on immunotherapy response in CRC. Increased understanding of the gut microbiota-immune system interactions will benefit the rational application of microbiota to the clinical promising biomarker or therapeutic strategy as a cancer immunotherapy adjuvant.
Collapse
Affiliation(s)
| | | | | | - Ling Zhao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Oliver L, Alvarez R, Diaz R, Valdés A, Colligan SH, Nemeth MJ, Twum DYF, Fernández A, Fernández-Medina O, Carlson LM, Yu H, Eng KH, Hensen ML, Rábade-Chediak ML, Fernández LE, Lee KP, Perez L, Muhitch JB, Mesa C, Abrams SI. Mitigating the prevalence and function of myeloid-derived suppressor cells by redirecting myeloid differentiation using a novel immune modulator. J Immunother Cancer 2022; 10:e004710. [PMID: 36150744 PMCID: PMC9511656 DOI: 10.1136/jitc-2022-004710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Immune suppression is common in neoplasia and a major driver is tumor-induced myeloid dysfunction. Yet, overcoming such myeloid cell defects remains an untapped strategy to reverse suppression and improve host defense. Exposure of bone marrow progenitors to heightened levels of myeloid growth factors in cancer or following certain systemic treatments promote abnormal myelopoiesis characterized by the production of myeloid-derived suppressor cells (MDSCs) and a deficiency in antigen-presenting cell function. We previously showed that a novel immune modulator, termed 'very small size particle' (VSSP), attenuates MDSC function in tumor-bearing mice, which was accompanied by an increase in dendritic cells (DCs) suggesting that VSSP exhibits myeloid differentiating properties. Therefore, here, we addressed two unresolved aspects of the mechanism of action of this unique immunomodulatory agent: (1) does VSSP alter myelopoiesis in the bone marrow to redirect MDSC differentiation toward a monocyte/macrophage or DC fate? and (2) does VSSP mitigate the frequency and suppressive function of human tumor-induced MDSCs? METHODS To address the first question, we first used a murine model of granulocyte-colony stimulating factor-driven emergency myelopoiesis following chemotherapy-induced myeloablation, which skews myeloid output toward MDSCs, especially the polymorphonuclear (PMN)-MDSC subset. Following VSSP treatment, progenitors and their myeloid progeny were analyzed by immunophenotyping and MDSC function was evaluated by suppression assays. To strengthen rigor, we validated our findings in tumor-bearing mouse models. To address the second question, we conducted a clinical trial in patients with metastatic renal cell carcinoma, wherein 15 patients were treated with VSSP. Endpoints in this study included safety and impact on PMN-MDSC frequency and function. RESULTS We demonstrated that VSSP diminished PMN-MDSCs by shunting granulocyte-monocyte progenitor differentiation toward monocytes/macrophages and DCs with heightened expression of the myeloid-dependent transcription factors interferon regulatory factor-8 and PU.1. This skewing was at the expense of expansion of granulocytic progenitors and rendered the remaining MDSCs less suppressive. Importantly, these effects were also demonstrated in a clinical setting wherein VSSP monotherapy significantly reduced circulating PMN-MDSCs, and their suppressive function. CONCLUSIONS Altogether, these data revealed VSSP as a novel regulator of myeloid biology that mitigates MDSCs in cancer patients and reinstates a more normal myeloid phenotype that potentially favors immune activation over immune suppression.
Collapse
Affiliation(s)
- Liliana Oliver
- Department of Immunoregulation, Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | - Rydell Alvarez
- Department of Immunoregulation, Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | - Raquel Diaz
- Department of Oncology, Joaquín Albarrán Hospital, Havana, Cuba
| | - Anet Valdés
- Department of Immunoregulation, Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | - Sean H Colligan
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Michael J Nemeth
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Danielle Y F Twum
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Audry Fernández
- Department of Immunoregulation, Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | - Olivia Fernández-Medina
- Department of Immunoregulation, Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | - Louise M Carlson
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Medicine, Indiana University Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
| | - Han Yu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Kevin H Eng
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Mary L Hensen
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Maura L Rábade-Chediak
- Department of Immunoregulation, Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | - Luis Enrique Fernández
- Department of Immunoregulation, Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | - Kelvin P Lee
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Medicine, Indiana University Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
| | - Leslie Perez
- Clinical Direction, Center of Molecular Immunology, Havana, Cuba
| | - Jason B Muhitch
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Circe Mesa
- Department of Immunoregulation, Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
- Innovative Immunotherapy Alliance, S. A. Mariel, Artemisa, Cuba
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
7
|
Comparetti EJ, Lins PMP, Quitiba J, Zucolotto V. Cancer cell membrane‐derived nanoparticles block the expression of immune checkpoint proteins on cancer cells and coordinate modulatory activity on immunosuppressive macrophages. J Biomed Mater Res A 2022; 110:1499-1511. [DOI: 10.1002/jbm.a.37387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/27/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Edson J. Comparetti
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos University of São Paulo São Carlos Brazil
| | - Paula M. P. Lins
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos University of São Paulo São Carlos Brazil
| | - João Quitiba
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos University of São Paulo São Carlos Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos University of São Paulo São Carlos Brazil
- Institute of Advanced Studies University of Sao Paulo Sao Carlos Brazil
| |
Collapse
|
8
|
Comparetti EJ, Ferreira NN, Ferreira LMB, Kaneno R, Zucolotto V. Immunomodulatory properties of nanostructured systems for cancer therapy. J Biomed Mater Res A 2022; 110:1166-1181. [PMID: 35043549 DOI: 10.1002/jbm.a.37359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/06/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022]
Abstract
Based on statistical data reported in 2020, cancer was responsible for approximately 10 million deaths. Furthermore, 17 million new cases were diagnosed worldwide. Nanomedicine and immunotherapy have shown satisfactory clinical results among all scientific and technological alternatives for the treatment of cancer patients. Immunotherapy-based treatments comprise the consideration of new alternatives to hinder neoplastic proliferation and to reduce adverse events in the body, thereby promoting immune destruction of diseased cells. Additionally, nanostructured systems have been proven to elicit specific immune responses that may enhance anti-tumor activity. A new generation of nanomedicines, based on biomimetic and bioinspired systems, has been proposed to target tumors by providing immunomodulatory features and by enabling recovery of human immune destruction capacity against cancer cells. This review provides an overview of the aspects and the mechanisms by which nanomedicines can be used to enhance clinical procedures using the immune modulatory responses of nanoparticles (NPs) in the host defense system. We initially outline the cancer statistics for conventional and new treatment approaches providing a brief description of the human host defense system and basic principles of NP interactions with monocytes, leukocytes, and dendritic cells for the modulation of antitumor immune responses. A report on different biomimetic and bioinspired systems is also presented here and their particularities in cancer treatments are addressed, highlighting their immunomodulatory properties. Finally, we propose future perspectives regarding this new therapeutic strategy, highlighting the main challenges for future use in clinical practice.
Collapse
Affiliation(s)
- Edson J Comparetti
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Natalia N Ferreira
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Leonardo M B Ferreira
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Ramon Kaneno
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
9
|
Palazón-Carrión N, Jiménez-Cortegana C, Sánchez-León ML, Henao-Carrasco F, Nogales-Fernández E, Chiesa M, Caballero R, Rojo F, Nieto-García MA, Sánchez-Margalet V, de la Cruz-Merino L. Circulating immune biomarkers in peripheral blood correlate with clinical outcomes in advanced breast cancer. Sci Rep 2021; 11:14426. [PMID: 34257359 PMCID: PMC8277895 DOI: 10.1038/s41598-021-93838-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/30/2021] [Indexed: 11/09/2022] Open
Abstract
Identification of the different elements intervening at the tumor microenvironment seems key to explain clinical evolution in several tumor types. In this study, a set of immune biomarkers (myeloid derived suppressor cells, regulatory T cells, and OX40 + and PD-1 + T lymphocytes counts) in peripheral blood of patients diagnosed with advanced breast cancer were analyzed along of first line antineoplastic therapy. Subsequently, a comparison between groups with clinical benefit versus progression of disease and with a healthy women cohort was executed. Results reflected that patients showed higher basal levels of myeloid derived suppressor cells (35.43, IR = 180.73 vs 17.53, IR = 16.96 cells/μl; p = 0.001) and regulatory T cells (32.05, IR = 29.84 vs 22.61, IR = 13.57 cells/μl; p = 0.001) in comparison with healthy women. Furthermore, an increase in the number of activated T lymphocytes (expressing OX40), a decrease of immune inhibitory cells (MDSCs and Tregs) and inhibited T lymphocytes (expressing PD-1) were observed along the treatment in patients with clinical benefit (p ≤ 0.001). The opposite trend was observed in the case of disease progression. These findings suggest that some critical immune elements can be easily detected and measured in peripheral blood, which open a new opportunity for translational research, as they seem to be correlated with clinical evolution, at least in ABC.
Collapse
Affiliation(s)
| | - Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - M Luisa Sánchez-León
- Clinical Oncology Department, Virgen Macarena University Hospital, Seville, Spain
| | | | | | - Massimo Chiesa
- GEICAM (Spanish Breast Cancer Research Group), Madrid, Spain
| | | | - Federico Rojo
- Pathology Department, IIS-Fundación Jimenez Diaz-CIBERONC, Madrid, Spain
| | | | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain.
| | - Luis de la Cruz-Merino
- Clinical Oncology Department, Virgen Macarena University Hospital, Seville, Spain.
- GEICAM (Spanish Breast Cancer Research Group), Madrid, Spain.
- Medicine Department, University of Seville, Seville, Spain.
| |
Collapse
|
10
|
Schultze JL, Mass E, Schlitzer A. Emerging Principles in Myelopoiesis at Homeostasis and during Infection and Inflammation. Immunity 2019; 50:288-301. [PMID: 30784577 DOI: 10.1016/j.immuni.2019.01.019] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/14/2022]
Abstract
Myelopoiesis ensures the steady state of the myeloid cell compartment. Technological advances in fate mapping and genetic engineering, as well as the advent of single cell RNA-sequencing, have highlighted the heterogeneity of the hematopoietic system and revealed new concepts in myeloid cell ontogeny. These technologies are also shedding light on mechanisms of myelopoiesis at homeostasis and at different phases of infection and inflammation, illustrating important feedback loops between affected tissues and the bone marrow. We review these findings here and revisit principles in myelopoiesis in light of the evolving understanding of myeloid cell ontogeny and heterogeneity. We argue for the importance of system-wide evaluation of changes in myelopoiesis and discuss how even after the resolution of inflammation, long-lasting alterations in myelopoiesis may play a role in innate immune memory or trained immunity.
Collapse
Affiliation(s)
- Joachim L Schultze
- Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, 53175 Bonn, Germany; Genomics & Immunoregulation, LIMES Institute, University of Bonn, 53115 Bonn, Germany.
| | - Elvira Mass
- Developmental Biology of the Innate Immune System, LIMES Institute, University of Bonn, 53115 Bonn, Germany.
| | - Andreas Schlitzer
- Myeloid Cell Biology, LIMES Institute, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|