1
|
Klinkhammer BM, Ay I, Caravan P, Caroli A, Boor P. Advances in Molecular Imaging of Kidney Diseases. Nephron Clin Pract 2024; 149:149-159. [PMID: 39496240 DOI: 10.1159/000542412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/20/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Diagnosing and monitoring kidney diseases traditionally rely on blood and urine analyses and invasive procedures such as kidney biopsies, the latter offering limited possibilities for longitudinal monitoring and a comprehensive understanding of disease dynamics. Current noninvasive methods lack specificity in capturing intrarenal molecular processes, hindering patient stratification and patient monitoring in clinical practice and clinical trials. SUMMARY Molecular imaging enables noninvasive and quantitative assessment of physiological and pathological molecular processes. By using specific molecular probes and imaging technologies, e.g., magnetic resonance imaging, positron emission tomography, single-photon emission computed tomography, or ultrasound, molecular imaging allows the detection and longitudinal monitoring of disease activity with spatial and temporal resolution of different kidney diseases and disease-specific pathways. Several approaches have already shown promising results in kidneys and exploratory clinical studies, and validation is needed before implementation in clinical practice. KEY MESSAGES Molecular imaging offers a noninvasive assessment of intrarenal molecular processes, overcoming the limitations of current diagnostic methods. It has the potential to serve as companion diagnostics, not only in clinical trials, aiding in patient stratification and treatment response assessment. By guiding therapeutic interventions, molecular imaging might contribute to the development of targeted therapies for kidney diseases.
Collapse
Affiliation(s)
| | - Ilknur Ay
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Caravan
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anna Caroli
- Bioengineering Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Peter Boor
- Institute for Pathology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
2
|
Wang J, Moon SH, Cleary MB, Shoup TM, El Fakhri G, Zhang Z, Brownell AL. Detailed radiosynthesis of [ 18 F]mG4P027 as a positron emission tomography radiotracer for mGluR4. J Labelled Comp Radiopharm 2023; 66:34-40. [PMID: 36593743 PMCID: PMC9985952 DOI: 10.1002/jlcr.4011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
We report here the detailed radiosynthesis of [18 F]mG4P027, a metabotropic glutamate receptor 4 (mGluR4) PET radiotracer, which showed superior properties to the currently reported mGluR4 radiotracers. The radiosynthesis in the automated system has been challenging, therefore we disclose here the major limiting factors for the synthesis via step-by-step examination. And we hope this thorough study will help its automation for human use in the future.
Collapse
Affiliation(s)
| | | | - Michael B. Cleary
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114 (USA)
| | | | | | - Zhaoda Zhang
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114 (USA)
| | | |
Collapse
|
3
|
Bartolo ND, Reid SE, Krishnan HS, Haseki A, Renganathan M, Largent-Milnes TM, Norwood BA, Loggia ML, Hooker JM. Radiocaine: An Imaging Marker of Neuropathic Injury. ACS Chem Neurosci 2022; 13:3661-3667. [PMID: 36472927 DOI: 10.1021/acschemneuro.2c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Voltage-gated sodium channels (Navs) play a crucial electrical signaling role in neurons. Nav-isoforms present in peripheral sensory neurons and dorsal root ganglia of the spinal cord are critically involved in pain perception and transmission. While these isoforms, particularly Nav1.7, are implicated in neuropathic pain disorders, changes in the functional state and expression levels of these channels have not been extensively studied in vivo. Radiocaine, a fluorine-18 radiotracer based on the local anesthetic lidocaine, a non-selective Nav blocker, has previously been used for cardiac Nav1.5 imaging using positron-emission tomography (PET). In the present study, we used Radiocaine to visualize changes in neuronal Nav expression after neuropathic injury. In rats that underwent unilateral spinal nerve ligation, PET/MR imaging demonstrated significantly higher uptake of Radiocaine into the injured sciatic nerve, as compared to the uninjured sciatic nerve, for up to 32 days post-surgery. Radiocaine, due to its high translational potential, may serve as a novel diagnostic tool for neuropathic pain conditions using PET imaging.
Collapse
Affiliation(s)
- Nicole D Bartolo
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Sarah E Reid
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Hema S Krishnan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Azra Haseki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | | | - Tally M Largent-Milnes
- Department of Pharmacology, University of Arizona, Bio5 Institute, Tucson, Arizona 85724, United States
| | | | - Marco L Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
4
|
Hell SM, Meyer CF, Ortalli S, Sap JBI, Chen X, Gouverneur V. Hydrofluoromethylation of alkenes with fluoroiodomethane and beyond. Chem Sci 2021; 12:12149-12155. [PMID: 34667580 PMCID: PMC8457377 DOI: 10.1039/d1sc03421a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/07/2021] [Indexed: 01/02/2023] Open
Abstract
A process for the direct hydrofluoromethylation of alkenes is reported for the first time. This straighforward silyl radical-mediated reaction utilises CH2FI as a non-ozone depleting reagent, traditionally used in electrophilic, nucleophilic and carbene-type chemistry, but not as a CH2F radical source. By circumventing the challenges associated with the high reduction potential of CH2FI being closer to CH3I than CF3I, and harnessing instead the favourable bond dissociation energy of the C–I bond, we demonstrate that feedstock electron-deficient alkenes are converted into products resulting from net hydrofluoromethylation with the intervention of (Me3Si)3SiH under blue LED activation. This deceptively simple yet powerful methodology was extended to a range of (halo)methyl radical precursors including ICH2I, ICH2Br, ICH2Cl, and CHBr2F, as well as CH3I itself; this latter reagent therefore enables direct hydromethylation. This versatile chemistry was applied to 18F-, 13C-, and D-labelled reagents as well as complex biologically relevant alkenes, providing facile access to more than fifty products for applications in medicinal chemistry and positron emission tomography. Herein, we report the direct hydro(halo)methylation of alkenes from a variety of (halo)methyl iodides (including F-18, C-13, D-2 isotopologues), enabling the incorporation of a plethora of C-1 fragments into complex biologically active molecules.![]()
Collapse
Affiliation(s)
- Sandrine M Hell
- University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Claudio F Meyer
- University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Sebastiano Ortalli
- University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Jeroen B I Sap
- University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Xuanxiao Chen
- University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Véronique Gouverneur
- University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
5
|
Placzek MS. Imaging Kappa Opioid Receptors in the Living Brain with Positron Emission Tomography. Handb Exp Pharmacol 2021; 271:547-577. [PMID: 34363128 DOI: 10.1007/164_2021_498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Kappa opioid receptor (KOR) neuroimaging using positron emission tomography (PET) has been immensely successful in all phases of discovery and validation in relation to radiotracer development from preclinical imaging to human imaging. There are now several KOR-specific PET radiotracers that can be utilized for neuroimaging, including agonist and antagonist ligands, as well as C-11 and F-18 variants. These technologies will increase KOR PET utilization by imaging centers around the world and have provided a foundation for future studies. In this chapter, I review the advances in KOR radiotracer discovery, focusing on ligands that have been translated into human imaging, and highlight key attributes unique to each KOR PET radiotracer. The utilization of these radiotracers in KOR PET neuroimaging can be subdivided into three major investigational classes: the first, measurement of KOR density; the second, measurement of KOR drug occupancy; the third, detecting changes in endogenous dynorphin following activation or deactivation. Given the involvement of the KOR/dynorphin system in a number of brain disorders including, but not limited to, pain, itch, mood disorders and addiction, measuring KOR density in the living brain will offer insight into the chronic effects of these disorders on KOR tone in humans. Notably, KOR PET has been successful at measuring drug occupancy in the human brain to guide dose selection for maximal therapeutic efficacy while avoiding harmful side effects. Lastly, we discuss the potential of KOR PET to detect changes in endogenous dynorphin in the human brain, to elucidate neural mechanisms and offer critical insight into disease-modifying therapeutics. We conclude with comments on other translational neuroimaging modalities such as MRI that could be used to study KOR-dynorphin tone in the living human brain.
Collapse
Affiliation(s)
- Michael S Placzek
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA. .,Department of Radiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Zhang T, Cai J, Wang H, Wang M, Yuan H, Wu Z, Ma X, Li Z. RXH-Reactive 18F-Vinyl Sulfones as Versatile Agents for PET Probe Construction. Bioconjug Chem 2020; 31:2482-2487. [PMID: 33103415 DOI: 10.1021/acs.bioconjchem.0c00487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Efficient radiolabeling reactions are important chemical tools in biomedical research especially in probe construction. Herein, three 18F-labeled vinyl sulfones were prepared. In particular, 18F-PEG1-VS (((2-(2-(fluoro-18F)ethoxy)ethyl)sulfonyl)ethane) could not only allow chemoselective labeling of bioactive molecules containing -XH (X = S, NH) groups, but also react with red blood cells both in vitro and in living mice for potential cell tracking applications. In addition, these hydrophilic agents were found to cross the blood brain barrier (BBB) efficiently and localize at the cerebellum region. In summary, 18F-labeled vinyl sulfones provide a versatile platform for PET probe construction.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Jianhua Cai
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States.,School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Hui Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Mengzhe Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Hong Yuan
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Zhanhong Wu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Xiaofen Ma
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States.,Department of Medical Imaging, Guangdong Second Provincial General Hospital. 466 Xingang Middle Road, Haizhu District, Guangzhou City, Guangdong Province 510317, P. R. China
| | - Zibo Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
7
|
Germann J, Gouveia FV, Martinez RCR, Zanetti MV, de Souza Duran FL, Chaim-Avancini TM, Serpa MH, Chakravarty MM, Devenyi GA. Fully Automated Habenula Segmentation Provides Robust and Reliable Volume Estimation Across Large Magnetic Resonance Imaging Datasets, Suggesting Intriguing Developmental Trajectories in Psychiatric Disease. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:923-929. [PMID: 32222276 DOI: 10.1016/j.bpsc.2020.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 01/29/2023]
Abstract
Studies of habenula (Hb) function and structure provided evidence of its involvement in psychiatric disorders, including schizophrenia and bipolar disorder. Previous studies using magnetic resonance imaging (manual/semiautomated segmentation) have reported conflicting results. Aiming to improve Hb segmentation reliability and the study of large datasets, we describe a fully automated protocol that was validated against manual segmentations and applied to 3 datasets (childhood/adolescence and adult bipolar disorder and schizophrenia). It achieved reliable Hb segmentation, providing robust volume estimations across a large age range and varying image acquisition parameters. Applying it to clinically relevant datasets, we found smaller Hb volumes in the adult bipolar disorder dataset and larger volumes in the adult schizophrenia dataset compared with healthy control subjects. There are indications that Hb volume in both groups shows deviating developmental trajectories early in life. This technique sets a precedent for future studies, as it allows for fast and reliable Hb segmentation and will be publicly available.
Collapse
Affiliation(s)
- Jürgen Germann
- University Health Network, Toronto, Ontario, Canada; Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada.
| | | | - Raquel C R Martinez
- Division of Neuroscience, Hospital Sírio-Libanês, São Paulo, Brazil; Laboratory of Psychopathology and Psychiaric Therapeutics (LIM-23), Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Marcus Vinicius Zanetti
- Division of Neuroscience, Hospital Sírio-Libanês, São Paulo, Brazil; Laboratory of Psychiatric Neuroimaging (LIM-21), Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Fábio Luís de Souza Duran
- Laboratory of Psychiatric Neuroimaging (LIM-21), Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Tiffany M Chaim-Avancini
- Laboratory of Psychiatric Neuroimaging (LIM-21), Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Mauricio H Serpa
- Laboratory of Psychiatric Neuroimaging (LIM-21), Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Gabriel A Devenyi
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Kayser AS. Functional imaging. HANDBOOK OF CLINICAL NEUROLOGY 2019; 163:61-72. [PMID: 31590748 DOI: 10.1016/b978-0-12-804281-6.00004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Functional imaging methodology has revolutionized our ability to understand brain-behavior relationships. In contrast with the static images obtained with standard imaging methods, functional images permit us to track brain activity as humans view stimuli, hear sounds, consider choices, and make decisions. The insights now possible because of this technology have not only provided new potential markers for disease but have also permitted questions of neural mechanism to be addressed in living humans. Because of the breadth and depth of research that directly or tangentially touches upon functional imaging, it is impossible to do justice to the various subfields, analysis streams, and methodological complexities in one chapter. Instead, this chapter will provide a brief overview of the underlying conceptual framework, basic analytic techniques, and details of the imaging methodologies available for the acquisition of functional imaging data.
Collapse
Affiliation(s)
- Andrew S Kayser
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
9
|
Martinez D, Slifstein M, Matuskey D, Nabulsi N, Zheng MQ, Lin SF, Ropchan J, Urban N, Grassetti A, Chang D, Salling M, Foltin R, Carson RE, Huang Y. Kappa-opioid receptors, dynorphin, and cocaine addiction: a positron emission tomography study. Neuropsychopharmacology 2019; 44:1720-1727. [PMID: 31026862 PMCID: PMC6785004 DOI: 10.1038/s41386-019-0398-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/28/2019] [Accepted: 04/16/2019] [Indexed: 01/08/2023]
Abstract
Animal studies indicate that the kappa-opioid receptor/dynorphin system plays an important role in cocaine binges and stress-induced relapse. Our goal was to investigate changes in kappa-opioid receptor (KOR) availability in the human brain using positron emission tomography (PET), before and after a cocaine binge. We also investigated the correlation between KOR and stress-induced cocaine self-administration. PET imaging was performed with the KOR selective agonist [11C]GR103545. Subjects with cocaine-use disorder (CUD) underwent PET scans and performed two types of cocaine self-administration sessions in the laboratory as follows: (1) choice sessions following a cold pressor test, to induce stress, and (2) binge dosing of cocaine. This allowed us investigate the following: (1) the association between KOR binding and a laboratory model of stress-induced relapse and (2) the change in KOR binding following a 3-day cocaine binge, which is thought to represent a change in endogenous dynorphin. A group of matched healthy controls was included to investigate between group differences in KOR availability. A significant association between [11C]GR103545 binding and cocaine self-administration was seen: greater KOR availability was associated with more choices for cocaine. In addition, the 3-day cocaine binge significantly reduced [11C]GR103545 binding by 18% in the striatum and 14% across brain regions. No difference in [11C]GR103545 binding was found between the CUD subjects and matched controls. In the context of previous studies, these findings add to the growing evidence that pharmacotherapies targeting the KOR have the potential to significantly impact treatment development for cocaine-use disorder.
Collapse
Affiliation(s)
- Diana Martinez
- Department of Psychiatry, Columbia University Irving Medical Center and the New York State Psychiatric Institute, New York, NY, USA.
| | - Mark Slifstein
- Department of Psychiatry, Columbia University Irving Medical Center and the New York State Psychiatric Institute, New York, NY, USA
| | - David Matuskey
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Nabeel Nabulsi
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Ming-Qiang Zheng
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Shu-Fei Lin
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Jim Ropchan
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Nina Urban
- Department of Psychiatry, Columbia University Irving Medical Center and the New York State Psychiatric Institute, New York, NY, USA
| | - Alexander Grassetti
- Department of Psychiatry, Columbia University Irving Medical Center and the New York State Psychiatric Institute, New York, NY, USA
| | - Dinnisa Chang
- Department of Psychiatry, Columbia University Irving Medical Center and the New York State Psychiatric Institute, New York, NY, USA
| | - Michael Salling
- Department of Psychiatry, Columbia University Irving Medical Center and the New York State Psychiatric Institute, New York, NY, USA
| | - Richard Foltin
- Department of Psychiatry, Columbia University Irving Medical Center and the New York State Psychiatric Institute, New York, NY, USA
| | - Richard E Carson
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
10
|
Wu J, Zhao Q, Wilson TC, Verhoog S, Lu L, Gouverneur V, Shen Q. Synthesis and Reactivity of α-Cumyl Bromodifluoromethanesulfenate: Application to the Radiosynthesis of [ 18 F]ArylSCF 3. Angew Chem Int Ed Engl 2019; 58:2413-2417. [PMID: 30575245 DOI: 10.1002/anie.201813708] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Indexed: 01/24/2023]
Abstract
A highly reactive electrophilic bromodifluoromethylthiolating reagent, α-cumyl bromodifluoro-methanesulfenate 1, was prepared to allow for direct bromodifluoromethylthiolation of aryl boron reagents. This coupling reaction takes place under copper catalysis, and affords a large range of bromodifluoromethylthiolated arenes. These compounds are amenable to various transformations including halogen exchange with [18 F]KF/K222 , a process giving access to [18 F]arylSCF3 in two steps from the corresponding aryl boronic pinacol esters.
Collapse
Affiliation(s)
- Jiang Wu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qunchao Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Thomas C Wilson
- University of Oxford, Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Stefan Verhoog
- University of Oxford, Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Long Lu
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Véronique Gouverneur
- University of Oxford, Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
11
|
Synthesis and Reactivity of α-Cumyl Bromodifluoromethanesulfenate: Application to the Radiosynthesis of [18
F]ArylSCF3. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
Placzek MS, Schroeder FA, Che T, Wey HY, Neelamegam R, Wang C, Roth BL, Hooker JM. Discrepancies in Kappa Opioid Agonist Binding Revealed through PET Imaging. ACS Chem Neurosci 2019; 10:384-395. [PMID: 30212182 DOI: 10.1021/acschemneuro.8b00293] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Kappa opioid receptor (KOR) modulation has been pursued in many conceptual frameworks for the treatment of human pain, depression, and anxiety. As such, several imaging tools have been developed to characterize the density of KORs in the human brain and its occupancy by exogenous drug-like compounds. While exploring the pharmacology of KOR tool compounds using positron emission tomography (PET), we observed discrepancies in the apparent competition binding as measured by changes in binding potential (BPND, binding potential with respect to non-displaceable uptake). This prompted us to systematically look at the relationships between baseline BPND maps for three common KOR PET radioligands, the antagonists [11C]LY2795050 and [11C]LY2459989, and the agonist [11C]GR103545. We then measured changes in BPND using kappa antagonists (naloxone, naltrexone, LY2795050, JDTic, nor-BNI), and found BPND was affected similarly between [11C]GR103545 and [11C]LY2459989. Longitudinal PET studies with nor-BNI and JDTic were also examined, and we observed a persistent decrease in [11C]GR103545 BPND up to 25 days after drug administration for both nor-BNI and JDTic. Kappa agonists were also administered, and butorphan and GR89696 (racemic GR103545) impacted binding to comparable levels between the two radiotracers. Of greatest significance, kappa agonists salvinorin A and U-50488 caused dramatic reductions in [11C]GR103545 BPND but did not change [11C]LY2459989 binding. This discrepancy was further examined in dose-response studies with each radiotracer as well as in vitro binding experiments.
Collapse
Affiliation(s)
- Michael S. Placzek
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Frederick A. Schroeder
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Tao Che
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27516, United States
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Ramesh Neelamegam
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27516, United States
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27516, United States
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Jacob M. Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
13
|
Verhoog S, Kee CW, Wang Y, Khotavivattana T, Wilson TC, Kersemans V, Smart S, Tredwell M, Davis BG, Gouverneur V. 18F-Trifluoromethylation of Unmodified Peptides with 5- 18F-(Trifluoromethyl)dibenzothiophenium Trifluoromethanesulfonate. J Am Chem Soc 2018; 140:1572-1575. [PMID: 29301394 DOI: 10.1021/jacs.7b10227] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The 18F-labeling of 5-(trifluoromethyl)-dibenzothiophenium trifluoromethanesulfonate, commonly referred to as the Umemoto reagent, has been accomplished applying a halogen exchange 18F-fluorination with 18F-fluoride, followed by oxidative cyclization with Oxone and trifluoromethanesulfonic anhydride. This new 18F-reagent allows for the direct chemoselective 18F-labeling of unmodified peptides at the thiol cysteine residue.
Collapse
Affiliation(s)
- Stefan Verhoog
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Choon Wee Kee
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Yanlan Wang
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Tanatorn Khotavivattana
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Thomas C Wilson
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Veerle Kersemans
- Oxford Institute for Radiation Oncology, University of Oxford , Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Sean Smart
- Oxford Institute for Radiation Oncology, University of Oxford , Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Matthew Tredwell
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Benjamin G Davis
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Véronique Gouverneur
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
14
|
Understanding Peripartum Depression Through Neuroimaging: a Review of Structural and Functional Connectivity and Molecular Imaging Research. Curr Psychiatry Rep 2017; 19:70. [PMID: 28823105 PMCID: PMC5617352 DOI: 10.1007/s11920-017-0824-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Imaging research has sought to uncover brain structure, function, and metabolism in women with postpartum depression (PPD) as little is known about its underlying pathophysiology. This review discusses the imaging modalities used to date to evaluate postpartum depression and highlights recent findings. RECENT FINDINGS Altered functional connectivity and activity changes in brain areas implicated in executive functioning and emotion and reward processing have been identified in PPD. Metabolism changes involving monoamine oxidase A, gamma-aminobutyric acid, glutamate, serotonin, and dopamine have additionally been reported. To date, no studies have evaluated gray matter morphometry, voxel-based morphometry, surface area, cortical thickness, or white matter tract integrity in PPD. Recent imaging studies report changes in functional connectivity and metabolism in women with PPD vs. healthy comparison women. Future research is needed to extend these findings as they have important implications for the prevention and treatment of postpartum mood disorders.
Collapse
|
15
|
Zhao W, Lee HG, Buchwald SL, Hooker JM. Direct 11CN-Labeling of Unprotected Peptides via Palladium-Mediated Sequential Cross-Coupling Reactions. J Am Chem Soc 2017; 139:7152-7155. [PMID: 28502164 DOI: 10.1021/jacs.7b02761] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A practical procedure for 11CN-labeling of unprotected peptides has been developed. The method was shown to be highly chemoselective for cysteine over other potentially nucleophilic residues, and the radiolabeled products were synthesized and purified in less than 15 min. Appropriate for biomedical applications, the method could be used on an extremely small scale (20 nmol) with a high radiochemical yield. The success of the protocol stems from the use of a Pd-reagent based on a dihaloarene, which enables direct "nucleophile-nucleophile" coupling of the peptide and [11C]cyanide by temporal separation of nucleophile addition.
Collapse
Affiliation(s)
- Wenjun Zhao
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital , Boston, Massachusetts 02114, United States.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts 02129, United States
| | - Hong Geun Lee
- Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jacob M Hooker
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital , Boston, Massachusetts 02114, United States.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts 02129, United States
| |
Collapse
|
16
|
Jha DK, Saikia K, Chakrabarti S, Bhattacharya K, Varadarajan KS, Patel AB, Goyary D, Chattopadhyay P, Deb P. Direct one-pot synthesis of glutathione capped hydrophilic FePt-CdS nanoprobe for efficient bimodal imaging application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 72:415-424. [DOI: 10.1016/j.msec.2016.11.077] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/10/2016] [Accepted: 11/17/2016] [Indexed: 01/12/2023]
|
17
|
Hooker JM, Strebl MG, Schroeder FA, Wey HY, Ambardekar AV, McKinsey TA, Schoenberger M. Imaging cardiac SCN5A using the novel F-18 radiotracer radiocaine. Sci Rep 2017; 7:42136. [PMID: 28205593 PMCID: PMC5311962 DOI: 10.1038/srep42136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/08/2017] [Indexed: 12/19/2022] Open
Abstract
The key function of the heart, a well-orchestrated series of contractions, is controlled by cardiac action potentials. These action potentials are initiated and propagated by a single isoform of voltage gated sodium channels - SCN5A. However, linking changes in SCN5A expression levels to human disease in vivo has not yet been possible. Radiocaine, an F-18 radiotracer for positron emission tomography (PET), is the first SCN5A imaging agent in the heart. Explants from healthy and failing human hearts were compared using radiocaine autoradiography to determine that the failing heart has ~30% lower SCN5A levels - the first evidence of changes in SCN5A expression in humans as a function of disease. Paving the way for translational imaging, radiocaine proved to exhibit high in vivo specific binding to the myocardium of non-human primates. We envision that SCN5A measurements using PET imaging may serve as a novel diagnostic tool to stratify arrhythmia risk and assess for progression of heart failure in patients with a broad spectrum of cardiovascular diseases.
Collapse
Affiliation(s)
- Jacob M Hooker
- Harvard Medical School, Massachusetts General Hospital, Martinos Center for Biomedical Imaging, 149 13th Street, 02129 Charlestown, MA, USA
| | - Martin G Strebl
- Harvard Medical School, Massachusetts General Hospital, Martinos Center for Biomedical Imaging, 149 13th Street, 02129 Charlestown, MA, USA
| | - Frederick A Schroeder
- Harvard Medical School, Massachusetts General Hospital, Martinos Center for Biomedical Imaging, 149 13th Street, 02129 Charlestown, MA, USA
| | - Hsiao-Ying Wey
- Harvard Medical School, Massachusetts General Hospital, Martinos Center for Biomedical Imaging, 149 13th Street, 02129 Charlestown, MA, USA
| | - Amrut V Ambardekar
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research and Translation, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Timothy A McKinsey
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research and Translation, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Matthias Schoenberger
- Harvard Medical School, Massachusetts General Hospital, Martinos Center for Biomedical Imaging, 149 13th Street, 02129 Charlestown, MA, USA
| |
Collapse
|
18
|
|