1
|
Azarian M, Ramezani Farani M, C Cho W, Asgharzadeh F, Yang YJ, Moradi Binabaj M, M Tambuwala M, Farahani N, Hushmandi K, Huh YS. Advancements in colorectal cancer treatment: The role of metal-based and inorganic nanoparticles in modern therapeutic approaches. Pathol Res Pract 2024; 264:155706. [PMID: 39527908 DOI: 10.1016/j.prp.2024.155706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/17/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Recent advances in the treatment of colorectal cancer (CRC) have highlighted the integration of metal-based nanoparticles into sophisticated therapeutic strategies. This examination delves into the potential applications of these nanoparticles, particularly in augmenting the effectiveness of photodynamic therapy (PDT) and targeted drug delivery systems. Metal nanoparticles, such as gold (Au), silver (Ag), and copper (Cu), possess distinctive characteristics that make them valuable in cancer treatment. Beyond their role as drug carriers, these nanoparticles actively engage in therapeutic processes like apoptosis induction, enhancement of photothermal effects, and generation of reactive oxygen species (ROS) crucial for tumor cell eradication. The utilization of metal nanoparticles in CRC therapy addresses significant challenges encountered with conventional treatments, such as drug resistance and systemic toxicity. For example, engineered Au nanoparticles enable targeted drug delivery, reducing off-target effects and maximizing therapeutic efficacy against cancerous cells. Their capacity to absorb near-infrared light allows for localized hyperthermia, effectively eliminating cancerous tissues. Similarly, Cu nanoparticles exhibit potential in overcoming drug resistance by enhancing the efficacy of traditional chemotherapeutic agents through ROS production and improved drug stability. This review underscores the significance of precision medicine in CRC care. Through the integration of metal nanoparticles alongside complementary biomarkers and personalized treatment strategies, a more efficient and tailored therapeutic approach can be achieved. The synergistic effect of PDT in combination with metal nanoparticles introduces a novel methodology to CRC treatment, offering a dual-action mechanism that enhances tumor targeting while minimizing undesirable effects. In conclusion, the integration of metal-based nanoparticles in CRC therapy marks a significant progress in oncological treatments. Continued research is imperative to comprehensively grasp their mechanisms, optimize their clinical utility, and address potential safety considerations. This thorough assessment aims to pave the way for future advancements in CRC treatment through the application of nanotechnology and personalized medicine strategies.
Collapse
Affiliation(s)
- Maryam Azarian
- Department of Bioanalytical Ecotoxicology,UFZ- Helmholtz Centre for Environmental Research, Leipzig, Germany; Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Fereshteh Asgharzadeh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yu-Jeong Yang
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Maryam Moradi Binabaj
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, United Kingdom
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
2
|
Sathekge MM, Bouchelouche K. Letter from the Editors. Semin Nucl Med 2024; 54:457-459. [PMID: 38972759 DOI: 10.1053/j.semnuclmed.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
|
3
|
Andel D, van den Bent L, Ernest Hendrik Lam MG, Johannes Smits ML, Molenaar IQ, de Bruijne J, Laclé MM, Kranenburg O, Max Borel Rinkes IH, Hagendoorn J. 90Y-/ 166Ho- 'Radiation lobectomy' for liver tumors induces abnormal morphology and impaired drainage of peritumor lymphatics. JHEP Rep 2024; 6:100981. [PMID: 38298739 PMCID: PMC10827593 DOI: 10.1016/j.jhepr.2023.100981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/26/2023] [Accepted: 11/21/2023] [Indexed: 02/02/2024] Open
Abstract
Background & Aims High-dose unilobar radioembolization, or 'radiation lobectomy' (RL), is an induction therapy that achieves contralateral future liver remnant hypertrophy while simultaneously irradiating the tumor. As such, it may prevent further growth, but it is unknown whether RL affects intrahepatic lymphatics, a major route via which liver tumors disseminate. Methods This was a case-control study conducted at University Medical Center Utrecht. The study compared lymph vessels in livers that had undergone RL (cases) with those in livers that had not undergone RL (controls). Histological samples were acquired from patients diagnosed with hepatocellular carcinoma (HCC) or colorectal liver metastases (CRLM) between 2017 and 2022. Lymph vessel morphology was analyzed by two researchers using podoplanin, a protein that is expressed in lymphatic endothelium. In vivo liver lymph drainage of radioembolized livers was assessed using intraoperative liver lymphangiography (ILL): during liver surgery, patent blue dye was injected into the liver parenchyma, followed by inspection for staining of perihepatic lymph structures. ILL results were compared to a previously published cohort. Results Immunohistochemical analysis on post-RL tumor tissues from ten patients with CRLM and nine patients with HCC revealed aberrant morphology of irradiated liver lymphatics when compared to controls (n = 3 per group). Irradiated lymphatics were tortuous (p <0.05), thickened (p <0.05) and discontinuous (p <0.05). Moreover, post-RL lymphatics had larger lumens (1.5-1.7x, p <0.0001), indicating lymph stasis. ILL revealed diminished lymphatic drainage to perihepatic lymph nodes and vessels in irradiated livers when compared to non-radioembolized controls (p = 1.0x10-4). Conclusions Radioembolization impairs peritumoral lymph vessel function. Further research is needed to evaluate if radioembolization impairs tumor dissemination via this route. Impact and implications Unilobar radioembolization can serve as an alternative to portal venous embolization for patients who are considered unresectable due to an insufficient future liver remnant. This research suggests that radioembolization impairs the function of peritumoral liver lymph vessels, potentially hindering dissemination via this route. These findings provide support for considering unilobar radioembolization over standard portal venous embolization.
Collapse
Affiliation(s)
- Daan Andel
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
- Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| | - Lotte van den Bent
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
- Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| | | | - Maarten Leonard Johannes Smits
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| | - Isaac Quintus Molenaar
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| | - Joep de Bruijne
- Department Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Miangela Marie Laclé
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Onno Kranenburg
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
- Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| | - Inne Hildbrand Max Borel Rinkes
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
- Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| | - Jeroen Hagendoorn
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
- Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| |
Collapse
|
4
|
Andel D, Hagendoorn J, Alsultan AA, Lacle MM, Smits MLJ, Braat AJAT, Kranenburg O, Lam MGEH, Borel Rinkes IHM. Colorectal liver metastases that survive radioembolization display features of aggressive tumor behavior. HPB (Oxford) 2023; 25:1345-1353. [PMID: 37442645 DOI: 10.1016/j.hpb.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/11/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND Radiation lobectomy is a therapeutic approach that involves targeted radiation delivery to induce future liver remnant hypertrophy and tumor control. In patients with colorectal liver metastases, only 30-40% have complete tumor regression. The importance of tumor biology in treatment response remains elusive. METHODS Patients with colorectal liver metastases who received radiation lobectomy were selected from surgical pathology files. Using a machine learning scoring protocol, pathological response was correlated to tumor absorbed dose and expression of markers of radioresistance Ki-67 (proliferation), CAIX (hypoxia), Olfm4 (cancer stem cells) and CD45 (leukocytes). RESULTS No linear association was found between tumor dose and response (ρ < 0.1, P = 0.73 (90Y), P = 0.92 (166Ho)). Response did correlate with proliferation (ρ = 0.56, P = 0.012), and non-responsive lesions had large pools (>15%) of Olfm4 positive cancer stem cells (Fisher's exact test, P = 0.0037). Responding lesions (regression grade ≤2) were highly hypoxic compared to moderate and non-responding lesions (P = 0.011). Non-responsive lesions had more tumor-infiltrating leukocytes (3240 cells/mm2 versus 650 cells/mm2), although this difference was not significant (P = 0.08). CONCLUSION The aggressive phenotype of a subset of surviving cancer cells emphasizes the importance of prompt resection after radiation lobectomy.
Collapse
Affiliation(s)
- Daan Andel
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands.
| | - Jeroen Hagendoorn
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands
| | - Ahmed Aziz Alsultan
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands
| | - Miangela Marie Lacle
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maarten Leonard Johannes Smits
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands
| | | | - Onno Kranenburg
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands
| | | | | |
Collapse
|
5
|
Henze J, Maintz D. [Interventional Radiology in Oncology - Update 2021]. Dtsch Med Wochenschr 2021; 146:966-970. [PMID: 34344031 DOI: 10.1055/a-1192-0690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Interventional radiology plays a crucial role in oncology. The most common interventional treatments are transarterial embolisation as well as percutaneous thermal ablations. Transarterial embolisation, such as transarterial chemoembolization (TACE) or selective internal radiation therapy (SIRT) are well established, usually palliatively intended treatment options for primary and secondary hepatic malignancies. Embolisation is usually well tolerated under conscious sedation and can be repeated several times. Percutaneous thermoablation is a local ablative, usually curatively intended treatment for hepatic, renal and pulmonary tumors. As a minimally invasive technique, it competes against surgery and radiation therapy. There are different types of thermoablation, most commonly used are radiofrequency ablation (RFA), microwave ablation (MWA) and cryo-ablation. Ablation is usually performed in general anesthesia, less common in conscious sedation. New interventional treatments are high intensity focused ultrasound (HIFU) and irreversible electroporation (IRE). HIFU allows a non-invasive, imaging-guided thermoablation that is currently certified for uterine myoma, prostate cancer and bone tumors. IRE is a minimal invasive non-thermal ablation that is especially established for locally advanced tumors that show a close relationship to large vessels, for example pancreatic cancer.
Collapse
Affiliation(s)
- Jörn Henze
- Institut für Diagnostische und Interventionelle Radiologie des Universitätsklinikums Köln
| | - David Maintz
- Institut für Diagnostische und Interventionelle Radiologie des Universitätsklinikums Köln
| |
Collapse
|
6
|
Tiwari A, Saraf S, Jain A, Panda PK, Verma A, Jain SK. Basics to advances in nanotherapy of colorectal cancer. Drug Deliv Transl Res 2020; 10:319-338. [PMID: 31701486 DOI: 10.1007/s13346-019-00680-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer existing across the globe. It begins with the formation of polyps leading to the development of metastasis, especially in advanced stage patients, who necessitate intensive chemotherapy that usually results in a poor response and high morbidity owing to multidrug resistance and severe untoward effects to the non-cancerous cells. Advancements in the targeted drug delivery permit the targeting of tumor cells without affecting the non-tumor cells. Various nanocarriers such as liposomes, polymeric nanoparticles, carbon nanotubes, micelles, and nanogels, etc. are being developed and explored for effective delivery of cytotoxic drugs to the target site thereby enhancing the drug distribution and bioavailability, simultaneously subduing the side effects. Moreover, immunotherapy for CRC is being explored for last few decades. Few clinical trials have even potentially benefited patients suffering from CRC, still immunotherapy persists merely an experimental alternative. Assessment of the ongoing and completed trials is to be warranted for effective treatment of CRC. Scientists are paying efforts to develop novel carrier systems that may enhance the targeting potential of low therapeutic index chemo- and immune-therapeutics. Several preclinical studies have revealed the superior efficacy of nanotherapy in CRC as compared to conventional approaches. Clinical trials are being recruited to ascertain the safety and efficacy of CRC therapies. The present review discourses in a nutshell the molecular interventions including the genetics, signaling pathways involved in CRC, and advances in various strategies explored for the treatment of CRC with a special emphasis on nanocarriers based drug targeting.
Collapse
Affiliation(s)
- Ankita Tiwari
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, 470 003 (M.P.), India
| | - Shivani Saraf
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, 470 003 (M.P.), India
| | - Ankit Jain
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, 470 003 (M.P.), India
- Institute of Pharmaceutical Research, GLA University, NH-2, Mathura-Delhi Road, Mathura, 281 406 (U.P.), India
| | - Pritish K Panda
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, 470 003 (M.P.), India
| | - Amit Verma
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, 470 003 (M.P.), India
| | - Sanjay K Jain
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, 470 003 (M.P.), India.
| |
Collapse
|
7
|
Moadel RM, Cynamon J. Letter from the Guest Editors. Semin Nucl Med 2019; 49:168-169. [PMID: 30954181 DOI: 10.1053/j.semnuclmed.2019.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|