1
|
Rolf-Pissarczyk M, Schussnig R, Fries TP, Fleischmann D, Elefteriades JA, Humphrey JD, Holzapfel GA. Mechanisms of aortic dissection: From pathological changes to experimental and in silico models. PROGRESS IN MATERIALS SCIENCE 2025; 150:101363. [PMID: 39830801 PMCID: PMC11737592 DOI: 10.1016/j.pmatsci.2024.101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Aortic dissection continues to be responsible for significant morbidity and mortality, although recent advances in medical data assimilation and in experimental and in silico models have improved our understanding of the initiation and progression of the accumulation of blood within the aortic wall. Hence, there remains a pressing necessity for innovative and enhanced models to more accurately characterize the associated pathological changes. Early on, experimental models were employed to uncover mechanisms in aortic dissection, such as hemodynamic changes and alterations in wall microstructure, and to assess the efficacy of medical implants. While experimental models were once the only option available, more recently they are also being used to validate in silico models. Based on an improved understanding of the deteriorated microstructure of the aortic wall, numerous multiscale material models have been proposed in recent decades to study the state of stress in dissected aortas, including the changes associated with damage and failure. Furthermore, when integrated with accessible patient-derived medical data, in silico models prove to be an invaluable tool for identifying correlations between hemodynamics, wall stresses, or thrombus formation in the deteriorated aortic wall. They are also advantageous for model-guided design of medical implants with the aim of evaluating the deployment and migration of implants in patients. Nonetheless, the utility of in silico models depends largely on patient-derived medical data, such as chosen boundary conditions or tissue properties. In this review article, our objective is to provide a thorough summary of medical data elucidating the pathological alterations associated with this disease. Concurrently, we aim to assess experimental models, as well as multiscale material and patient data-informed in silico models, that investigate various aspects of aortic dissection. In conclusion, we present a discourse on future perspectives, encompassing aspects of disease modeling, numerical challenges, and clinical applications, with a particular focus on aortic dissection. The aspiration is to inspire future studies, deepen our comprehension of the disease, and ultimately shape clinical care and treatment decisions.
Collapse
Affiliation(s)
| | - Richard Schussnig
- High-Performance Scientific Computing, University of Augsburg, Germany
- Institute of Structural Analysis, Graz University of Technology, Austria
| | - Thomas-Peter Fries
- Institute of Structural Analysis, Graz University of Technology, Austria
| | - Dominik Fleischmann
- 3D and Quantitative Imaging Laboratory, Department of Radiology, Stanford University, USA
| | | | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, USA
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
2
|
Forneris A, Hassanabad AF, Appoo JJ, Di Martino ES. Predicting Aneurysmal Degeneration in Uncomplicated Residual Type B Aortic Dissection. Bioengineering (Basel) 2024; 11:690. [PMID: 39061772 PMCID: PMC11274148 DOI: 10.3390/bioengineering11070690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The formation of an aneurysm in the false lumen (FL) is a long-term complication in a significant percentage of type B aortic dissection (AD) patients. The ability to predict which patients are likely to progress to aneurysm formation is key to justifying the risks of interventional therapy. The investigation of patient-specific hemodynamics has the potential to enable a patient-tailored approach to improve prognosis by guiding disease management for type B dissection. CFD-derived hemodynamic descriptors and geometric features were used to retrospectively assess individual aortas for a population of residual type B AD patients and analyze correlations with known outcomes (i.e., rapid aortic growth, death). The results highlight great variability in flow patterns and hemodynamic descriptors. A rapid aortic expansion was found to be associated with a larger FL. Time-averaged wall shear stress at the tear region emerged as a possible indicator of the dynamics of flow exchange between lumens and its effect on the evolution of individual aortas. High FL flow rate and tortuosity were associated with adverse outcomes suggesting a role as indicators of risk. AD induces complex changes in vessel geometry and hemodynamics. The reported findings emphasize the need for a patient-tailored approach when evaluating uncomplicated type B AD patients and show the potential of CFD-derived hemodynamics to complement anatomical assessment and help disease management.
Collapse
Affiliation(s)
- Arianna Forneris
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
- R&D Department, ViTAA Medical Solutions, Montreal, QC H2K 1M6, Canada
| | - Ali F. Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 1N4, Canada; (A.F.H.); (J.J.A.)
| | - Jehangir J. Appoo
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 1N4, Canada; (A.F.H.); (J.J.A.)
| | - Elena S. Di Martino
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
- R&D Department, ViTAA Medical Solutions, Montreal, QC H2K 1M6, Canada
| |
Collapse
|
3
|
Yu Y, Liu L, Shi E, Gu T. Multifactorial considerations in frozen elephant trunk selection and treatment strategies for acute type A aortic dissection. JTCVS OPEN 2024; 19:39. [PMID: 39015449 PMCID: PMC11247200 DOI: 10.1016/j.xjon.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Affiliation(s)
- Yang Yu
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Lu Liu
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Enyi Shi
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Tianxiang Gu
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| |
Collapse
|
4
|
Zhu Y, Xu XY, Rosendahl U, Pepper J, Mirsadraee S. Advanced risk prediction for aortic dissection patients using imaging-based computational flow analysis. Clin Radiol 2023; 78:e155-e165. [PMID: 36610929 DOI: 10.1016/j.crad.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Patients with either a repaired or medically managed aortic dissection have varying degrees of risk of developing late complications. High-risk patients would benefit from earlier intervention to improve their long-term survival. Currently serial imaging is used for risk stratification, which is not always reliable. On the other hand, understanding aortic haemodynamics within a dissection is essential to fully evaluate the disease and predict how it may progress. In recent decades, computational fluid dynamics (CFD) has been extensively applied to simulate complex haemodynamics within aortic diseases, and more recently, four-dimensional (4D)-flow magnetic resonance imaging (MRI) techniques have been developed for in vivo haemodynamic measurement. This paper presents a comprehensive review on the application of image-based CFD simulations and 4D-flow MRI analysis for risk prediction in aortic dissection. The key steps involved in patient-specific CFD analyses are demonstrated. Finally, we propose a workflow incorporating computational modelling for personalised assessment to aid in risk stratification and treatment decision-making.
Collapse
Affiliation(s)
- Y Zhu
- Department of Chemical Engineering, Imperial College London, London, UK
| | - X Y Xu
- Department of Chemical Engineering, Imperial College London, London, UK
| | - U Rosendahl
- Department of Cardiac Surgery, Royal Brompton and Harefield Hospitals, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - J Pepper
- Department of Cardiac Surgery, Royal Brompton and Harefield Hospitals, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - S Mirsadraee
- National Heart and Lung Institute, Imperial College London, London, UK; Department of Radiology, Royal Brompton and Harefield Hospitals, London, UK.
| |
Collapse
|
5
|
Zhu Y, Mirsadraee S, Rosendahl U, Pepper J, Xu XY. Fluid-Structure Interaction Simulations of Repaired Type A Aortic Dissection: a Comprehensive Comparison With Rigid Wall Models. Front Physiol 2022; 13:913457. [PMID: 35774287 PMCID: PMC9237394 DOI: 10.3389/fphys.2022.913457] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/17/2022] [Indexed: 11/26/2022] Open
Abstract
This study aimed to evaluate the effect of aortic wall compliance on intraluminal hemodynamics within surgically repaired type A aortic dissection (TAAD). Fully coupled two-way fluid-structure interaction (FSI) simulations were performed on two patient-specific post-surgery TAAD models reconstructed from computed tomography angiography images. Our FSI model incorporated prestress and different material properties for the aorta and graft. Computational results, including velocity, wall shear stress (WSS) and pressure difference between the true and false lumen, were compared between the FSI and rigid wall simulations. It was found that the FSI model predicted lower blood velocities and WSS along the dissected aorta. In particular, the area exposed to low time-averaged WSS ( ≤ 0.2 P a ) was increased from 21 cm2 (rigid) to 38 cm2 (FSI) in patient 1 and from 35 cm2 (rigid) to 144 cm2 (FSI) in patient 2. FSI models also produced more disturbed flow where much larger regions presented with higher turbulence intensity as compared to the rigid wall models. The effect of wall compliance on pressure difference between the true and false lumen was insignificant, with the maximum difference between FSI and rigid models being less than 0.25 mmHg for the two patient-specific models. Comparisons of simulation results for models with different Young's moduli revealed that a more compliant wall resulted in further reduction in velocity and WSS magnitudes because of increased displacements. This study demonstrated the importance of FSI simulation for accurate prediction of low WSS regions in surgically repaired TAAD, but a rigid wall computational fluid dynamics simulation would be sufficient for prediction of luminal pressure difference.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Saeed Mirsadraee
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Radiology, Royal Brompton and Harefield Hospitals, London, United Kingdom
| | - Ulrich Rosendahl
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Cardiac Surgery, Royal Brompton and Harefield Hospitals, London, United Kingdom
| | - John Pepper
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Cardiac Surgery, Royal Brompton and Harefield Hospitals, London, United Kingdom
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Alnajar A. Commentary: Predicting False Lumen Enlargement Based on Fenestration Flow Velocity - to What Extent Should Computational Models be Incorporated? Semin Thorac Cardiovasc Surg 2021; 34:451-452. [PMID: 34116200 DOI: 10.1053/j.semtcvs.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Ahmed Alnajar
- Division of Cardiothoracic Surgery, The DeWitt Daughtry Department of Surgery. University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
7
|
Belluschi I, Glauber M, Miceli A. Commentary: Fate Revealed: How Simulation Predicts False Lumen Evolution. Semin Thorac Cardiovasc Surg 2021; 34:449-450. [PMID: 34116199 DOI: 10.1053/j.semtcvs.2021.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Igor Belluschi
- Department of Cardiac Surgery, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Mattia Glauber
- Department of Cardiac Surgery, Sant'Ambrogio Hospital, Milan, Italy
| | - Antonio Miceli
- Department of Cardiac Surgery, Sant'Ambrogio Hospital, Milan, Italy.
| |
Collapse
|