1
|
Cho SJ, Ferrell LD, Gill RM. Expression of liver fatty acid binding protein in hepatocellular carcinoma. Hum Pathol 2015; 50:135-9. [PMID: 26997447 DOI: 10.1016/j.humpath.2015.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/28/2015] [Accepted: 12/05/2015] [Indexed: 11/28/2022]
Abstract
Loss of expression of liver fatty acid binding protein (LFABP) by immunohistochemistry has been shown to be characteristic of a subset of hepatocellular adenomas (HCAs) in which HNF1A is inactivated. Transformation to hepatocellular carcinoma is thought to be a very rare phenomenon in the HNF1A-inactivated variant of HCA. However, we recently observed 2 cases at our institution, 1 definite hepatocellular carcinoma and 1 possible hepatocellular carcinoma, with loss of LFABP staining, raising the possibility that LFABP down-regulation may be associated with hepatocellular carcinogenesis. Our aim was to evaluate hepatocellular carcinomas arising in various backgrounds and with varying degrees of differentiation for loss of LFABP staining. Twenty total cases of hepatocellular carcinoma were examined. Thirteen cases arose in a background of cirrhosis due to hepatitis C (n = 8) or steatohepatitis (n = 5); 7 cases arose in a noncirrhotic background, with 2 cases arising within HNF1A-inactivated variant HCA and 2 cases arising within inflammatory variant HCA. Complete loss of expression of LFABP was seen in 6 of 20 cases, including 2 cases of hepatocellular carcinoma arising within HNF1A-inactivated variant HCA. Thus, loss of staining for LFABP appears to be common in hepatocellular carcinoma and may be seen in well-differentiated hepatocellular carcinoma. Therefore, LFABP loss should not be interpreted as evidence for hepatocellular adenoma over carcinoma, when other features support a diagnosis of hepatocellular carcinoma. The findings raise consideration for a role of HNF1A inactivation in hepatocellular carcinogenesis, particularly in less differentiated tumors.
Collapse
Affiliation(s)
- Soo-Jin Cho
- Department of Pathology, University of California, San Francisco, CA 94143
| | - Linda D Ferrell
- Department of Pathology, University of California, San Francisco, CA 94143
| | - Ryan M Gill
- Department of Pathology, University of California, San Francisco, CA 94143.
| |
Collapse
|
2
|
Reed C, Hutcheson J, Mayhew CN, Witkiewicz AK, Knudsen ES. RB tumor suppressive function in response to xenobiotic hepatocarcinogens. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1853-9. [PMID: 24726645 DOI: 10.1016/j.ajpath.2014.02.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/27/2014] [Accepted: 02/04/2014] [Indexed: 12/30/2022]
Abstract
Diverse etiologic events are associated with the development of hepatocellular carcinoma. During hepatocarcinogenesis, genetic events likely occur that subsequently cooperate with long-term exposures to further drive the progression of hepatocellular carcinoma. In this study, the frequent loss of the retinoblastoma (RB) tumor suppressor in hepatocellular carcinoma was modeled in response to diverse hepatic stresses. Loss of RB did not significantly affect the response to a steatotic stress as driven by a methionine- and choline-deficient diet. In addition, RB status did not significantly influence the response to peroxisome proliferators that can drive hepatomegaly and tumor development in rodents. However, RB loss exhibited a highly significant effect on the response to the xenobiotic1,4-Bis-[2-(3,5-dichloropyridyloxy)] benzene. Loss of RB yielded a unique proliferative response to this agent, which was distinct from both regenerative stresses and genotoxic carcinogens. Long-term exposure to 1,4-Bis-[2-(3,5-dichloropyridyloxy)] benzene yielded profound tumor development in RB-deficient livers that was principally absent in RB-sufficient tissue. These data demonstrate the context specificity of RB and the key role RB plays in the suppression of hepatocellular carcinoma driven by xenobiotic stress.
Collapse
Affiliation(s)
- Christopher Reed
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jack Hutcheson
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Agnieszka K Witkiewicz
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas; Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Erik S Knudsen
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas; Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
3
|
Knudsen ES, Gopal P, Singal AG. The changing landscape of hepatocellular carcinoma: etiology, genetics, and therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:574-83. [PMID: 24388934 PMCID: PMC3936328 DOI: 10.1016/j.ajpath.2013.10.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) represents one of the leading causes of cancer death and has proved to be highly refractory to treatment. Extensive analysis of the disease has demonstrated that it arises predominantly in response to high-risk etiological challenges, most notably hepatitis virus. However, with evolving vaccination and the obesity epidemic, progressively more cases are associated with underlying metabolic dysfunction. Pathologically diverse forms of HCC are observed, and recent sequencing analysis has defined common events that target well-known cancer pathways including β-catenin/Axin, TP53, and RB/CDKN2A, as well as frequent aberrations in chromatin remodeling factors. However, there are a myriad of low frequency genetic events that make each HCC case unique. Gene expression profiling approaches have successfully been deployed for prognostic assessment of hepatocellular carcinoma and to detect the earliest stages of disease. Despite more extensive research, systemic treatment for HCC is exceedingly limited, with only a handful of drugs providing benefit. Ongoing clinical trials are attempting to exploit specific biological dependencies of HCC to improve the dismal prognosis. Overall, the future of HCC treatment will rely on an understanding of the interplay between etiological factors, molecular features of disease, and rational therapeutic intervention.
Collapse
Affiliation(s)
- Erik S Knudsen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas; Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Purva Gopal
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Amit G Singal
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas; Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
4
|
Rapini N, Lidano R, Pietrosanti S, Vitiello G, Grimaldi C, Postorivo D, Nardone AM, Del Bufalo F, Brancati F, Manca Bitti ML. De novo 13q13.3-21.31 deletion involving RB1 gene in a patient with hemangioendothelioma of the liver. Ital J Pediatr 2014; 40:5. [PMID: 24433316 PMCID: PMC3896849 DOI: 10.1186/1824-7288-40-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/12/2013] [Indexed: 01/29/2023] Open
Abstract
Interstitial deletions of the long arm of chromosome 13 (13q) are related with variable phenotypes, according to the size and the location of the deleted region. The main clinical features are moderate/severe mental and growth retardation, cranio-facial dysmorphism, variable congenital defects and increased susceptibility to tumors. Here we report a 3-year-old girl carrying a de novo 13q13.3-21.32 interstitial deletion. She showed developmental delay, growth retardation and mild dysmorphism including curly hair, high forehead, short nose, thin upper lip and long philtrum. An abnormal mass was surgically removed from her liver resulting in a hemangioendothelioma. Array analysis allowed us to define a deleted region of about 27.87 Mb, which includes the RB1 gene. This is the first report of a 13q deletion associated with infantile hemangioendothelioma of the liver.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Francesco Brancati
- Medical Genetics Unit, Policlinico Tor Vergata University Hospital, Viale Oxford, 81-00133 Rome, Italy.
| | | |
Collapse
|
5
|
Reed CA, Mayhew CN, McClendon AK, Knudsen ES. Unique impact of RB loss on hepatic proliferation: tumorigenic stresses uncover distinct pathways of cell cycle control. J Biol Chem 2009; 285:1089-96. [PMID: 19887370 DOI: 10.1074/jbc.m109.043380] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The retinoblastoma (RB) tumor suppressor pathway is disrupted at high frequency in hepatocellular carcinoma. However, the mechanisms through which RB modulates physiological responses in the liver remain poorly defined. Despite the well established role of RB in cell cycle control, the deletion of RB had no impact on the kinetics of cell cycle entry or the restoration of quiescence during the course of liver regeneration. Although these findings indicated compensatory effects from the RB-related proteins p107 and p130, even the dual deletion of RB with p107 or p130 failed to deregulate hepatic proliferation. Furthermore, although these findings suggested a modest role for the RB-pathway in the context of proliferative control, RB loss had striking effects on response to the genotoxic hepatocarcinogen diethylnitrosamine. With diethylnitrosamine, RB deletion resulted in inappropriate cell cycle entry that facilitated secondary genetic damage and further uncoupling of DNA replication with mitotic entry. Analysis of the mechanism underlying the differential impact of RB status on liver biology revealed that, while liver regeneration is associated with the conventional induction of cyclin D1 expression, the RB-dependent cell cycle entry, occurring with diethylnitrosamine treatment, was independent of cyclin D1 levels and associated with the specific induction of E2F1. Combined, these studies demonstrate that RB loss has disparate effects on the response to unique tumorigenic stresses, which is reflective of distinct mechanisms of cell cycle entry.
Collapse
Affiliation(s)
- Christopher A Reed
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
6
|
Reed CA, Mayhew CN, McClendon AK, Yang X, Witkiewicz A, Knudsen ES. RB has a critical role in mediating the in vivo checkpoint response, mitigating secondary DNA damage and suppressing liver tumorigenesis initiated by aflatoxin B1. Oncogene 2009; 28:4434-43. [PMID: 19838213 DOI: 10.1038/onc.2009.303] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hepatocellular carcinoma (HCC) is a significant worldwide health concern that is associated with discrete etiological events, encompassing viral infection, metabolic stress and genotoxic compounds. In particular, exposure to the genotoxic hepatocarcinogen aflatoxin B1 (AFB1) is a significant factor in the genesis of human liver cancer. Presumably, genetic events associated with HCC could influence the effect of environmental insults, yielding a predilection for tumor development. The retinoblastoma (RB) tumor suppressor pathway is functionally inactivated in HCC through discrete mechanisms; however, the role of RB in suppressing tumorigenesis in this disease is poorly understood. Therefore, we analysed how RB status affects the response to AFB1 in reference to acute exposures and tumor development reflective of chronic exposure. Liver-specific Rb deletion resulted in an aberrant proliferative response to AFB1. This cell-cycle induction was associated with increased levels of secondary genetic damage and failure in appropriate cell-cycle coupling. This effect of RB loss was unique to AFB1 and involved the induction of a non-canonical proliferative pathway, and was not merely reflective of the overall cell-cycle deregulation or aberrant regenerative responses. The acute responses to AFB1 exposure presaged aberrations in hepatocyte nuclear morphology and ploidy with RB loss. Correspondingly, RB-deficient livers showed significantly enhanced susceptibility to liver tumorigenesis initiated by AFB1. Combined, these studies show that RB has a critical role in mediating checkpoint responses in liver tissue to maintain genome integrity and in suppressing tumorigenesis.
Collapse
Affiliation(s)
- C A Reed
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107-5541, USA
| | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Cavard C, Terris B, Grimber G, Christa L, Audard V, Radenen-Bussiere B, Simon MT, Renard CA, Buendia MA, Perret C. Overexpression of regenerating islet-derived 1 alpha and 3 alpha genes in human primary liver tumors with β-catenin mutations. Oncogene 2005; 25:599-608. [PMID: 16314847 DOI: 10.1038/sj.onc.1208860] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Wnt/beta-catenin signaling pathway is activated in many human hepatocellular carcinomas (HCC). We tried to identify the genes involved in carcinogenesis and progression of HCC with beta-catenin mutations. We used PCR-based subtractive hybridization to compare gene expression between malignant and benign components of a human HCC occurring in pre-existing adenoma activated for beta-catenin. Two of the genes identified belong to the Regenerating gene (REG) family. They encode the Regenerating islet-derived 3 alpha (REG3A/HIP/PAP/REG-III) and 1 alpha (REG1A) proteins, both involved in liver and pancreatic regeneration and proliferation. Using siRNA directed against beta-catenin, we demonstrated that REG3A is a target of beta-catenin signaling in Huh7 hepatoma cells. The upregulation of REG3A and REG1A expression is significantly correlated to the beta-catenin status in 42 HCC and 28 hepatoblastomas characterized for their beta-catenin status. Thus, we report strong evidence that both genes are downstream targets of the Wnt pathway during liver tumorigenesis.
Collapse
Affiliation(s)
- C Cavard
- Département GDPM, INSERM U-567, CNRS UMR 8104, Institut Cochin, Université Paris 5, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|