1
|
Ayala S, Delco ML, Fortier LA, Cohen I, Bonassar LJ. Cartilage articulation exacerbates chondrocyte damage and death after impact injury. J Orthop Res 2021; 39:2130-2140. [PMID: 33274781 PMCID: PMC8175450 DOI: 10.1002/jor.24936] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/21/2020] [Accepted: 12/01/2020] [Indexed: 02/04/2023]
Abstract
Posttraumatic osteoarthritis (PTOA) is typically initiated by momentary supraphysiologic shear and compressive forces delivered to articular cartilage during acute joint injury and develops through subsequent degradation of cartilage matrix components and tissue remodeling. PTOA affects 12% of the population who experience osteoarthritis and is attributed to over $3 billion dollars annually in healthcare costs. It is currently unknown whether articulation of the joint post-injury helps tissue healing or exacerbates cellular dysfunction and eventual death. We hypothesize that post-injury cartilage articulation will lead to increased cartilage damage. Our objective was to test this hypothesis by mimicking the mechanical environment of the joint during and post-injury and determining if subsequent joint articulation exacerbates damage produced by initial injury. We use a model of PTOA that combines impact injury and repetitive sliding with confocal microscopy to quantify and track chondrocyte viability, apoptosis, and mitochondrial depolarization in a depth-dependent manner. Cartilage explants were harvested from neonatal bovine knee joints and subjected to either rapid impact injury (17.34 ± 0.99 MPa, 21.6 ± 2.45 GPa/s), sliding (60 min at 1 mm/s, under 15% axial compression), or rapid impact injury followed by sliding. Explants were then bisected and fluorescently stained for cell viability, caspase activity (apoptosis), and mitochondria polarization. Results show that compared to either impact or sliding alone, explants that were both impacted and slid experienced higher magnitudes of damage spanning greater tissue depths.
Collapse
Affiliation(s)
- Steven Ayala
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
| | - Michelle L. Delco
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Lisa A. Fortier
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, NY
| | - Lawrence J. Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
| |
Collapse
|
2
|
Walsh SK, Shelley JC, Henak CR. Mechanobiology of Cartilage Impact Via Real-Time Metabolic Imaging. J Biomech Eng 2020; 142:100802. [PMID: 32542333 DOI: 10.1115/1.4047534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Indexed: 11/08/2022]
Abstract
Cartilage loading is important in both structural and biological contexts, with overloading known to cause osteoarthritis (OA). Cellular metabolism, which can be evaluated through the relative measures of glycolysis and oxidative phosphorylation, is important in disease processes across tissues. Details of structural damage coupled with cellular metabolism in cartilage have not been evaluated. Therefore, the aim of this study was to characterize the time- and location-dependent metabolic response to traumatic impact loading in articular cartilage. Cartilage samples from porcine femoral condyles underwent a single traumatic injury that created cracks in most samples. Before and up to 30 min after loading, samples underwent optical metabolic imaging. Optical metabolic imaging measures the fluorescent intensity of byproducts of the two metabolic pathways, flavin adenine dinucleotide for oxidative phosphorylation and nicotinamide adenine dinucleotide ± phosphate for glycolysis, as well as the redox ratio between them. Images were taken at varied distances from the center of the impact. Shortly after impact, fluorescence intensity in both channels decreased, while redox ratio was unchanged. The most dramatic metabolic response was measured closest to the impact center, with suppressed fluorescence in both channels relative to baseline. Redox ratio varied nonlinearly as a function of distance from the impact. Finally, both lower and higher magnitude loading reduced flavin adenine dinucleotide fluorescence, whereas reduced nicotinamide adenine dinucleotide ± phosphate fluorescence was associated only with low strain loads and high contact pressure loads, respectively. In conclusion, this study performed novel analysis of metabolic activity following induction of cartilage damage and demonstrated time-, distance-, and load-dependent response to traumatic impact loading.
Collapse
Affiliation(s)
- Shannon K Walsh
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Joshua C Shelley
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706
| | - Corinne R Henak
- Department of Mechanical Engineering, University of Wisconsin-Madison, 3031 Mechanical Engineering Building, 1513 University Ave. Madison, WI 53706; Department of Biomedical Engineering, University of Wisconsin-Madison, 3031 Mechanical Engineering Building, 1513 University Ave. Madison, WI 53706; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 3031 Mechanical Engineering Building, 1513 University Ave. Madison, WI 53705
| |
Collapse
|
3
|
Papagiannaki M, Samoladas E, Maropoulos S, Arabatzi F. Running-Related Injury From an Engineering, Medical and Sport Science Perspective. Front Bioeng Biotechnol 2020; 8:533391. [PMID: 33117776 PMCID: PMC7561420 DOI: 10.3389/fbioe.2020.533391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 08/28/2020] [Indexed: 11/30/2022] Open
Abstract
Etiologic factors associated to running injuries are reviewed, with an emphasis on the transient shock waves experienced during foot strike. In these terms, impact mechanics are analyzed from both, a biomechanical and medical standpoint and evaluated with respect injury etiology, precursors and morbidity. The complex interaction of runner specific characteristics on the employed footwear system are examined, providing insight into footwear selection that could act as a preventive measure against non-acute trauma incidence. In conclusion, and despite the vast literature on running-related injury-risks, only few records could be identified to consider the effect of shoe cushioning and anthropometric data on injury prevalence. Based on this literature, we would stress the importance of such considerations in future studies aspiring to provide insight into running related injury etiology and prevention.
Collapse
Affiliation(s)
- Maria Papagiannaki
- Department of Physical Education and Sport Science, Serres, Aristotle University of Thessaloniki, Thessalonik, Greece
| | - Efthimios Samoladas
- Department of Orthopaedics, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stergios Maropoulos
- Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece
| | - Fotini Arabatzi
- Department of Physical Education and Sport Science, Serres, Aristotle University of Thessaloniki, Thessalonik, Greece
| |
Collapse
|
4
|
Bartell LR, Fortier LA, Bonassar LJ, Szeto HH, Cohen I, Delco ML. Mitoprotective therapy prevents rapid, strain-dependent mitochondrial dysfunction after articular cartilage injury. J Orthop Res 2020; 38:1257-1267. [PMID: 31840828 PMCID: PMC7225065 DOI: 10.1002/jor.24567] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/12/2019] [Indexed: 02/04/2023]
Abstract
Posttraumatic osteoarthritis (PTOA) involves the mechanical and biological deterioration of articular cartilage that occurs following joint injury. PTOA is a growing problem in health care due to the lack of effective therapies combined with an aging population with high activity levels. Recently, acute mitochondrial dysfunction and altered cellular respiration have been associated with cartilage degeneration after injury. This finding is particularly important because recently developed mitoprotective drugs, including SS peptides, can preserve mitochondrial structure and function after acute injury in other tissues. It is not known, however, if cartilage injury induces rapid structural changes in mitochondria, to what degree mitochondrial dysfunction in cartilage depends on the mechanics of injury or the time frame over which such dysfunction develops. Similarly, it is unknown if SS-peptide treatment can preserve mitochondrial structure and function after cartilage injury. Here, we combined fast camera elastography, longitudinal fluorescence assays, and computer vision techniques to track the fates of thousands of individual cells. Our results show that impact induces mechanically dependent mitochondrial depolarization within a few minutes after injury. Electron microscopy revealed that impact causes rapid structural changes in mitochondria that are related to reduced mitochondrial function, namely, fission and loss of cristae structure. We found that SS-peptide treatment prior to impact protects the mitochondrial structure and preserves mitochondrial function at levels comparable with that of unimpacted control samples. Overall, this study reveals the vital role of mitochondria in mediating cartilage's peracute (within minutes) response to traumatic injury and demonstrates mitoprotection as a promising therapeutic strategy for injury-induced cartilage damage.
Collapse
Affiliation(s)
- Lena R. Bartell
- School of Applied & Engineering Physics, Cornell University, Ithaca, NY, United States of America
| | - Lisa A. Fortier
- Department of Clinical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Lawrence J. Bonassar
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States of America
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Hazel H. Szeto
- Burke Medical Research Institute, White Plains, NY, United States of America
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, NY, United States of America
| | - Michelle L. Delco
- Department of Clinical Sciences, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
5
|
Walsh SK, Schneider SE, Amundson LA, Neu CP, Henak CR. Maturity-dependent cartilage cell plasticity and sensitivity to external perturbation. J Mech Behav Biomed Mater 2020; 106:103732. [PMID: 32321631 DOI: 10.1016/j.jmbbm.2020.103732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/04/2020] [Accepted: 03/13/2020] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Articular cartilage undergoes biological and morphological changes throughout maturation. The prevalence of osteoarthritis in the aged population suggests that maturation predisposes cartilage to degradation and/or impaired regeneration, but this process is not fully understood. Therefore, the objective of this study was to characterize the cellular and genetic profile of cartilage, as well as biological plasticity in response to mechanical and culture time stimuli, as a function of animal maturity. METHODS/DESIGN Porcine articular cartilage explants were harvested from stifle joints of immature (2-4 weeks), adolescent (5-6 months), and mature (1-5 years) animals. Half of all samples were subjected to a single compressive mechanical load. Loaded samples were paired with unloaded controls for downstream analyses. Expression of cartilage progenitor cell markers CD105, CD44, and CD29 were determined via flow cytometry. Expression of matrix synthesis genes Col1, Col2, Col10, ACAN, and SOX9 were determined via qPCR. Tissue morphology and matrix content were examined histologically. Post-loading assays were performed immediately and following 7 days in culture. RESULTS CD105 and CD29 expression decreased with maturity, while CD44 expression was upregulated in cartilage from mature animals. Expression of matrix synthesis genes were generally upregulated in cartilage from mature animals, and adolescent animals showed the lowest expression of several matrix synthesizing genes. Culture time and mechanical loading analyses revealed greater plasticity to mechanical loading and culture time in cartilage from younger animals. Histology confirmed distinct structural and biochemical profiles across maturity. CONCLUSION This study demonstrates differential, nonlinear expression of chondroprogenitor markers and matrix synthesis genes as a function of cartilage maturity, as well as loss of biological plasticity in aged tissue. These findings have likely implications for age-related loss of regeneration and osteoarthritis progression.
Collapse
Affiliation(s)
- Shannon K Walsh
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI, USA.
| | - Stephanie E Schneider
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA.
| | - Laura A Amundson
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| | - Corey P Neu
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA.
| | - Corinne R Henak
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
6
|
Real-time optical redox imaging of cartilage metabolic response to mechanical loading. Osteoarthritis Cartilage 2019; 27:1841-1850. [PMID: 31513919 DOI: 10.1016/j.joca.2019.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Metabolic dysregulation has recently been identified as a key feature of osteoarthritis. Mechanical overloading has been postulated as a primary cause of this metabolic response. Current methods of real-time metabolic activity analysis in cartilage are limited and challenging. However, optical redox imaging leverages the autofluorescence of co-enzymes NAD(P)H and FAD to provide dye-free real-time analysis of metabolic activity. This technique has not yet been applied to cartilage. This study aimed to assess the effects of a compressive load on cartilage using optical redox imaging. METHOD Cartilage samples were excised from porcine femoral condyles. To validate this imaging modality in cartilage, glycolysis was inhibited via 2-deoxy-D-glucose (2DG) and oxidative phosphorylation was inhibited by rotenone. Optical redox images were collected pre- and post-inhibition. To assess the effects of mechanical loading, samples were subjected to a compressive load and imaged for approximately 30 min. Load and strain parameters were determined using high-speed camera images in Matlab. A range of loading magnitudes and rates were applied across samples. RESULTS 2DG and rotenone demonstrated the expected inhibitory effects on fluorescence intensity in the channels corresponding to NAD(P)H and FAD, respectively. Mechanical loading induced an increase in NAD(P)H channel fluorescence which subsided by 30 min post-loading. Magnitude of loading parameters had mixed effects on metabolites. CONCLUSIONS Optical redox imaging provides an opportunity to assess real-time metabolic activity in cartilage. This approach revealed a metabolic response to a single load and can be used to provide insight into the role of metabolism in mechanically-mediated cartilage degradation.
Collapse
|
7
|
Heuijerjans A, Wilson W, Ito K, van Donkelaar CC. The critical size of focal articular cartilage defects is associated with strains in the collagen fibers. Clin Biomech (Bristol, Avon) 2017; 50:40-46. [PMID: 28987870 DOI: 10.1016/j.clinbiomech.2017.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/15/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023]
Abstract
The size of full-thickness focal cartilage defect is accepted to be predictive of its fate, but at which size threshold treatment is required is unclear. Clarification of the mechanism behind this threshold effect will help determining when treatment is required. The objective was to investigate the effect of defect size on strains in the collagen fibers and the non-fibrillar matrix of surrounding cartilage. These strains may indicate matrix disruption. Tissue deformation into the defect was expected, stretching adjacent superficial collagen fibers, while an osteochondral implant was expected to prevent these deformations. Finite element simulations of cartilage/cartilage contact for intact, 0.5 to 8mm wide defects and 8mm implant cases were performed. Impact, a load increase to 2MPa in 1ms, and creep loading, a constant load of 0.5MPa for 900s, scenarios were simulated. A composition-based material model for articular cartilage was employed. Impact loading caused low strain levels for all models. Creep loading increased deviatoric strains and collagen strains in the surrounding cartilage. Deviatoric strains increased gradually with defect size, but the surface area at which collagen fiber strains exceeded failure thresholds, abruptly increased for small increases of defect size. This was caused by a narrow distribution of collagen fiber strains resulting from the non-linear stiffness of the fibers. We postulate this might be the mechanism behind the existence of a critical defect size. Filling of the defect with an implant reduced deviatoric and collagen fiber strains towards values for intact cartilage.
Collapse
Affiliation(s)
- A Heuijerjans
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - W Wilson
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - K Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - C C van Donkelaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands.
| |
Collapse
|
8
|
Henak CR, Bartell LR, Cohen I, Bonassar LJ. Multiscale Strain as a Predictor of Impact-Induced Fissuring in Articular Cartilage. J Biomech Eng 2017; 139:2571657. [PMID: 27760253 DOI: 10.1115/1.4034994] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Indexed: 11/08/2022]
Abstract
Mechanical damage is central to both initiation and progression of osteoarthritis (OA). However, specific causal links between mechanics and cartilage damage are incompletely understood, which results in an inability to predict failure. The lack of understanding is primarily due to the difficulty in simultaneously resolving the high rates and small length scales relevant to the problem and in correlating such measurements to the resulting fissures. This study leveraged microscopy and high-speed imaging to resolve mechanics on the previously unexamined time and length scales of interest in cartilage damage, and used those mechanics to develop predictive models. The specific objectives of this study were to: first, quantify bulk and local mechanics during impact-induced fissuring; second, develop predictive models of fissuring based on bulk mechanics and local strain; and third, evaluate the accuracy of these models in predicting fissures. To achieve these three objectives, bovine tibial cartilage was impacted using a custom spring-loaded device mounted on an inverted microscope. The occurrence of fissures was modulated by varying impact energy. For the first objective, during impact, deformation was captured at 10,000 frames per second and bulk and local mechanics were analyzed. For the second objective, data from samples impacted with a 1.2 mm diameter rod were fit to logistic regression functions, creating models of fissure probability based on bulk and local mechanics. Finally, for the third objective, data from samples impacted with a 0.8 mm diameter rod were used to test the accuracy of model predictions. This study provides a direct comparison between bulk and local mechanical thresholds for the prediction of fissures in cartilage samples, and demonstrates that local mechanics provide more accurate predictions of local failure than bulk mechanics provide. Bulk mechanics were accurate predictors of fissure for the entire sample cohort, but poor predictors of fissure for individual samples. Local strain fields were highly heterogeneous and significant differences were determined between fissured and intact samples, indicating the presence of damage thresholds. In particular, first principal strain rate and maximum shear strain were the best predictors of local failure, as determined by concordance statistics. These data provide an important step in establishing causal links between local mechanics and cartilage damage; ultimately, data such as these can be used to link macro- and micro-scale mechanics and thereby predict mechanically mediated disease on a subject-specific basis.
Collapse
Affiliation(s)
- Corinne R Henak
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Lena R Bartell
- Department of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, NY 14853
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, 149 Weill Hall, Cornell University, Ithaca, NY 14853; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 e-mail:
| |
Collapse
|
9
|
The Effect of Body Mass on the Shoe-Athlete Interaction. Appl Bionics Biomech 2017; 2017:7136238. [PMID: 28465660 PMCID: PMC5390569 DOI: 10.1155/2017/7136238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/20/2017] [Accepted: 02/07/2017] [Indexed: 11/29/2022] Open
Abstract
Long-distance running is known to induce joint overloading and elevate cytokine levels, which are the hallmarks for a variety of running-related injuries. To address this, footwear systems incorporate cushioning midsoles to mitigate injurious mechanical loading. The aim of this study was to evaluate the effect of athlete body mass on the cushioning capacity of technical footwear. An artificial heel was prototyped to fit the impact pattern of a heel-strike runner and used to measure shock attenuation by an automated drop test. Impact mass and velocity were modulated to simulate runners of various body mass and speeds. The investigation provided refined insight on running-induced impact transmission to the human body. The examined midsole system was optimized around anthropometric data corresponding to an average (normal) body mass. The results suggest that although modern footwear is capable of attenuating the shock waves occurring during foot strike, improper shoe selection could expose an athlete to high levels of peak stress that could provoke an abnormal cartilage response. The selection of a weight-specific cushioning system could provide optimum protection and could thus prolong the duration of physical exercise beneficial to maintaining a simulated immune system.
Collapse
|
10
|
Argatov I, Mishuris G. Articular Contact Mechanics from an Asymptotic Modeling Perspective: A Review. Front Bioeng Biotechnol 2016; 4:83. [PMID: 27847803 PMCID: PMC5088203 DOI: 10.3389/fbioe.2016.00083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/11/2016] [Indexed: 11/30/2022] Open
Abstract
In the present paper, we review the current state-of-the-art in asymptotic modeling of articular contact. Particular attention has been given to the knee joint contact mechanics with a special emphasis on implications drawn from the asymptotic models, including average characteristics for articular cartilage layer. By listing a number of complicating effects such as transverse anisotropy, non-homogeneity, variable thickness, nonlinear deformations, shear loading, and bone deformation, which may be accounted for by asymptotic modeling, some unsolved problems and directions for future research are also discussed.
Collapse
Affiliation(s)
- Ivan Argatov
- Institut für Mechanik, Technische Universität Berlin , Berlin , Germany
| | - Gennady Mishuris
- Institute of Mathematics and Physics, Aberystwyth University , Ceredigion , UK
| |
Collapse
|
11
|
Bartell LR, Fortier LA, Bonassar LJ, Cohen I. Measuring microscale strain fields in articular cartilage during rapid impact reveals thresholds for chondrocyte death and a protective role for the superficial layer. J Biomech 2015; 48:3440-6. [PMID: 26150096 DOI: 10.1016/j.jbiomech.2015.05.035] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/11/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
Abstract
Articular cartilage is a heterogeneous soft tissue that dissipates and distributes loads in mammalian joints. Though robust, cartilage is susceptible to damage from loading at high rates or magnitudes. Such injurious loads have been implicated in degenerative changes, including chronic osteoarthritis (OA), which remains a leading cause of disability in developed nations. Despite decades of research, mechanisms of OA initiation after trauma remain poorly understood. Indeed, although bulk cartilage mechanics are measurable during impact, current techniques cannot access microscale mechanics at those rapid time scales. We aimed to address this knowledge gap by imaging the microscale mechanics and corresponding acute biological changes of cartilage in response to rapid loading. In this study, we utilized fast-camera and confocal microscopy to achieve roughly 85 µm spatial resolution of both the cartilage deformation during a rapid (~3 ms), localized impact and the chondrocyte death following impact. Our results showed that, at these high rates, strain and chondrocyte death were highly correlated (p<0.001) with a threshold of 8% microscale strain norm before any cell death occurred. Additionally, chondrocyte death had developed by two hours after impact, suggesting a time frame for clinical therapeutics. Moreover, when the superficial layer was removed, strain - and subsequently chondrocyte death - penetrated deeper into the samples (p<0.001), suggesting a protective role for the superficial layer of articular cartilage. Combined, these results provide insight regarding the detailed biomechanics that drive early chondrocyte damage after trauma and emphasize the importance of understanding cartilage and its mechanics on the microscale.
Collapse
Affiliation(s)
- Lena R Bartell
- School of Applied and Engineering Physics, C7 Clark Hall, Cornell University, Ithaca, NY 14853, USA.
| | - Lisa A Fortier
- Department of Clinical Sciences, Cornell University, Ithaca, NY, USA
| | - Lawrence J Bonassar
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
12
|
Burgin L, Edelsten L, Aspden R. The mechanical and material properties of elderly human articular cartilage subject to impact and slow loading. Med Eng Phys 2014; 36:226-32. [DOI: 10.1016/j.medengphy.2013.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 09/11/2013] [Accepted: 11/03/2013] [Indexed: 11/26/2022]
|
13
|
Alexander PG, Song Y, Taboas JM, Chen FH, Melvin GM, Manner PA, Tuan RS. Development of a Spring-Loaded Impact Device to Deliver Injurious Mechanical Impacts to the Articular Cartilage Surface. Cartilage 2013; 4:52-62. [PMID: 26069650 PMCID: PMC4297114 DOI: 10.1177/1947603512455195] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Traumatic impacts on the articular joint surface in vitro are known to lead to degeneration of the cartilage. The main objective of this study was to develop a spring-loaded impact device that can be used to deliver traumatic impacts of consistent magnitude and rate and to find whether impacts cause catabolic activities in articular cartilage consistent with other previously reported impact models and correlated with the development of osteoarthritic lesions. In developing the spring-loaded impactor, the operating hypothesis is that a single supraphysiologic impact to articular cartilage in vitro can affect cartilage integrity, cell viability, sulfated glycosaminoglycan and inflammatory mediator release in a dose-dependent manner. DESIGN Impacts of increasing force are delivered to adult bovine articular cartilage explants in confined compression. Impact parameters are correlated with tissue damage, cell viability, matrix and inflammatory mediator release, and gene expression 24 hours postimpact. RESULTS Nitric oxide release is first detected after 7.7 MPa impacts, whereas cell death, glycosaminoglycan release, and prostaglandin E2 release are first detected at 17 MPa. Catabolic markers increase linearly to maximal levels after ≥36 MPa impacts. CONCLUSIONS A single supraphysiologic impact negatively affects cartilage integrity, cell viability, and GAG release in a dose-dependent manner. Our findings showed that 7 to 17 MPa impacts can induce cell death and catabolism without compromising the articular surface, whereas a 17 MPa impact is sufficient to induce increases in most common catabolic markers of osteoarthritic degeneration.
Collapse
Affiliation(s)
- Peter G Alexander
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA ; Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yingjie Song
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Juan M Taboas
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA ; Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Faye H Chen
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Gary M Melvin
- Office of Science and Technology, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Paul A Manner
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | - Rocky S Tuan
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA ; Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Heiner AD, Martin JA, McKinley TO, Goetz JE, Thedens DR, Brown TD. FREQUENCY CONTENT OF CARTILAGE IMPACT FORCE SIGNAL REFLECTS ACUTE HISTOLOGIC STRUCTURAL DAMAGE. Cartilage 2012; 3:314-322. [PMID: 24015324 PMCID: PMC3760429 DOI: 10.1177/1947603511430706] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE The objective of this study was to determine if acute cartilage impact damage could be predicted by a quantification of the frequency content of the impact force signal. DESIGN Osteochondral specimens excised from bovine lateral tibial plateaus were impacted with one of six impact energies. Each impact force signal underwent frequency analysis, with the amount of higher-frequency content (percent of frequency spectrum above 1 KHz) being registered. Specimens were histologically evaluated to assess acute structural damage (articular surface cracking and cartilage crushing) resulting from the impact. RESULTS Acute histologic structural damage to the cartilage had higher concordance with the high-frequency content measure than with other mechanical impact measures (delivered impact energy, impact maximum stress, and impact maximum stress rate of change). CONCLUSIONS This result suggests that the frequency content of an impact force signal, specifically the proportion of higher-frequency components, can be used as a quick surrogate measure for acute structural cartilage injury. Taking advantage of this relationship could reduce the time and expense of histological processing needed to morphologically assess cartilage damage, especially for purposes of initial screening when evaluating new impaction protocols.
Collapse
Affiliation(s)
- Anneliese D. Heiner
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA, USA,Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - James A. Martin
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA, USA
| | - Todd O. McKinley
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA, USA
| | - Jessica E. Goetz
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA, USA,Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | | | - Thomas D. Brown
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA, USA,Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
15
|
Alexander PG, McCarron JA, Levine MJ, Melvin GM, Murray PJ, Manner PA, Tuan RS. An In Vivo Lapine Model for Impact-Induced Injury and Osteoarthritic Degeneration of Articular Cartilage. Cartilage 2012; 3:323-33. [PMID: 26069642 PMCID: PMC4297152 DOI: 10.1177/1947603512447301] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE In this study, we applied a spring-loaded impactor to deliver traumatic forces to articular cartilage in vivo. Based on our recent finding that a 0.28-J impact induces maximal catabolic response in adult bovine articular cartilage in vitro using this device, we hypothesize that this impact will induce the formation of a focal osteoarthritic defect in vivo. DESIGN The femoral condyle of New Zealand White rabbits was exposed and one of the following procedures performed: 0.28 J impact, anterior cruciate ligament transection, articular surface grooving, or no joint or cartilage destruction (control). After 24 hours, 4 weeks, or 12 weeks (n = 3 for each time point), wounds were localized with India ink, and tissue samples were collected and characterized histomorphometrically with Safranin O/Fast green staining and Hoechst 33342 nuclear staining for cell vitality. RESULTS The spring-loaded device delivered reproducible impacts with the following characteristics: impact area of 1.39 ± 0.11 mm(2), calculated load of 326 ± 47.3 MPa, time-to-peak of 0.32 ± 0.03 ms, and an estimated maximal displacement of 25.1% ± 4.5% at the tip apex. The impact resulted in immediate cartilage fissuring and cell loss in the surface and intermediate zones, and it induced the formation of a focal lesion at 12 weeks. The degeneration was defined and appeared more slowly than after anterior cruciate ligament transection, and more pronounced and characteristic than after grooving. CONCLUSION A single traumatic 0.28 J impact delivered with this spring-loaded impactor induces focal cartilage degeneration characteristic of osteoarthritis.
Collapse
Affiliation(s)
- Peter G. Alexander
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jesse A. McCarron
- Department of Orthopaedic Surgery, George Washington University, Washington, DC, USA
| | - Matthew J. Levine
- Department of Orthopaedic Surgery, George Washington University, Washington, DC, USA
| | - Gary M. Melvin
- Office of Science and Technology, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patrick J. Murray
- Department of Orthopaedic Surgery, George Washington University, Washington, DC, USA
| | - Paul A. Manner
- Department of Orthopaedic Surgery, George Washington University, Washington, DC, USA
| | - Rocky S. Tuan
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Kim W, Thambyah A, Broom N. Does prior sustained compression make cartilage-on-bone more vulnerable to trauma? Clin Biomech (Bristol, Avon) 2012; 27:637-45. [PMID: 22534322 DOI: 10.1016/j.clinbiomech.2012.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND This study investigated how varying levels of prior creep deformation in cartilage-on-bone samples influences their mechanical response and vulnerability to structural damage following a single traumatic impact. METHODS Bovine patellae were subjected to varying intervals of prior creep loading at a constant stress of 4MPa. Immediately following removal of this stress the samples were impacted with a pendulum indenter system at a fixed energy of 2.2J. FINDINGS With increasing prior creep, the peak force on impact rose, the duration of impact and time to reach peak force both decreased, and both the energy dissipated during impact and the magnitude of impulse were both unchanged by the level of prior creep. With increasing prior creep, the severity of impact-induced osteochondral damage increased: articular cartilage cracks penetrated to a greater depth, extending to the calcified cartilage layer resulting in hairline fractures or articular cartilage delamination and associated secondary damage to the vascular channels in the subchondral bone. INTERPRETATION The study shows that exposure of the cartilage-on-bone system to prior creep can significantly influence its response to subsequent impact, namely force attenuation and severity of damage to the articular cartilage, calcified cartilage and vascular channel network in the subchondral bone.
Collapse
Affiliation(s)
- Woong Kim
- Tissue Mechanics Laboratory, Department of Chemical and Materials Engineering, University of Auckland, New Zealand
| | | | | |
Collapse
|
17
|
Changoor A, Coutu JP, Garon M, Quenneville E, Hurtig MB, Buschmann MD. Streaming potential-based arthroscopic device is sensitive to cartilage changes immediately post-impact in an equine cartilage injury model. J Biomech Eng 2011; 133:061005. [PMID: 21744925 DOI: 10.1115/1.4004230] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Models of post-traumatic osteoarthritis where early degenerative changes can be monitored are valuable for assessing potential therapeutic strategies. Current methods for evaluating cartilage mechanical properties may not capture the low-grade cartilage changes expected at these earlier time points following injury. In this study, an explant model of cartilage injury was used to determine whether streaming potential measurements by manual indentation could detect cartilage changes immediately following mechanical impact and to compare their sensitivity to biomechanical tests. Impacts were delivered ex vivo, at one of three stress levels, to specific positions on isolated adult equine trochlea. Cartilage properties were assessed by streaming potential measurements, made pre- and post-impact using a commercially available arthroscopic device, and by stress relaxation tests in unconfined compression geometry of isolated cartilage disks, providing the streaming potential integral (SPI), fibril modulus (Ef), matrix modulus (Em), and permeability (k). Histological sections were stained with Safranin-O and adjacent unstained sections examined in polarized light microscopy. Impacts were low, 17.3 ± 2.7 MPa (n = 15), medium, 27.8 ± 8.5 MPa (n = 13), or high, 48.7 ± 12.1 MPa (n = 16), and delivered using a custom-built spring-loaded device with a rise time of approximately 1 ms. SPI was significantly reduced after medium (p = 0.006) and high (p<0.001) impacts. Ef, representing collagen network stiffness, was significantly reduced in high impact samples only (p < 0.001 lateral trochlea, p = 0.042 medial trochlea), where permeability also increased (p = 0.003 lateral trochlea, p = 0.007 medial trochlea). Significant (p < 0.05, n = 68) moderate to strong correlations between SPI and Ef (r = 0.857), Em (r = 0.493), log(k) (r = -0.484), and cartilage thickness (r = -0.804) were detected. Effect sizes were higher for SPI than Ef, Em, and k, indicating greater sensitivity of electromechanical measurements to impact injury compared to purely biomechanical parameters. Histological changes due to impact were limited to the presence of superficial zone damage which increased with impact stress. Non-destructive streaming potential measurements were more sensitive to impact-related articular cartilage changes than biomechanical assessment of isolated samples using stress relaxation tests in unconfined compression geometry. Correlations between electromechanical and biomechanical methods further support the relationship between non-destructive electromechanical measurements and intrinsic cartilage properties.
Collapse
Affiliation(s)
- A Changoor
- Department of Chemical Engineering, Institute of Biomedical Engineering, École Polytechnique de Montréal, P.O. Box 6079, Station Centre-Ville Montreal, QC H3C3A7, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Biomechanical influence of cartilage homeostasis in health and disease. ARTHRITIS 2011; 2011:979032. [PMID: 22046527 PMCID: PMC3196252 DOI: 10.1155/2011/979032] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/26/2011] [Indexed: 11/30/2022]
Abstract
There is an urgent demand for long term solutions to improve osteoarthritis treatments in the ageing population. There are drugs that control the pain but none that stop the progression of the disease in a safe and efficient way. Increased intervention efforts, augmented by early diagnosis and integrated biophysical therapies are therefore needed. Unfortunately, progress has been hampered due to the wide variety of experimental models which examine the effect of mechanical stimuli and inflammatory mediators on signal transduction pathways. Our understanding of the early mechanopathophysiology is poor, particularly the way in which mechanical stimuli influences cell function and regulates matrix synthesis. This makes it difficult to identify reliable targets and design new therapies. In addition, the effect of mechanical loading on matrix turnover is dependent on the nature of the mechanical stimulus. Accumulating evidence suggests that moderate mechanical loading helps to maintain cartilage integrity with a low turnover of matrix constituents. In contrast, nonphysiological mechanical signals are associated with increased cartilage damage and degenerative changes. This review will discuss the pathways regulated by compressive loading regimes and inflammatory signals in animal and in vitro 3D models. Identification of the chondroprotective pathways will reveal novel targets for osteoarthritis treatments.
Collapse
|
19
|
Kos P, Varga F, Handl M, Kautzner J, Chudáček V, Držík M, Povýšil C, Trč T, Amler E, Hanus M. Correlation of dynamic impact testing, histopathology and visual macroscopic assessment in human osteoarthritic cartilage. INTERNATIONAL ORTHOPAEDICS 2011; 35:1733-9. [PMID: 21243357 DOI: 10.1007/s00264-010-1195-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 12/18/2010] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Improved staging of cartilage degeneration is required, particularly during the early stages. We correlated mechanical properties with histological and macroscopic findings. METHODS One hundred and twenty cartilage samples were obtained during total knee arthroplasty. Two adjacent plugs were harvested--one for histological classification and one for macroscopic and biomechanical purposes. Dynamic impact testing was performed; normal stress, dissipated energy (∆E), tangent modulus and stiffness were evaluated. RESULTS Samples were classified according to six categories of the ICRS histological scale. Mechanical characteristics revealing significant differences between the groups (p < 0.01) were specific damping and related absolute ∆E. A significant correlation was found between the macroscopic score and specific damping, as well as absolute and relative ∆E (p < 0.01). A strong relation was revealed between relative ∆E and cartilage thickness (p < 0.001; R (2) = 0.69). CONCLUSIONS Only ∆E correlated with the condition of the cartilage--the value increased with decreasing quality-and is the most suitable characteristic. This change appears substantial in initial stages of cartilage deterioration.
Collapse
Affiliation(s)
- Petr Kos
- II. Orthopaedic Clinic, University Hospital Motol, Charles University in Prague, V Úvalu 84, 15006, Prague 5, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Martin JA, McCabe D, Walter M, Buckwalter JA, McKinley TO. N-acetylcysteine inhibits post-impact chondrocyte death in osteochondral explants. J Bone Joint Surg Am 2009; 91:1890-7. [PMID: 19651946 PMCID: PMC2714809 DOI: 10.2106/jbjs.h.00545] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Chondrocyte death has been linked to injury-induced oxidative damage, suggesting that antioxidants could substantially improve viability. However, since reactive oxygen species play roles in normal physiology, there are concerns that antioxidants may have deleterious side effects. To address these issues, we studied the effects of N-acetylcysteine, a potent free radical scavenger, on chondrocyte viability and cartilage proteoglycan content in an in vitro cartilage injury model. We hypothesized that treatment with N-acetylcysteine soon after an impact injury would have significant chondrocyte-sparing effects and would prevent injury-induced proteoglycan losses. METHODS Bovine osteochondral explants were subjected to a single impact load with use of a drop-tower device. Chondrocyte viability was measured at multiple time points post-impact with use of fluorescent probes and confocal microscopy. Forty-eight hours after impact, the effects on viability of immediate post-impact treatment with N-acetylcysteine were compared with the effects of the caspase inhibitor N-CBZ-Val-Ala-Asp(O-Me) fluoromethyl ketone and those of the cell-membrane-stabilizing surfactant poloxamer 188. The effect of N-acetylcysteine on proteoglycan content was determined at seven and fourteen days post-impact. RESULTS Chondrocyte viability declined sharply within an hour and reached a steady state within six to twelve hours after impact. Immediate treatment with N-acetylcysteine doubled the number of viable chondrocytes assayed forty-eight hours after impact, and this effect was significantly greater than that of N-CBZ-Val-Ala-Asp(O-Me) fluoromethyl ketone. Even when N-acetylcysteine treatment was delayed for up to four hours after injury, it still had significant positive effects on cell viability at forty-eight hours. Moreover, N-acetylcysteine treatment significantly improved proteoglycan content at the impact sites at both seven and fourteen days after injury. CONCLUSIONS Treatment with N-acetylcysteine soon after a blunt impact injury can reduce chondrocyte death and proteoglycan loss measured seven to fourteen days after injury.
Collapse
Affiliation(s)
- James A. Martin
- Orthopaedic Cell and Molecular Biology Laboratory, Department of Orthopaedics and Rehabilitation, The University of Iowa, 1182 ML, Iowa City, IA 52242. E-mail address for J.A. Martin:
| | - Daniel McCabe
- Orthopaedic Cell and Molecular Biology Laboratory, Department of Orthopaedics and Rehabilitation, The University of Iowa, 1182 ML, Iowa City, IA 52242. E-mail address for J.A. Martin:
| | - Morgan Walter
- Orthopaedic Cell and Molecular Biology Laboratory, Department of Orthopaedics and Rehabilitation, The University of Iowa, 1182 ML, Iowa City, IA 52242. E-mail address for J.A. Martin:
| | - Joseph A. Buckwalter
- Orthopaedic Cell and Molecular Biology Laboratory, Department of Orthopaedics and Rehabilitation, The University of Iowa, 1182 ML, Iowa City, IA 52242. E-mail address for J.A. Martin:
| | - Todd O. McKinley
- Orthopaedic Cell and Molecular Biology Laboratory, Department of Orthopaedics and Rehabilitation, The University of Iowa, 1182 ML, Iowa City, IA 52242. E-mail address for J.A. Martin:
| |
Collapse
|
21
|
|
22
|
Henson FMD, Vincent TA. Alterations in the vimentin cytoskeleton in response to single impact load in an in vitro model of cartilage damage in the rat. BMC Musculoskelet Disord 2008; 9:94. [PMID: 18577232 PMCID: PMC2443134 DOI: 10.1186/1471-2474-9-94] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 06/24/2008] [Indexed: 11/10/2022] Open
Abstract
Background Animal models have provided much information on molecular and cellular changes in joint disease, particularly OA. However there are limitations to in vivo work and single tissue in vitro studies can provide more specific information on individual events. The rat is a commonly used laboratory species but at the current time only in vivo models of rat OA are available to study. The purpose of this study was to investigate the damage that single impact load (SIL) of 0.16J causes in a rat cartilage in vitro model and assess whether this load alters the arrangement of vimentin. Methods Rat cartilage was single impact loaded (200 g from 8 cm) and cultured for up to 48 hours (n = 72 joints). Histological changes were measured using a semi-quantitative modified Mankin score. Immunolocalisation was used to identify changes in vimentin distribution. Results SIL caused damage in 32/36 cartilage samples. Damage included surface fibrillation, fissures, fragmentation, changes in cellularity and loss of proteoglycan. SIL caused a statistically significant increase in modified Mankin score and chondrocyte clusters over time. SIL caused vimentin disassembly (as evidenced by collapse of vimentin around the nucleus). Conclusion This study describes a model of SIL damage to rat cartilage. SIL causes changes in histological/chemical parameters which have been measured using a semi-quantitative modified Mankin score. Single impact load also causes changes in the pattern of vimentin immunoreactivity, indicating vimentin dissassembley. Using a semi-quantitative scoring system the disassembly was shown to be statistically significant in SIL damaged cartilage. The changes described in this paper suggest that this novel single tissue rat model of joint damage is a possible candidate model to replace in vivo models.
Collapse
Affiliation(s)
- Frances M D Henson
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| | | |
Collapse
|
23
|
Natoli RM, Scott CC, Athanasiou KA. Temporal effects of impact on articular cartilage cell death, gene expression, matrix biochemistry, and biomechanics. Ann Biomed Eng 2008; 36:780-92. [PMID: 18299988 DOI: 10.1007/s10439-008-9472-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 02/14/2008] [Indexed: 12/18/2022]
Abstract
Articular cartilage injury can cause post-traumatic osteoarthritis, but early processes leading to the disease are not well understood. The objective of this study was to characterize two levels of impact loading at 24 h, 1 week, and 4 weeks in terms of cell death, gene expression, extracellular matrix biochemistry, and tissue biomechanical properties. The data show cell death increased and tissue stiffness decreased by 24 h following High impact (2.8 J). These degradative changes persisted at 1 and 4 weeks, and were further accompanied by measurable changes in ECM biochemistry. Moreover, following High impact at 24 h there were specific changes in gene expression that distinguished injured tissue from adjacent tissue that was not loaded. In contrast, Low impact (1.1 J) showed little change from control specimens at 24 h or 1 week. However, at 4 weeks, a significant increase in cell death and significant decrease in tissue stiffness were present. The constellation of findings indicates Low impacted tissue exhibited a delayed biological response. The study characterizes a model system for examining the biology of articular cartilage post-impact, as well as identifies possible time points and success criteria to be used in future studies employing intervention agents.
Collapse
Affiliation(s)
- Roman M Natoli
- Department of Bioengineering, Rice University, 6100 Main Street, Keck Hall Suite 116, Houston, TX 77005, USA
| | | | | |
Collapse
|
24
|
Burgin LV, Aspden RM. Impact testing to determine the mechanical properties of articular cartilage in isolation and on bone. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:703-11. [PMID: 17619965 DOI: 10.1007/s10856-007-3187-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 05/21/2007] [Indexed: 05/16/2023]
Abstract
The biomechanical response of cartilage to impact loads, both in isolation and in situ on its bone substrate, has been little studied despite the common occurrence of osteoarthritis subsequent to cartilage injury. An instrumented drop tower was used to apply controlled impact loads of different energies to explants of bovine articular cartilage. Results were compared with a conventional slow stress-strain test. The effects of the underlying bone were investigated by progressively shortening a core of bone removed with the cartilage, and by gluing cartilage samples to substrates of different moduli. The maximum dynamic modulus of isolated samples of bovine articular cartilage, at strain rates between 1100 and 1500 s(-1), was approximately two orders of magnitude larger than the quasistatic modulus and varied non-linearly with applied stress. When attached to a substrate of higher modulus, increasing the thickness of the substrate increased the effective modulus of the combination until a steady value was achieved. A lower modulus substrate reduced the effective modulus of the combination. Severe impacts resulted in damage to the bone rather than to the cartilage. The modulus of cartilage rises rapidly and non-linearly with strain rate, giving the tissue a remarkable ability to withstand impact loads. The presence of cartilage attenuated the peak force experienced by the bone and spread the impact loading period over a longer time.
Collapse
Affiliation(s)
- Leanne V Burgin
- Department of Orthopaedics, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | | |
Collapse
|
25
|
Scott CC, Athanasiou KA. Design, validation, and utilization of an articular cartilage impact instrument. Proc Inst Mech Eng H 2006; 220:845-55. [PMID: 17236518 DOI: 10.1243/09544119jeim97] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This paper describes the development and use of an instrument mechanically to impact bovine articular cartilage and record the event using a piezoelectric accelerometer, as well as to carry out post-impact characterization of the tissue. Two levels of impact (low: 6 cm drop height, 18.4 N tup; high: 10 cm drop height, 27.8 N tup) were chosen such that the former did not show gross damage upon inspection, while the latter showed substantial gross damage. Peak stress, time to peak stress, and impact duration were taken from data recorded by the instrument. Three cartilage biomechanical properties (aggregate modulus, Poisson's ratio, and permeability) were acquired by creep indentation, and tissue morphology rated on a standardized scale was also determined. When subjected to the high level of impact, articular cartilage showed statistically significant ( p < 0.05) differences in all three impact metrics and morphology. This high level of impact also resulted in a 37 per cent decrease in the aggregate modulus of the tissue. Lower drop heights resulted in more consistent impact curves, demonstrated less standard deviation, and did not change the biomechanical properties of the tissues. With the instrument and techniques described in this study, articular cartilage can be subjected to specific levels of impact in order to study injury biomechanics of the tissue at specific levels of mechanical damage.
Collapse
Affiliation(s)
- C C Scott
- Department of Bioengineering, Rice University, 6100 Main St, Keck Hall, Suite 116, Houston, Texas 77584, USA
| | | |
Collapse
|
26
|
Burgin LV, Aspden RM. A drop tower for controlled impact testing of biological tissues. Med Eng Phys 2006; 29:525-30. [PMID: 16876457 DOI: 10.1016/j.medengphy.2006.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 05/26/2006] [Accepted: 06/02/2006] [Indexed: 11/22/2022]
Abstract
Impact damage, in particular to tissues such as articular cartilage, is a recognised source of morbidity. To understand better the clinical outcomes, it is important to know the mechanics of the damage sustained and the biological response of cells to rapidly applied forces and subsequent tissue disruption. An instrumented drop tower has been designed to enable controlled impact loads to be applied to small samples of biological materials. Impact severity can be controlled by using impactors of different masses and various drop heights. Force and deceleration at impact are recorded at 50,000 samples s(-1) by a force transducer under the sample and an accelerometer on the impactor. Repeatability was tested on rubber washers and coefficients of variation were found to be better than 8% for dynamic stiffness, 3.4% for stress and 4.3% for strain. Initial tests on isolated biopsies of articular cartilage showed that at an initial strain rate of 916 s(-1), the peak dynamic modulus of human femoral head cartilage was 59 MPa, and for a bovine biopsy the initial strain rate and corresponding peak dynamic modulus were 3380 s(-1) and 130 MPa, respectively. The equipment described is capable of applying an impact load to small biopsies of tissue with a defined energy and velocity and measuring deformation and load at high rates of loading.
Collapse
Affiliation(s)
- Leanne V Burgin
- Department of Orthopaedic Surgery, University of Aberdeen, IMS Building, Foresterhill, Aberdeen, UK
| | | |
Collapse
|
27
|
Polyzois VD, Papakostas I, Zgonis T, Polyzois DG, Soucacos PN. Current concepts and techniques in posttraumatic arthritis. Clin Podiatr Med Surg 2006; 23:455-65, viii. [PMID: 16903162 DOI: 10.1016/j.cpm.2006.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Posttraumatic arthrosis is a commonly encountered clinical problem, but the pathoetiology of its development is not yet clarified. Many contributing mechanical biologic factors interplay with the traumatic event that necessarily precedes the posttraumatic syndrome. New biologic concepts involving the ability of the cartilage to repair and how such healing can be promoted are being realized in new modalities of treatment. The traumatic event as such and the resulting pathomechanical consequences require new ways of evaluation.
Collapse
|
28
|
Bush PG, Hodkinson PD, Hamilton GL, Hall AC. Viability and volume of in situ bovine articular chondrocytes-changes following a single impact and effects of medium osmolarity. Osteoarthritis Cartilage 2005; 13:54-65. [PMID: 15639638 DOI: 10.1016/j.joca.2004.10.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2004] [Accepted: 10/05/2004] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Mechanical stress above the physiological range can profoundly influence articular cartilage causing matrix damage, changes to chondrocyte metabolism and cell injury/death. It has also been implicated as a risk factor in the development of osteoarthritis (OA). The mechanism of cell damage is not understood, but chondrocyte volume could be a determinant of the sensitivity and subsequent response to load. For example, in OA, it is possible that the chondrocyte swelling that occurs renders the cells more sensitive to the damaging effects of mechanical stress. This study had two aims: (1) to investigate the changes to the volume and viability of in situ chondrocytes near an injury to cartilage resulting from a single blunt impact, and (2) to determine if alterations to chondrocyte volume at the time of impact influenced cell viability. METHODS Explants of bovine articular cartilage were incubated with the fluorescent indicators calcein-AM and propidium iodide permitting the measurement of cell volume and viability, respectively, using confocal laser scanning microscopy (CLSM). Cartilage was then subjected to a single impact (optimally 100g from 10 cm) delivered from a drop tower which caused areas of chondrocyte injury/death within the superficial zone (SZ). The presence of lactate dehydrogenase (LDH; an enzyme released following cell injury) was used to determine the effects of medium osmolarity on the response of chondrocytes to a single impact. RESULTS A single impact caused discrete areas of chondrocyte injury/death which were almost exclusively within the SZ of cartilage. There appeared to be two phases of cell death, a rapid phase lasting approximately 3 min, followed by a slower progressive 'wave of cell death' away from the initial area lasting for approximately 20 min. The volume of the majority (88.1+/-5.99% (n=7) of the viable chondrocytes in this region decreased significantly (P<0.006). By monitoring LDH release, a single impact 5 min after changing the culture medium to hyper-, or hypo-osmolarity, reduced or stimulated chondrocyte injury, respectively. CONCLUSIONS A single impact caused temporal and spatial changes to in situ chondrocyte viability with cell shrinkage occurring in the majority of cells. However, chondrocyte shrinkage by raising medium osmolarity at the time of impact protected the cells from injury, whereas swollen chondrocytes were markedly more sensitive. These data showed that chondrocyte volume could be an important determinant of the sensitivity and response of in situ chondrocytes to mechanical stress.
Collapse
Affiliation(s)
- Peter G Bush
- School of Biomedical and Clinical Laboratory Sciences, University Medical School, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, Scotland, UK
| | | | | | | |
Collapse
|