1
|
Guo Q, Yaron JR, Wallen JW, Browder KF, Boyd R, Olson TL, Burgin M, Ulrich P, Aliskevich E, Schutz LN, Fromme P, Zhang L, Lucas AR. PEGylated Serp-1 Markedly Reduces Pristane-Induced Experimental Diffuse Alveolar Hemorrhage, Altering uPAR Distribution, and Macrophage Invasion. Front Cardiovasc Med 2021; 8:633212. [PMID: 33665212 PMCID: PMC7921738 DOI: 10.3389/fcvm.2021.633212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/20/2021] [Indexed: 12/22/2022] Open
Abstract
Diffuse alveolar hemorrhage (DAH) is one of the most serious clinical complications of systemic lupus erythematosus (SLE). The prevalence of DAH is reported to range from 1 to 5%, but while DAH is considered a rare complication there is a reported 50-80% mortality. There is at present no proven effective treatment for DAH and the therapeutics that have been tested have significant side effects. There is a clear necessity to discover new drugs to improve outcomes in DAH. Serine protease inhibitors, serpins, regulate thrombotic and thrombolytic protease cascades. We are investigating a Myxomavirus derived immune modulating serpin, Serp-1, as a new class of immune modulating therapeutics for vasculopathy and lung hemorrhage. Serp-1 has proven efficacy in models of herpes virus-induced arterial inflammation (vasculitis) and lung hemorrhage and has also proved safe in a clinical trial in patients with unstable coronary syndromes and stent implant. Here, we examine Serp-1, both as a native secreted protein expressed by CHO cells and as a polyethylene glycol modified (PEGylated) variant (Serp-1m5), for potential therapy in DAH. DAH was induced by intraperitoneal (IP) injection of pristane in C57BL/6J (B6) mice. Mice were treated with 100 ng/g bodyweight of either Serp-1 as native 55 kDa secreted glycoprotein, or as Serp-1m5, or saline controls after inducing DAH. Treatments were repeated daily for 14 days (6 mice/group). Serp-1 partially and Serp-1m5 significantly reduced pristane-induced DAH when compared with saline as assessed by gross pathology and H&E staining (Serp-1, p = 0.2172; Serp-1m5, p = 0.0252). Both Serp-1m5 and Serp-1 treatment reduced perivascular inflammation and reduced M1 macrophage (Serp-1, p = 0.0350; Serp-1m5, p = 0.0053), hemosiderin-laden macrophage (Serp-1, p = 0.0370; Serp-1m5, p = 0.0424) invasion, and complement C5b/9 staining. Extracellular urokinase-type plasminogen activator receptor positive (uPAR+) clusters were significantly reduced (Serp-1, p = 0.0172; Serp-1m5, p = 0.0025). Serp-1m5 also increased intact uPAR+ alveoli in the lung (p = 0.0091). In conclusion, Serp-1m5 significantly reduces lung damage and hemorrhage in a pristane model of SLE DAH, providing a new potential therapeutic approach.
Collapse
Affiliation(s)
- Qiuyun Guo
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jordan R Yaron
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - John W Wallen
- Exalt Therapeutics LLC, Las Vegas, NV, United States
| | - Kyle F Browder
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Ryan Boyd
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Tien L Olson
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Michelle Burgin
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Peaches Ulrich
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Emily Aliskevich
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Lauren N Schutz
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Petra Fromme
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Liqiang Zhang
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Alexandra R Lucas
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
2
|
Yaron JR, Zhang L, Guo Q, Burgin M, Schutz LN, Awo E, Wise L, Krause KL, Ildefonso CJ, Kwiecien JM, Juby M, Rahman MM, Chen H, Moyer RW, Alcami A, McFadden G, Lucas AR. Deriving Immune Modulating Drugs from Viruses-A New Class of Biologics. J Clin Med 2020; 9:E972. [PMID: 32244484 PMCID: PMC7230489 DOI: 10.3390/jcm9040972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Viruses are widely used as a platform for the production of therapeutics. Vaccines containing live, dead and components of viruses, gene therapy vectors and oncolytic viruses are key examples of clinically-approved therapeutic uses for viruses. Despite this, the use of virus-derived proteins as natural sources for immune modulators remains in the early stages of development. Viruses have evolved complex, highly effective approaches for immune evasion. Originally developed for protection against host immune responses, viral immune-modulating proteins are extraordinarily potent, often functioning at picomolar concentrations. These complex viral intracellular parasites have "performed the R&D", developing highly effective immune evasive strategies over millions of years. These proteins provide a new and natural source for immune-modulating therapeutics, similar in many ways to penicillin being developed from mold or streptokinase from bacteria. Virus-derived serine proteinase inhibitors (serpins), chemokine modulating proteins, complement control, inflammasome inhibition, growth factors (e.g., viral vascular endothelial growth factor) and cytokine mimics (e.g., viral interleukin 10) and/or inhibitors (e.g., tumor necrosis factor) have now been identified that target central immunological response pathways. We review here current development of virus-derived immune-modulating biologics with efficacy demonstrated in pre-clinical or clinical studies, focusing on pox and herpesviruses-derived immune-modulating therapeutics.
Collapse
Affiliation(s)
- Jordan R. Yaron
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Liqiang Zhang
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Qiuyun Guo
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Michelle Burgin
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Lauren N. Schutz
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Enkidia Awo
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Lyn Wise
- University of Otago, Dunedin 9054, New Zealand; (L.W.); (K.L.K.)
| | - Kurt L. Krause
- University of Otago, Dunedin 9054, New Zealand; (L.W.); (K.L.K.)
| | | | - Jacek M. Kwiecien
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S4L8, Canada
| | - Michael Juby
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Masmudur M. Rahman
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Hao Chen
- The Department of Tumor Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China;
| | - Richard W. Moyer
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA;
| | - Antonio Alcami
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain;
| | - Grant McFadden
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
- St Joseph Hospital, Dignity Health, Creighton University, Phoenix, AZ 85013, USA
| |
Collapse
|
3
|
Zhang L, Yaron JR, Tafoya AM, Wallace SE, Kilbourne J, Haydel S, Rege K, McFadden G, Lucas AR. A Virus-Derived Immune Modulating Serpin Accelerates Wound Closure with Improved Collagen Remodeling. J Clin Med 2019; 8:jcm8101626. [PMID: 31590323 PMCID: PMC6832452 DOI: 10.3390/jcm8101626] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 01/20/2023] Open
Abstract
Numerous treatments have been developed to promote wound healing based on current understandings of the healing process. Hemorrhaging, clotting, and associated inflammation regulate early wound healing. We investigated treatment with a virus-derived immune modulating serine protease inhibitor (SERPIN), Serp-1, which inhibits thrombolytic proteases and inflammation, in a mouse excisional wound model. Saline or recombinant Serp-1 were applied directly to wounds as single doses of 1 μg or 2 µg or as two 1 µg boluses. A chitosan-collagen hydrogel was also tested for Serp-1 delivery. Wound size was measured daily for 15 days and scarring assessed by Masson’s trichrome, Herovici’s staining, and immune cell dynamics and angiogenesis by immunohistochemistry. Serp-1 treatment significantly accelerated wound healing, but was blocked by urokinase-type plasminogen activator (uPAR) antibody. Repeated dosing at a lower concentration was more effective than single high-dose serpin. A single application of Serp-1-loaded chitosan-collagen hydrogel was as effective as repeated aqueous Serp-1 dosing. Serp-1 treatment of wounds increased arginase-1-expressing M2-polarized macrophage counts and periwound angiogenesis in the wound bed. Collagen staining also demonstrated that Serp-1 improves collagen maturation and organization at the wound site. Serp-1 has potential as a safe and effective immune modulating treatment that targets thrombolytic proteases, accelerating healing and reducing scar in deep cutaneous wounds.
Collapse
Affiliation(s)
- Liqiang Zhang
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Jordan R Yaron
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Amanda M Tafoya
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Sarah E Wallace
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Jacquelyn Kilbourne
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Shelley Haydel
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Kaushal Rege
- Chemical Engineering, Arizona State University, Tempe, AZ 85287, USA.
| | - Grant McFadden
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Alexandra R Lucas
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
- Chemical Engineering, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
4
|
Liu J, Wennier S, McFadden G. The immunoregulatory properties of oncolytic myxoma virus and their implications in therapeutics. Microbes Infect 2010; 12:1144-52. [PMID: 20832500 PMCID: PMC2998584 DOI: 10.1016/j.micinf.2010.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 08/30/2010] [Accepted: 08/31/2010] [Indexed: 12/20/2022]
Abstract
Myxoma virus (MYXV) is a poxvirus with a strict rabbit-specific host-tropism for pathogenesis. The immunoregulatory factors encoded by MYXV can suppress some functions of immune effectors from other species. We review their mechanisms of action, implications in therapeutics and the potential to improve MYXV as an oncolytic agent in humans.
Collapse
Affiliation(s)
- Jia Liu
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, P.O. box 100266, Gainesville, FL 32610
| | - Sonia Wennier
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, P.O. box 100266, Gainesville, FL 32610
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, P.O. box 100266, Gainesville, FL 32610
| |
Collapse
|
5
|
The serpin saga; development of a new class of virus derived anti-inflammatory protein immunotherapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 666:132-56. [PMID: 20054981 DOI: 10.1007/978-1-4419-1601-3_11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Serine proteinase inhibitors, also called serpins, are an ancient grouping of proteins found in primitive organisms from bacteria, protozoa and horseshoe crabs and thus likely present at the time of the dinosaurs, up to all mammals living today. The innate or inflammatory immune system is also an ancient metazoan regulatory system, providing the first line of defense against infection or injury. The innate inflammatory defense response evolved long before acquired, antibody dependent immunity. Viruses have developed highly effective stratagems that undermine and block a wide variety of host inflammatory and immune responses. Some of the most potent of these immune modifying strategies utilize serpins that have also been developed over millions of years, including the hijacking by some viruses for defense against host immune attacks. Serpins represent up to 2-10 percent of circulating plasma proteins, regulating actions as wide ranging as thrombosis, inflammation, blood pressure control and even hormone transport. Targeting serpin-regulated immune or inflammatory pathways makes evolutionary sense for viral defense and many of these virus-derived inhibitory proteins have proven to be highly effective, working at very low concentrations--even down to the femptomolar to picomolar range. We are studying these viral anti-inflammatory proteins as a new class of immunomodulatory therapeutic agents derived from their native viral source. One such viral serpin, Serp-1 is now in clinical trial (conducted by VIRON Therapeutics, Inc.) for acute unstable coronary syndromes (unstable angina and small heart attacks), representing a 'first in class' therapeutic study. Several other viral serpins are also currently under investigation as anti-inflammatory or anti-immune therapeutics. This chapter describes these original studies and the ongoing analysis of viral serpins as a new class of virus-derived immunotherapeutic.
Collapse
|
6
|
Richardson M, Liu L, Dunphy L, Wong D, Sun Y, Viswanathan K, Singh G, Lucas A. Viral serpin, Serp-1, inhibits endogenous angiogenesis in the chicken chorioallantoic membrane model. Cardiovasc Pathol 2007; 16:191-202. [PMID: 17637427 DOI: 10.1016/j.carpath.2007.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2006] [Revised: 11/18/2006] [Accepted: 02/09/2007] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Angiogenesis is a critical factor in the development of malignant tumors, in arthritic joints, and in cardiovascular disease. In cardiovascular disease, angiogenesis is recognised both as a potential therapy and as a complicating factor in atherosclerotic plaque rupture and thrombotic obstruction. Serine proteases regulate thrombosis, inflammation, and cell invasion, events that trigger various stages of angiogenesis and are in turn regulated by inhibitors, termed serpins. Serp-1 is a secreted anti-inflammatory viral serpin that profoundly inhibits early mononuclear cell invasion, and the development of atherosclerosis, transplant vasculopathy, and arthritis in a range of animal models. METHODS The capacity of Serp-1 to alter angiogenesis was evaluated in the chicken chorioallantoic membrane (CAM) model using morphometric analysis of vascular changes and RT-PCR to explore alterations in gene expression. RESULTS Serp-1 inhibited endogenous angiogenesis in a dose-dependent manner, with associated altered expression of laminin and vascular endothelial growth factor (VEGF). Serp-1 was ineffective in CAMs no longer in the rapid growth phase. Similar inhibition of angiogenesis was detected after inhibition of VEGF, but not after treatment with the inactivated reactive center loop mutant of Serp-1. CONCLUSIONS The angiogenic process can be controlled using Serp-1, an anti-inflammatory agent that is effective at low concentrations with rapid reversibility, targets endothelial cells, and reduces the availability of VEGF. These properties may be especially important in cardiovascular disease, reducing plaque destabilization. It is likely that the anti-angiogenic activity of Serp-1 contributes to the observed anti-inflammatory and anti-atherogenic actions with potential importance in this therapeutic setting.
Collapse
Affiliation(s)
- Mary Richardson
- Juravinski Cancer Centre, Department of Pathology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Lucas A, McFadden G. Secreted Immunomodulatory Viral Proteins as Novel Biotherapeutics. THE JOURNAL OF IMMUNOLOGY 2004; 173:4765-74. [PMID: 15470015 DOI: 10.4049/jimmunol.173.8.4765] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many viruses have learned to evade or subvert the host antiviral immune responses by encoding and expressing immunomodulatory proteins that protect the virus from attack by elements of the innate and acquired immune systems. Some of these viral anti-immune regulators are expressed as secreted proteins that engage specific host immune targets in the extracellular environment, where they exhibit potent anti-immune properties. We review here viral immunomodulatory proteins that have been tested as anti-inflammatory reagents in animal models of disease caused by excessive inflammation or hyperactivated immune pathways. The potential for such viral molecules for the development of novel drugs to treat immune-based or inflammatory disorders is discussed.
Collapse
Affiliation(s)
- Alexandra Lucas
- BioTherapeutics Research Group, Robarts Research Institute, London, Ontario, Canada
| | | |
Collapse
|