1
|
Sikder MM. Ayurvedic Medicine: A Traditional Medical System and Its Heavy Metal Poisoning. Chonnam Med J 2024; 60:97-104. [PMID: 38841605 PMCID: PMC11148304 DOI: 10.4068/cmj.2024.60.2.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 06/07/2024] Open
Abstract
Ayurveda is one of the oldest and most widely practiced traditional medical systems in the world. The ancient knowledge in this traditional medical system has yet to be fully explored. The interaction of rich knowledge from various traditional systems of medicine can open new pathways in the herbal drug discovery process. Apart from other hurdles in discovering plant-based medicines, the lack of knowledge of the differences and similarities between the theoretical doctrines of these systems is the greatest impediment to their convergence. Rasashastra is an Ayurvedic medicine section that deals with formulations that include minerals/metals, particularly Parad (mercury). According to the Ayurvedic Formulary of India, the most widely used heavy metals are mercury, arsenic, and lead. However, contemporary scientists are concerned about the use of heavy metals in Ayurvedic preparation. In this review article, we will discuss Ayurvedic medicine and the toxic effects of heavy metals.
Collapse
Affiliation(s)
- Mohammad Mamun Sikder
- Department of Biochemistry, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
2
|
Aronson JK. When I use a word . . . Medicines regulation-the Sale of Arsenic Regulation Act. BMJ 2023; 383:2725. [PMID: 37977597 DOI: 10.1136/bmj.p2725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Affiliation(s)
- Jeffrey K Aronson
- Centre for Evidence Based Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Huang S, Chen K, Leung JK, Guagliardo P, Chen W, Song W, Clode P, Xu J, Young SG, Jiang H. Subcellular Partitioning of Arsenic Trioxide Revealed by Label-Free Imaging. Anal Chem 2022; 94:13889-13896. [PMID: 36189785 DOI: 10.1021/acs.analchem.2c02770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Subcellular partitioning of therapeutic agents is highly relevant to their interactions with target molecules and drug efficacy, but studying subcellular partitioning is an enormous challenge. Here, we describe the application of nanoscale secondary ion mass spectrometry (NanoSIMS) analysis to define the subcellular pharmacokinetics of a cytotoxic chemotherapy drug, arsenic trioxide (ATO). We reasoned that defining the partitioning of ATO would yield valuable insights into the mechanisms underlying ATO efficacy. NanoSIMS imaging made it possible to define the intracellular fate of ATO in a label-free manner─and with high resolution and high sensitivity. Our studies of ATO-treated cells revealed that arsenic accumulates in the nucleolus. After prolonged ATO exposure, ∼40 nm arsenic- and sulfur-rich protein aggregates appeared in the cell nucleolus, nucleus, and membrane-free compartments in the cytoplasm, and our studies suggested that the partitioning of nanoscale aggregates could be relevant to cell survival. All-trans retinoic acid increased intracellular ATO levels and accelerated the nanoscale aggregate formation in the nucleolus. This study yielded fresh insights into the subcellular pharmacokinetics of an important cancer therapeutic agent and the potential impact of drug partitioning and pharmacokinetics on drug activity.
Collapse
Affiliation(s)
- Song Huang
- School of Molecular Sciences, University of Western Australia, Perth 6009, Australia
| | - Kai Chen
- School of Molecular Sciences, University of Western Australia, Perth 6009, Australia.,Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Jong-Kai Leung
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Paul Guagliardo
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth 6009, Australia
| | - Weihua Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Wenxin Song
- Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Peta Clode
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth 6009, Australia.,School of Biological Sciences, University of Western Australia, Perth 6009, Australia
| | - Jiake Xu
- School of Biological Sciences, University of Western Australia, Perth 6009, Australia
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, California 90095, United States.,School of Biomedical Sciences, University of Western Australia, Perth 6009, Australia.,Department of Human Genetics, University of California, Los Angeles, California 90095, United States
| | - Haibo Jiang
- School of Molecular Sciences, University of Western Australia, Perth 6009, Australia.,Department of Chemistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Boutas I, Potiris A, Brenner W, Lebrecht A, Hasenburg A, Kalantaridou S, Schmidt M. The expression of galectin-3 in breast cancer and its association with chemoresistance: a systematic review of the literature. Arch Gynecol Obstet 2019; 300:1113-1120. [DOI: 10.1007/s00404-019-05292-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022]
|
5
|
Lu P, Ma J, Li F, Xu G, Guo W, Zhou H. A Fatal Case of Acute Arsenic Poisoning. J Forensic Sci 2019; 64:1271-1273. [DOI: 10.1111/1556-4029.14017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Ping Lu
- School of Forensic Science Henan University of Science and Technology Luoyang 471023 China
| | - Jin‐Qi Ma
- School of Forensic Science Henan University of Science and Technology Luoyang 471023 China
| | - Fan Li
- School of Forensic Science Henan University of Science and Technology Luoyang 471023 China
| | - Guo‐Hui Xu
- School of Forensic Science Henan University of Science and Technology Luoyang 471023 China
| | - Wan Guo
- School of Forensic Science Henan University of Science and Technology Luoyang 471023 China
| | - Hai‐Mei Zhou
- School of Forensic Science Henan University of Science and Technology Luoyang 471023 China
| |
Collapse
|
6
|
Yen CM, Tsai CW, Chang WS, Yang YC, Hung YW, Lee HT, Shen CC, Sheu ML, Wang JY, Gong CL, Cheng WY, Bau DAT. Novel Combination of Arsenic Trioxide (As 2O 3) Plus Resveratrol in Inducing Programmed Cell Death of Human Neuroblastoma SK-N-SH Cells. Cancer Genomics Proteomics 2018; 15:453-460. [PMID: 30343279 DOI: 10.21873/cgp.20104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/13/2018] [Accepted: 09/19/2018] [Indexed: 12/23/2022] Open
Abstract
AIM Arsenic trioxide (As2O3), known as pi-shuang and the most toxic compound in traditional Chinese medicine, has been used as an antitumor agent for thousands of years. Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a natural phenol that has significant anti-bacterial, anti-fungaI and antiaging activities. Our study aimed to examine the combined anticancer effects of As2O3 and resveratrol against human neuroblastoma SK-N-SH cells, and elucidate the underlying intracellular signaling. MATERIALS AND METHODS SK-N-SH cells were treated with an extremely low-dose (2-4 μM) of As2O3 alone or combined with 75 μg/ml resveratrol for further comparisons. Cell viability, apoptotic signaling as well as synergistic cytotoxic effects were estimated using the MTT assay, microscopy observation, flow cytometric analysis for loss of mitochondrial membrane potential (MMP) and reactive oxygen species (ROS), and typical quantitative western blotting analysis. Student's t-test, and one- and two-way analysis of variance (ANOVA) were used for examination of significant differences. RESULTS The combined treatment was more effective than single treatment of As2O3 or resveratrol alone in suppressing cell viability, which correlated with the elevation of ROS levels. The intracellular mechanisms of cytotoxicity of As2O3 plus resveratrol were revealed as ROS accumulation and relative decrease of MMP, leading to activation of caspase-3 and -9, but not of caspase-1, -7 and-8. Combination treatment reduced the expression of B-cell lymphoma 2 (BCL2), BH3 interacting domain death agonist (BID), and BCL-x/L. CONCLUSION Combined treatment at extremely low concentration of two agents from natural products, As2O3 and resveratrol, has high potential as a cocktail of anticancer drugs for neuroblastoma.
Collapse
Affiliation(s)
- Chun-Ming Yen
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, R.O.C.,Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Yi-Chin Yang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Yi-Wen Hung
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Hsu-Tung Lee
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Chiung-Chyi Shen
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Meei-Ling Sheu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Ju-Yu Wang
- Basic Medical Science, Department of Nursing, Hung Kuang University, Taichung, Taiwan, R.O.C
| | - Chi-Li Gong
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C.
| | - Wen-Yu Cheng
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C. .,Department of Physical Therapy, Hung Kuang University, Taichung, Taiwan, R.O.C
| | - DA-Tian Bau
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan, R.O.C
| |
Collapse
|
7
|
Li J. Downregulation of ROS1 enhances the therapeutic efficacy of arsenic trioxide in acute myeloid leukemia cell lines. Oncol Lett 2018; 15:9392-9396. [PMID: 29805662 DOI: 10.3892/ol.2018.8458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 08/01/2017] [Indexed: 11/06/2022] Open
Abstract
The present study investigated the function of ROS proto-oncogene 1 receptor tyrosine kinase (ROS1) in regulating the migration and proliferation of acute myeloid leukemia (AML) cells through Wnt/β-catenin signaling, and in arsenic trioxide (ATO) treatment. The migration and proliferation of multiple ROS1-silenced leukemic cell lines was assessed, and the expression levels of proteins associated with Wnt/β-catenin signaling were determined using western blot analysis. Compared with the AML control cells, ROS1-knockdown cells exhibited increased migration and proliferation, and the significant downregulation of β-catenin expression. Additionally, ROS1 knockdown sensitized AML cells to the effects of chemotherapeutic ATO. The results of the present study demonstrated that, in leukemic cell lines, ROS1 counteracted the effects of ATO on migration and proliferation, suggesting that ROS1 may be a potential therapeutic target in patients with AML undergoing ATO treatment. The results of the present study provided novel insight into the function of ATO and ROS1 in regulating AML progression.
Collapse
Affiliation(s)
- Jun Li
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|
8
|
Dani SU, Walter GF. Chronic arsenic intoxication diagnostic score (CAsIDS). J Appl Toxicol 2017; 38:122-144. [DOI: 10.1002/jat.3512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/02/2017] [Accepted: 07/12/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Sergio Ulhoa Dani
- Medawar Institute for Medical and Environmental Research; Acangau Foundation; Paracatu MG Brazil
- Department of General Internal Medicine; St. Gallen Cantonal Hospital; Switzerland
- PizolCare Praxis Wartau; Trübbach Switzerland
| | | |
Collapse
|
9
|
Shi D, Liu Y, Xi R, Zou W, Wu L, Zhang Z, Liu Z, Qu C, Xu B, Wang X. Caveolin-1 contributes to realgar nanoparticle therapy in human chronic myelogenous leukemia K562 cells. Int J Nanomedicine 2016; 11:5823-5835. [PMID: 27853367 PMCID: PMC5106223 DOI: 10.2147/ijn.s115158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic myelogenous leukemia (CML) is characterized by the t(9;22) (q34;q11)-associated Bcr-Abl fusion gene, which is an essential element of clinical diagnosis. As a traditional Chinese medicine, realgar has been widely used for the treatment of various diseases for >1,500 years. Inspired by nano-drug, realgar nanoparticles (NPs) have been prepared with an average particle size of <100 nm in a previous work. Compared with coarse realgar, the realgar NPs have higher bioavailability. As a principal constituent protein of caveolae, caveolin-1 (Cav-1) participates in regulating various cellular physiological and pathological processes including tumorigenesis and tumor development. In previous studies, it was found that realgar NPs can inhibit several types of tumor cell proliferation. However, the therapeutic effect of realgar NPs on CML has not been fully elucidated. In the present paper, it was demonstrated that realgar NPs can inhibit the proliferation of K562 cells and degrade Bcr-Abl fusion protein effectively. Both apoptosis and autophagy were activated in a dose-dependent manner in realgar NPs treated cells, and the induction of autophagy was associated with class I phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathway. Morphological analysis indicated that realgar NPs induced differentiation effectively in CML cells. Furthermore, it was identified that Cav-1 might play a crucial role in realgar NP therapy. In order to study the effects of Cav-1 on K562 cells during realgar NP treatment, a Cav-1 overexpression cell model was established by using transient transfection. The results indicated that Cav-1 overexpression inhibited K562 cell proliferation, promoted endogenic autophagy, and increased the sensitivity of K562 cells to realgar NPs. Therefore, the results demonstrated that realgar NPs degraded Bcr-Abl oncoprotein, while the underlying mechanism might be related to apoptosis and autophagy, and Cav-1 might be considered as a potential target for clinical comprehensive therapy of CML.
Collapse
Affiliation(s)
- Dan Shi
- Department of Pharmacy, The 210th Hospital of People's Liberation Army
| | - Yan Liu
- Department of Pharmacy, The 210th Hospital of People's Liberation Army
| | - Ronggang Xi
- Department of Pharmacy, The 210th Hospital of People's Liberation Army
| | - Wei Zou
- College of Life Science, Liaoning Normal University, Dalian, Liaoning
| | - Lijun Wu
- Department of Pharmaceutics, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Zhiran Zhang
- Department of Pharmacy, The 210th Hospital of People's Liberation Army
| | - Zhongyang Liu
- Department of Pharmacy, The 210th Hospital of People's Liberation Army
| | - Chao Qu
- Department of Pharmacy, The 210th Hospital of People's Liberation Army
| | - Baoli Xu
- Department of Pharmacy, The 210th Hospital of People's Liberation Army
| | - Xiaobo Wang
- Department of Pharmacy, The 210th Hospital of People's Liberation Army
| |
Collapse
|
10
|
Hsu LI, Wang YH, Hsieh FI, Yang TY, Wen-Juei Jeng R, Liu CT, Chen CL, Hsu KH, Chiou HY, Wu MM, Chen CJ. Effects of Arsenic in Drinking Water on Risk of Hepatitis or Cirrhosis in Persons With and Without Chronic Viral Hepatitis. Clin Gastroenterol Hepatol 2016; 14:1347-1355.e4. [PMID: 27060428 DOI: 10.1016/j.cgh.2016.03.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/26/2016] [Accepted: 03/28/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Arsenic in drinking water is associated with hepatomegaly and death from liver cancer. However, confounding factors related to liver diseases have not been carefully studied. We examined associations between exposure of arsenic in drinking water and risk of hepatitis and cirrhosis, and the interaction with chronic viral hepatitis, in people living in the Lanyang Basin of northeastern Taiwan, where well water has an arsenic content that ranges from undetectable to 3590 μg/L. METHODS We tested blood samples from 4387 people who lived in arseniasis-endemic areas in northeastern Taiwan from 1991 through 1994 for hepatitis B virus DNA, hepatitis B surface antigen (HBsAg), and antibodies against hepatitis C virus (anti-HCV). We measured arsenic concentrations in well water and collected information on residents' histories of major chronic diseases. Reports of chronic hepatitis or cirrhosis were ascertained using the Taiwan National Health Insurance database. Reports of liver cancer were ascertained using the Taiwan National Cancer Registry. RESULTS Prevalence odds ratios in the overall study population for chronic hepatitis or cirrhosis for well water arsenic concentrations of ≤10 μg/L were 1.00 (reference), 0.93 for 10.1-49.9 μg/L (95% confidence interval [CI], 0.57-1.52), 1.24 for 50.0-99.9 μg/L (95% CI, 0.68-2.23), 0.98 for 100.0-299.9 (95% CI, 0.52-1.85), and 1.86 for ≥300.0 μg/L (95% CI, 1.08-3.20). Increasing levels of arsenic in drinking water were associated with increasing prevalence of chronic hepatitis or cirrhosis in residents who were seronegative for HBsAg and seronegative for anti-HCV, but not for seropositive for either HBsAg or anti-HCV. In individuals who were seropositive for HBsAg or anti-HCV, we observed an inverse association between hepatitis or cirrhosis and consumption of water with levels of arsenic ≥100.0 μg/L. Among participants who were seropositive for HBsAg or anti-HCV, consumption of water with levels of arsenic ≥100.0 μg/L was associated with a reduced risk of liver cancer (multivariate-adjusted hazard ratio, 0.29; 95% CI, 0.09-0.95; P < .05). A higher proportion of individuals exposed to cumulative arsenic level >14,000 μg/L ×year were carriers of inactive hepatitis B virus (DNA <10,000 copies/mL) and were positive for HBsAg (60%) than individuals exposed to water below this arsenic level (35%). CONCLUSIONS Concentrations of arsenic concentration in drinking water ≥300.0 μg/L significantly increase risk of hepatitis or cirrhosis in people without chronic viral hepatitis. However, in people with chronic viral hepatitis, levels of arsenic ≥100.0 μg/L in drinking water significantly reduce the risk of chronic hepatitis or cirrhosis.
Collapse
Affiliation(s)
- Ling-I Hsu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Department of Health Care Management, Chang-Gung University, Taoyuan City, Taiwan
| | - Yuan-Hung Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Fang-I Hsieh
- School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Tse-Yen Yang
- Molecular and Genomic Epidemiology Center, China Medical University Hospital, Taichung, Taiwan
| | - Rachel Wen-Juei Jeng
- Department of Gastroenterology and Hepatology, Division of Hepatology Chang Gung Medical Foundation, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | - Chi-Ling Chen
- Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuang-Hung Hsu
- Laboratory for Epidemiology, Department of Health Care Management, and Health Aging Research Center, Chang Gung University, Taoyuan City, Taiwan; Department of Urology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hung-Yi Chiou
- School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Meei-Maan Wu
- School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan.
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
11
|
Nanostructured materials functionalized with metal complexes: In search of alternatives for administering anticancer metallodrugs. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.01.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Zhang Z, Liu H, Zhou H, Zhu X, Zhao Z, Chi X, Shan H, Gao J. A facile route to core-shell nanoparticulate formation of arsenic trioxide for effective solid tumor treatment. NANOSCALE 2016; 8:4373-4380. [PMID: 26840759 DOI: 10.1039/c5nr07860a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Arsenic trioxide has achieved great clinical success in the treatment of acute promyelocytic leukemia (APL). However, it is difficult to replicate the success in other cancers, such as solid tumors, in part because of the rapid renal clearance and dose-limiting toxicity. Nanotechnology is expected to overcome these disadvantages through altering its pharmacokinetics and concentrating the drug at the desired sites. Herein, we report a "one-pot" method to develop arsenic-based nanodrugs by in situ coating the as-prepared arsenic nanocomplexes with porous silica shells. This process can be easily reproduced and scaled up because no complicated synthesis and purification steps are involved. This core-shell embedding method endows nanodrugs with high loading capacity (57.9 wt%) and a prolonged pH-responsive releasing profile, which is crucial to increase the drug concentration at tumor sites and improve the drug efficacy. Based on these unique features, the nanodrugs significantly inhibit the growth of solid tumors without adverse side effects. Therefore, we anticipate that the arsenic-based nanodrugs generated by this facile synthetic route may be a powerful and alternative strategy for solid tumor therapy.
Collapse
Affiliation(s)
- Zongjun Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Hanyu Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Hualu Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xianglong Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Zhenghuan Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiaoqin Chi
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Xiamen 361004, China
| | - Hong Shan
- Department of Radiology, The Third Affiliated Hospital and Interventional Radiology Institute, Sun Yat-sen University, Guangzhou 510630, China
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
13
|
Jiang W, Mitra R, Lin CC, Wang Q, Cheng F, Zhao Z. Systematic dissection of dysregulated transcription factor-miRNA feed-forward loops across tumor types. Brief Bioinform 2015; 17:996-1008. [PMID: 26655252 PMCID: PMC5142013 DOI: 10.1093/bib/bbv107] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/23/2015] [Indexed: 02/07/2023] Open
Abstract
Transcription factor and microRNA (miRNA) can mutually regulate each other and jointly regulate their shared target genes to form feed-forward loops (FFLs). While there are many studies of dysregulated FFLs in a specific cancer, a systematic investigation of dysregulated FFLs across multiple tumor types (pan-cancer FFLs) has not been performed yet. In this study, using The Cancer Genome Atlas data, we identified 26 pan-cancer FFLs, which were dysregulated in at least five tumor types. These pan-cancer FFLs could communicate with each other and form functionally consistent subnetworks, such as epithelial to mesenchymal transition-related subnetwork. Many proteins and miRNAs in each subnetwork belong to the same protein and miRNA family, respectively. Importantly, cancer-associated genes and drug targets were enriched in these pan-cancer FFLs, in which the genes and miRNAs also tended to be hubs and bottlenecks. Finally, we identified potential anticancer indications for existing drugs with novel mechanism of action. Collectively, this study highlights the potential of pan-cancer FFLs as a novel paradigm in elucidating pathogenesis of cancer and developing anticancer drugs.
Collapse
Affiliation(s)
- Wei Jiang
- *These authors contributed equally to this work
| | | | | | | | | | | |
Collapse
|
14
|
EZH2 mediates ATO-induced apoptosis in acute myeloid leukemia cell lines through the Wnt signaling pathway. Tumour Biol 2015; 37:5919-23. [PMID: 26592252 DOI: 10.1007/s13277-015-4463-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/17/2015] [Indexed: 01/01/2023] Open
Abstract
In this study, we examined the mechanisms associated with EZH2 mediation of apoptosis and chemoresistance to arsenic trioxide (ATO) in acute myeloid leukemia (AML) cell lines through the Wnt/β-catenin signaling pathway. The induction of spontaneous apoptosis observed in multiple EZH2-silenced leukemic cell lines was assessed by flow cytometry, and levels of Wnt/β-catenin-related expression were determined by western blot analysis. In comparison with AML control cells, EZH2-knockdown cells exhibited increased apoptosis and significant downregulation of β-catenin expression, as well as decreases in GSK-3β phosphorylation and β-catenin activation (p < 0.05 for all measurements). Additionally, EZH2 knockdown sensitized AML cells to induced cell death following administration of chemotherapeutic ATO. Our results suggested that EZH2 in leukemic cell lines might inhibit ATO-induced apoptosis and that EZH2 may be a potential therapeutic target in AML patients undergoing ATO treatment. Our findings provide new insights into the role of ATO and EZH2 in regulating AML progression.
Collapse
|
15
|
Shooshtary S, Behtash S, Nafisi S. Arsenic trioxide binding to serum proteins. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 148:31-36. [PMID: 25863441 DOI: 10.1016/j.jphotobiol.2015.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
Abstract
Arsenic trioxide (ATO) also known as Trisenox, is an anticancer chemotherapeutic drug which has been used in treating diagnosed and relapsed patients with acute promyelocytic leukemia (APL). Serum albumin is the most abundant of the proteins in blood plasma and is the major transporter for delivering several drugs in vivo. The current study was designed to evaluate the potential ability of human and bovine serum albumin for delivering arsenic trioxide. Therefore, interaction of arsenic trioxide with HSA and BSA was investigated in aqueous solution at physiological conditions using a constant protein concentration and various drug contents. FTIR and UV-Vis spectroscopic methods were used to analyze arsenic trioxide and protein binding modes, the binding constants and the effect of drug complexation on HSA and BSA stability and conformation. Results of this study showed that drug complexation altered protein conformation by major reduction of α-helix and increase of turn structure which is indicative of a partial protein destabilization. Structural analysis revealed that arsenic trioxide bind HSA and BSA with overall binding constants of KATO-HSA=1.07 (±0.01)×10(4) M(-1) and KATO-BSA=1.27(±0.02)×10(4) M(-1). It could be concluded that serum albumins can be considered as good carriers for delivering arsenic trioxide to target tissue.
Collapse
Affiliation(s)
- Sara Shooshtary
- Department of Chemistry, IAU, Central Tehran Branch (IAUCTB), Tehran, Iran
| | - Sima Behtash
- Department of Chemistry, IAU, Central Tehran Branch (IAUCTB), Tehran, Iran
| | - Shohreh Nafisi
- Department of Chemistry, IAU, Central Tehran Branch (IAUCTB), Tehran, Iran; Department of Dermatology, University of California, San Francisco, CA, USA.
| |
Collapse
|
16
|
Zhang H, Liang X, Duan C, Liu C, Zhao Z. Galectin-3 as a marker and potential therapeutic target in breast cancer. PLoS One 2014; 9:e103482. [PMID: 25254965 PMCID: PMC4177814 DOI: 10.1371/journal.pone.0103482] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 07/03/2014] [Indexed: 11/18/2022] Open
Abstract
Galectin-3 has a relatively high level of expression in triple-negative breast cancers and is a potential marker for this disease. However, the clinical and prognostic implications of galectin-3 expression in breast cancer remain unclear. We examined mastectomy specimens from 1086 breast cancer cases and matching, adjacent non-cancerous tissues using immunohistochemistry. Overall, triple-negative breast cancers expressed galectin-3 more strongly than did other breast cancers types (63.59% vs 21.36%, P = 0.001). Galectin-3 expression was not found to be an independent prognostic factor for breast cancer by Cox regression analysis, but was associated with chemotherapeutic resistance. Apoptosis was only weakly induced by arsenic trioxide (ATO) treatment in galectin-3-positive breast cancer cells (MDA-MB-231 and MCF-7), although ATO treatment up-regulated galectin-3 expression. Knockdown of galectin-3 in MDA-MB-231 cells sensitized them to killing by ATO. These findings support a possible role for galectin-3 as a marker for triple-negative breast cancer progression and as a therapeutic target in combination with ATO treatment, although the mechanisms that underlie this synergy require further investigation.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, China
| | - Xi Liang
- Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, China
| | - Chao Duan
- Department of Cardiothoracic, Benxi Central Hospital, Benxi, China
| | - Caigang Liu
- Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, China
- * E-mail:
| | - Zuowei Zhao
- Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
17
|
Luo X, Feng M, Zhu X, Li Y, Fei J, Zhang Y. VEGF depletion enhances bcr-abl-specific sensitivity of arsenic trioxide in chronic myelogenous leukemia. ACTA ACUST UNITED AC 2014; 18:334-40. [PMID: 24129092 DOI: 10.1179/1607845413y.0000000083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The development of resistance to imatinib mesylate may partly depend on high bcr-abl expression levels or point mutation(s). Arsenic trioxide (ATO) has bcr-abl suppressing activity in vitro, without cross-resistance to imatinib. Meanwhile, bcr-abl also induces expression of vascular endothelial growth factor (VEGF), which is associated with tumor-related angiogenesis and is involved in chronic myelogenous leukemia (CML) pathogenesis. Here, we investigated ways to improve ATO activity in CML by modulating cellular VEGF levels. K562 and primary CML cells were transfected with a VEGF antisense sequence. Cell viability and survival were assessed using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide and trypan blue exclusion assays. Apoptotic cells were detected by flow cytometry following annexin V and propidium iodide staining. The results showed that VEGF depletion effectively promotes enhanced ATO antileukemic activity by repressing bcr-abl protein levels. These data provide a rationale for the clinical development of optimized ATO-based regimens that incorporate VEGF modulator for CML treatment.
Collapse
|
18
|
Gao YH, Zhang HP, Yang SM, Yang Y, Ma YY, Zhang XY, Yang YM. Inactivation of Akt by arsenic trioxide induces cell death via mitochondrial-mediated apoptotic signaling in SGC-7901 human gastric cancer cells. Oncol Rep 2014; 31:1645-52. [PMID: 24482137 DOI: 10.3892/or.2014.2994] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/13/2014] [Indexed: 11/05/2022] Open
Abstract
Arsenic trioxide (As2O3) has been recognized as a potential chemotherapeutic agent, yet the details concerning its mechanism of action in solid cancers remain undetermined. The present study assessed the role of Akt in the cell death induced by As2O3. The MTT assay showed that As2O3 suppressed the proliferation of SGC-7901 cells in a dose- and time-dependent manner. Characteristic apoptotic changes were observed in the As2O3‑treated cells by Hoechst 33342 staining, and FACS analysis showed that As2O3 caused dose-dependent apoptotic cell death. As2O3 activated caspase-3 and -9, and PARP cleavage in a dose-dependent manner. Compromised mitochondrial membrane potential and an increased protein level of Bax indicated involvement of mitochondia. As2O3 decreased the levels of p-Akt (Ser473), p-Akt (Thr308) and p-GSK-3β (Ser9), suggesting that As2O3 inactivated Akt kinase. In addition, LY294002 (a PI3 kinase inhibitor) augmented the apoptosis induced by As2O3. These results demonstrated that inhibition of PI3K/Akt signaling was involved in As2O3-induced apoptosis of gastric cancer SGC-7901 cells.
Collapse
Affiliation(s)
- Yan-Hui Gao
- The Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hao-Peng Zhang
- Department of Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Shu-Meng Yang
- Department of Outpatient Surgery, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Yue Yang
- Cancer Research Institute, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yu-Yan Ma
- Cancer Research Institute, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xin-Yu Zhang
- Department of Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yan-Mei Yang
- Cancer Research Institute, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
19
|
Preparation and investigation of arsenic trioxide-loaded polylactic acid/magnetic hybrid nanoparticles. Chem Res Chin Univ 2014. [DOI: 10.1007/s40242-014-3306-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Characterization of arsenic trioxide resistant clones derived from Jurkat leukemia T cell line: focus on PI3K/Akt signaling pathway. Chem Biol Interact 2013; 205:198-211. [PMID: 23911876 DOI: 10.1016/j.cbi.2013.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/17/2013] [Accepted: 07/23/2013] [Indexed: 01/06/2023]
Abstract
In this study the role of PI3K/Akt signaling pathway in arsenic trioxide (ATO)-treated parental Jurkat cells and also in derived ATO-resistant clones grown in the presence of given ATO concentration was investigated. ATO-resistant clones (cultured for 8-12weeks in the presence of 1, 2.5 and 5μM ATO) were characterized by high viability in the presence of ATO but slower growth rate compared to the parental cells. Morphological and functional characterization of derived ATO-resistant clones revealed that they did not differ fundamentally from parental Jurkat cells in terms of cell size, level of GSH, the lysosomal fluorescence or CD95/Fas surface antigen expression. However, a slight increase in the mitochondrial potential (JC-1 staining) was detected in the clones compared to parental Jurkat cells. Side population analysis (Vybrant DyeCycle Violet™ staining) in ATO resistant clones did not indicate any enrichment withcancer stem cells. Akt1/2, AktV or wortmannin inhibitors decreased viability of ATO-resistant clones grown in the presence of ATO, with no effect on ATO-treated parental cells. Flow cytometry analysis showed that ATO decreased the level of p-Akt in ATO-treated parental cells, while the resistant clones exhibited higher levels of p-Akt immunostaining than parental Jurkat cells. Expression analysis of 84 genes involved in the PI3K/Akt pathway revealed that this pathway was predominantly active in ATO-resistant clones. c-JUN seems to play a key role in the induction of cell death in ATO-treated parental Jurkat cells, as dose-dependent strong up-regulation of JUN was specific for the ATO-treated parental Jurkat cells. On the other hand, changes in expression of cyclin D1 (CCND1), insulin receptor substrate 1 (IRS1) and protein kinase C isoforms (PRKCZ,PRKCB and PRKCA) may be responsible for the induction of resistance to ATO. The changes in expression of growth factor receptor-bound protein 10 (GRB10) observed in ATO-resistant clones suggest a possibility of induction of different mechanisms in development of resistance to ATO depending on the drug concentration and thus involvement of different signaling mediators.
Collapse
|
21
|
He JH, Li YM, Li YG, Xie XY, Wang L, Chun SY, Cheng WJ. hsa-miR-203 enhances the sensitivity of leukemia cells to arsenic trioxide. Exp Ther Med 2013; 5:1315-1321. [PMID: 23737871 PMCID: PMC3671790 DOI: 10.3892/etm.2013.981] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/13/2013] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to investigate the effect of a eukaryotic expression vector expressing hsa-miR-203 on the sensitivity of K562 leukemia cells to arsenic trioxide (ATO) and the possible mechanism of action. The eukaryotic expression vector expressing the hsa-miR-203 plasmid (PmiR-203) was transfected into K562 cells using Lipofectamine 2000. bcr/abl 3′ untranslated region (UTR) and bcr/abl mutated 3′UTR dual luciferase report vectors (psi-CHECK-2) were used to validate the regulation of bcr/abl by miR-203. The inhibitory effects of ATO and PmiR-203, used singly or in combination, on cell proliferation were detected by MTT assay. Apoptosis of the K562 cells was detected by flow cytometry using double-staining with Annexin V and propidium iodide (PI). The activities of caspase-3 and caspase-9 were detected by a colorimetric method and the cytochrome c protein levels were detected by western blotting. When used in combination with PmiR-203, the IC50 of ATO was reduced from 6.49 to 2.45 μg/ml and the sensitivity of cells to ATO increased 2.64-fold. In addition, PmiR-203 and ATO caused growth inhibition, apoptosis and G1-phase arrest in K562 cells. Furthermore, PmiR-203 significantly promoted ATO-mediated growth inhibition and apoptosis, affecting the G1 phase. JC-1 fluorescent staining revealed that the membrane potential of the mitochondria had changed. The activities of caspase-3 and caspase-9 increased, the expression levels of cytochrome c were upregulated and the expression level of bcr/abl mRNA was significantly suppressed. Furthermore, the dual-luciferase reporter vector, containing tandem miR-203 binding sites from the bcr/abl 3′UTR, demonstrated that bcr/abl was directly regulated by miR-203. PmiR-203 sensitized K562 leukemia cells to ATO by inducing apoptosis and downregulating bcr/ abl gene levels. The induction of apoptosis may occur through the mitochondrial pathway. The combination of ATO and PmiR-203 presents therapeutic potential for chronic myelogenous leukemia.
Collapse
Affiliation(s)
- Jin-Hua He
- Department of Laboratory, Central Hospital of Panyu District, Guangzhou, Guangdong 511400
| | | | | | | | | | | | | |
Collapse
|
22
|
Alterations in glutathione levels and apoptotic regulators are associated with acquisition of arsenic trioxide resistance in multiple myeloma. PLoS One 2012; 7:e52662. [PMID: 23285138 PMCID: PMC3528737 DOI: 10.1371/journal.pone.0052662] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/19/2012] [Indexed: 11/19/2022] Open
Abstract
Arsenic trioxide (ATO) has been tested in relapsed/refractory multiple myeloma with limited success. In order to better understand drug mechanism and resistance pathways in myeloma we generated an ATO-resistant cell line, 8226/S-ATOR05, with an IC50 that is 2–3-fold higher than control cell lines and significantly higher than clinically achievable concentrations. Interestingly we found two parallel pathways governing resistance to ATO in 8226/S-ATOR05, and the relevance of these pathways appears to be linked to the concentration of ATO used. We found changes in the expression of Bcl-2 family proteins Bfl-1 and Noxa as well as an increase in cellular glutathione (GSH) levels. At low, clinically achievable concentrations, resistance was primarily associated with an increase in expression of the anti-apoptotic protein Bfl-1 and a decrease in expression of the pro-apoptotic protein Noxa. However, as the concentration of ATO increased, elevated levels of intracellular GSH in 8226/S-ATOR05 became the primary mechanism of ATO resistance. Removal of arsenic selection resulted in a loss of the resistance phenotype, with cells becoming sensitive to high concentrations of ATO within 7 days following drug removal, indicating changes associated with high level resistance (elevated GSH) are dependent upon the presence of arsenic. Conversely, not until 50 days without arsenic did cells once again become sensitive to clinically relevant doses of ATO, coinciding with a decrease in the expression of Bfl-1. In addition we found cross-resistance to melphalan and doxorubicin in 8226/S-ATOR05, suggesting ATO-resistance pathways may also be involved in resistance to other chemotherapeutic agents used in the treatment of multiple myeloma.
Collapse
|
23
|
Zhang X, Jia S, Yang S, Yang Y, Yang T, Yang Y. Arsenic trioxide induces G2/M arrest in hepatocellular carcinoma cells by increasing the tumor suppressor PTEN expression. J Cell Biochem 2012; 113:3528-35. [PMID: 22730174 DOI: 10.1002/jcb.24230] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xinyu Zhang
- Department of Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Shuzhao Jia
- Department of Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Shumeng Yang
- Department of Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Yue Yang
- Cancer Research Institute, Harbin Medical University, Harbin 150081, China
| | - Tuoyun Yang
- Department of Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Yanmei Yang
- Cancer Research Institute, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
24
|
Inhibition of small GTPase RalA regulates growth and arsenic-induced apoptosis in chronic myeloid leukemia (CML) cells. Cell Signal 2012; 24:1134-40. [DOI: 10.1016/j.cellsig.2012.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 01/27/2012] [Accepted: 01/27/2012] [Indexed: 11/20/2022]
|
25
|
Zhang Q, Zheng Q, Sun G. Arsenic-contaminated cold-spring water in mountainous areas of Hui County, Northwest China: a new source of arsenic exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:5513-5516. [PMID: 21945447 DOI: 10.1016/j.scitotenv.2011.08.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 05/31/2023]
Abstract
Although pump-well is the primary drinking water source in rural areas of China, there are still 8.4% of villages reliant on cold-spring. In this study, a survey of arsenic concentration in cold-springs and pump-wells was carried out in Hui County, Northwest China. A total of 352 drinking water samples, including 177 cold-springs and 175 pump-wells, were collected. The maximum arsenic concentrations in cold-springs and pump-wells were 0.482 mg/L and 0.067 mg/L, respectively. We found that 15.8% (28) of total cold-springs and 1.1% (2) of total pump-wells had arsenic concentrations exceeding the maximum allowable concentration of arsenic in drinking water of rural China (0.05 mg/L). Our findings show that 5 cold spring-contaminated villages are located in the mountainous areas of Hui County and 2224 inhabitants may be at risk of high arsenic exposure. This paper indicates that arsenic contamination of cold-springs may be more serious than expected in mountainous areas of Northwest China and extensive surveys and epidemiological studies should be carried out to investigate the potential contaminated areas and affected population.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, 110001 Shenyang, China
| | | | | |
Collapse
|
26
|
Ghosh K, Ghosh K. Advances in haematological pharmacotherapy in 21st century. Indian J Hematol Blood Transfus 2011; 26:30-40. [PMID: 21629633 DOI: 10.1007/s12288-010-0019-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 04/26/2010] [Indexed: 12/01/2022] Open
Abstract
Last quarter of twentieth century and the first 10 years of 21st century has seen phenomenal development in haematological pharmacotherapy. Tailor made chemotherapeutic agents, vast array of monoclonal antibodies, epigenetic modifiers, growth factors for red cells white cells and platelets, peptidomimetics as growth factors, newer thrombin inhibitors, safer plasma derived protein molecules, recombinant molecules, newer immunomodulators, enzyme replacement therapy and above all a plethora of targetted molecules targeting innumerable pathways involved in cell division, growth, proliferation and apoptosis has given immense number of clinically usable molecules in the hand of modern haematologists to treat diverse hitherto untreatable haematological disorders effectively. In addition many old molecules are finding newer uses in diverse fields, thalidomide as an antiangiogenic molecule is a prime example of this genre. Present overview has tried to capture this rapidly evolving area in a broad canvas without going into details of indications and contraindications of the use of various drugs.
Collapse
Affiliation(s)
- Kanjaksha Ghosh
- National Institute of Immunohaematology (ICMR), 13th Floor. KEM Hospital, Parel, Mumbai, 400 012 India
| | | |
Collapse
|
27
|
Tokar EJ, Diwan BA, Ward JM, Delker DA, Waalkes MP. Carcinogenic effects of "whole-life" exposure to inorganic arsenic in CD1 mice. Toxicol Sci 2011; 119:73-83. [PMID: 20937726 PMCID: PMC3003832 DOI: 10.1093/toxsci/kfq315] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/06/2010] [Indexed: 01/21/2023] Open
Abstract
In a previously developed mouse model, arsenic exposure in utero induces tumors at multiple sites in the offspring as adults, often duplicating human targets. However, human environmental inorganic arsenic exposure occurs during the entire life span, not just part of gestation. Thus, "whole-life" inorganic arsenic carcinogenesis in mice was studied. CD1 mice were exposed to 0, 6, 12, or 24 ppm arsenic in the drinking water 2 weeks prior to breeding, during pregnancy, lactation, and after weaning through adulthood. Tumors were assessed in offspring until 2 years of age. Arsenic induced dose-related increases in lung adenocarcinoma (both sexes), hepatocellular carcinoma (both sexes), gallbladder tumors (males), and uterine carcinomas. Arsenic induced dose-related increases in ovarian tumors (including carcinomas) starting with the lowest dose. Adrenal tumors increased at all doses (both sexes). Arsenic-induced lung and liver cancers were highly enriched for cancer stem cells, consistent with prior work with skin cancers stimulated by prenatal arsenic. Reproductive tract tumors overexpressed cyclooxygenase-2 and estrogen receptor-α. Arsenic target sites were remarkably similar to prior transplacental studies, although tumors from whole-life exposure were generally more aggressive and frequent. This may indicate that arsenic-induced events in utero dictate target site in some tissues, whereas other exposure periods of arsenic enhance incidence or progression, though other factors could be at play, like cumulative dose. Whole-life arsenic exposure induced tumors at dramatically lower external doses than in utero arsenic only while more realistically duplicating human exposure.
Collapse
Affiliation(s)
- Erik J. Tokar
- Laboratory of Comparative Carcinogenesis, National Cancer Institute at the National Institute of Environmental Health Sciences, and National Toxicology Program, The National Institute of Environmental Health Sciences, Research Triangle Park, Raleigh, North Carolina 27709
| | - Bhalchandra A. Diwan
- Basic Research Program, SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland 21773
| | | | - Don A. Delker
- University of Utah, School of Medicine, 30 North 1900 East, Salt Lake City, Utah 84132
| | - Michael P. Waalkes
- Laboratory of Comparative Carcinogenesis, National Cancer Institute at the National Institute of Environmental Health Sciences, and National Toxicology Program, The National Institute of Environmental Health Sciences, Research Triangle Park, Raleigh, North Carolina 27709
| |
Collapse
|
28
|
Ahn RW, Chen F, Chen H, Stern ST, Clogston JD, Patri AK, Raja MR, Swindell EP, Parimi V, Cryns VL, O’Halloran TV. A novel nanoparticulate formulation of arsenic trioxide with enhanced therapeutic efficacy in a murine model of breast cancer. Clin Cancer Res 2010; 16:3607-17. [PMID: 20519360 PMCID: PMC2943376 DOI: 10.1158/1078-0432.ccr-10-0068] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE The clinical success of arsenic trioxide (As(2)O(3)) in hematologic malignancies has not been replicated in solid tumors due to poor pharmacokinetics and dose-limiting toxicity. We have developed a novel nanoparticulate formulation of As(2)O(3) encapsulated in liposomal vesicles or "nanobins" [(NB(Ni,As)] to overcome these hurdles. We postulated that nanobin encapsulation of As(2)O(3) would improve its therapeutic index against clinically aggressive solid tumors, such as triple-negative breast carcinomas. EXPERIMENTAL DESIGN The cytotoxicity of NB(Ni,As), the empty nanobin, and free As(2)O(3) was evaluated against a panel of human breast cancer cell lines. The plasma pharmacokinetics of NB(Ni,As) and free As(2)O(3) were compared in rats to measure drug exposure. In addition, the antitumor activity of these agents was evaluated in an orthotopic model of human triple-negative breast cancer. RESULTS The NB(Ni,As) agent was much less cytotoxic in vitro than free As(2)O(3) against a panel of human breast cancer cell lines. In contrast, NB(Ni,As) dramatically potentiated the therapeutic efficacy of As(2)O(3) in vivo in an orthotopic model of triple-negative breast cancer. Reduced plasma clearance, enhanced tumor uptake, and induction of tumor cell apoptosis were observed for NB(Ni,As). CONCLUSIONS Nanobin encapsulation of As(2)O(3) improves the pharmacokinetics and antitumor efficacy of this cytotoxic agent in vivo. Our findings demonstrate the therapeutic potential of this nanoscale agent and provide a foundation for future clinical studies in breast cancer and other solid tumors.
Collapse
Affiliation(s)
- Richard W. Ahn
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Feng Chen
- Cell Death Regulation Laboratory, Departments of Medicine and Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Haimei Chen
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Stephan T. Stern
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD
| | - Jeffrey D. Clogston
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD
| | - Anil K. Patri
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD
| | - Meera R. Raja
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Elden P. Swindell
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Vamsi Parimi
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
- Pathology Core Facility, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Vincent L. Cryns
- Cell Death Regulation Laboratory, Departments of Medicine and Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Thomas V. O’Halloran
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| |
Collapse
|
29
|
Wang C, Chen G, Jiang J, Qiu L, Hosoi K, Yao C. Aquaglyceroporins are involved in uptake of arsenite into murine gastrointestinal tissues. THE JOURNAL OF MEDICAL INVESTIGATION 2010; 56 Suppl:343-6. [PMID: 20224220 DOI: 10.2152/jmi.56.343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Aquaglyceroporins (AQGPs) are members of aquaporin (AQP) family and belong to a subgroup of this water channel family; they are transmembrane proteins that transport water as well as glycerol and other solutes of small molecules. Recent studies have also identified that AQGPs are important transporters of trivalent metalloid in some mammalian cells. However, the uptake routes of arsenite in mammals are still less defined. In this study, to understand the routes of arsenite intake in mammals, mice were treated with Hg(II), glycerol, and As(III) and uptake of As(III) into the gastrointestinal tissues was measured. The level of inorganic arsenic (iAs) in gastrointestinal tissues after As(III) stimulation was much higher than Hg(II) +As(III) or glycerol+As(III) group. RT-PCR results showed that AQGPs were extensively expressed in gastrointestinal tissues of mice. We also treated Caco-2 cells with Hg(II) and As(III); the level of iAs in a group treated with Hg(II)+As(III) decreased compared with As(III)-treated group. Our results suggested that AQGPs could be important transporters in arsenite uptake into gastrointestinal tissues of mice, but more data are need to prove if AQGPs is the only pathway involved in As transport in mammals or just one of them.
Collapse
Affiliation(s)
- Chun Wang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | | | | | | | | | | |
Collapse
|
30
|
McNeer JL, Goussetis DJ, Sassano A, Dolniak B, Kroczynska B, Glaser H, Altman JK, Platanias LC. Arsenic trioxide-dependent activation of thousand-and-one amino acid kinase 2 and transforming growth factor-beta-activated kinase 1. Mol Pharmacol 2010; 77:828-35. [PMID: 20159944 PMCID: PMC2872974 DOI: 10.1124/mol.109.061507] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 02/12/2010] [Indexed: 01/15/2023] Open
Abstract
Arsenic trioxide (As(2)O(3)) has potent antileukemic properties in vitro and in vivo, but the mechanisms by which it generates its effects on target leukemic cells are not well understood. Understanding cellular mechanisms and pathways that are activated in leukemic cells to control the generation of As(2)O(3) responses should have important implications in the development of novel approaches using As(2)O(3) for the treatment of leukemias. In this study, we used immunoblotting and immune complex kinase assays to provide evidence that the kinases thousand-and-one amino acid kinase 2 (TAO2) and transforming growth factor-beta-activated kinase 1 (TAK1) are rapidly activated in response to treatment of acute leukemia cells with As(2)O(3). Such activation occurs after the generation of reactive oxygen species and regulates downstream engagement of the p38 mitogen-activated protein kinase. Our studies demonstrate that siRNA-mediated knockdown of TAO2 or TAK1 or pharmacological inhibition of TAK1 enhances the suppressive effects of As(2)O(3) on KT-1-derived leukemic progenitor colony formation and on primary leukemic progenitors from patients with acute myelogenous leukemia. These results indicate key negative-feedback regulatory roles for these kinases in the generation of the antileukemic effects of As(2)O(3). Thus, molecular or pharmacological targeting of these kinases may provide a novel approach to enhance the generation of arsenic-dependent antileukemic responses.
Collapse
Affiliation(s)
- Jennifer L McNeer
- Division of Hematology/Oncology, Department of Pediatrics, Northwestern University Medical School, Chicago, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Li Y, Zhu X, Gu J, Dong D, Yao J, Lin C, Huang K, Fei J. Anti-miR-21 oligonucleotide sensitizes leukemic K562 cells to arsenic trioxide by inducing apoptosis. Cancer Sci 2010; 101:948-54. [PMID: 20148895 PMCID: PMC11158335 DOI: 10.1111/j.1349-7006.2010.01489.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Arsenic trioxide (ATO), an ancient traditional Chinese medicine, has been successfully used as a therapeutic agent for leukemia. Drug resistance and toxicity are major concerns with the treatment. MicroRNAs (miRNAs) are endogenous small non-coding RNA molecules that might modulate cellular sensitivity to anticancer drugs. miRNA-21 (miR-21) is one of the most prominent miRNAs involved in various aspects of human cancers. However, miR-21 has been rarely characterized in chronic myelogenous leukemia (CML). Here, we used a specific anti-miR-21 oligonucleotide (AMO-miR-21) to sensitize K562 cells to ATO by degradation of miR-21. The results showed that both AMO-miR-21 and ATO caused growth inhibition, apoptosis, and G1-phase arrest in K562 cells. Meanwhile, AMO-miR-21 significantly promoted ATO-mediated growth inhibition and apotosis without affecting the G1 phase. Apoptotic cells were confirmed morphologically with Giemsa's staining. Furthermore, dual-luciferase reporter vector, containing two tandem miR-21 binding sites from PDCD4 3'UTR, validated that PDCD4 was directly regulated by miR-21. Therefore, AMO-miR-21 sensitized leukemic K562 cells to ATO by inducing apoptosis partially due to its up-regulation of PDCD4 protein level. The combination of ATO and AMO-miR-21 present therapeutic potential for CML.
Collapse
Affiliation(s)
- Yumin Li
- Department of Biochemistry, Medical College of Jinan University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
miRNA-21 regulates arsenic-induced anti-leukemia activity in myelogenous cell lines. Med Oncol 2010; 28:211-8. [DOI: 10.1007/s12032-009-9413-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 12/30/2009] [Indexed: 01/26/2023]
|
33
|
Chen H, Pazicni S, Krett NL, Ahn RW, Penner-Hahn JE, Rosen ST, O'Halloran TV. Coencapsulation of arsenic- and platinum-based drugs for targeted cancer treatment. Angew Chem Int Ed Engl 2010; 48:9295-9. [PMID: 19894238 DOI: 10.1002/anie.200903655] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Haimei Chen
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Duan XF, Wu YL, Xu HZ, Zhao M, Zhuang HY, Wang XD, Yan H, Chen GQ. Synergistic mitosis-arresting effects of arsenic trioxide and paclitaxel on human malignant lymphocytes. Chem Biol Interact 2010; 183:222-30. [DOI: 10.1016/j.cbi.2009.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 09/10/2009] [Accepted: 09/17/2009] [Indexed: 12/19/2022]
|
35
|
Metalloid transport by aquaglyceroporins: consequences in the treatment of human diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 679:57-69. [PMID: 20666224 DOI: 10.1007/978-1-4419-6315-4_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metalloids can severely harm human physiology in a toxicological sense if taken up from the environment in acute high doses or chronically. However, arsenic or antimony containing drugs are still being used as treatment and are often the sole regime for certain forms of cancer, mainly types of leukemia and diseases caused by parasites, such as sleeping sickness or leishmaniasis. In this chapter, we give an outline of the positive effects of arsenicals and antimonials against such diseases, we summarize data on uptake pathways through human and parasite aquaglyceroporins and we discuss the progress and options in the development of therapeutic aquaporin and aquaglyceroporin inhibitor compounds.
Collapse
|
36
|
Active compounds-based discoveries about the differentiation and apoptosis of leukemic cells. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11434-009-0628-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Chen H, Pazicni S, Krett N, Ahn R, Penner-Hahn J, Rosen S, O'Halloran T. Coencapsulation of Arsenic- and Platinum-based Drugs for Targeted Cancer Treatment. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200903655] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Chen H, Ahn R, Van den Bossche J, Thompson DH, O’Halloran TV. Folate-mediated intracellular drug delivery increases the anticancer efficacy of nanoparticulate formulation of arsenic trioxide. Mol Cancer Ther 2009; 8:1955-63. [PMID: 19567824 PMCID: PMC3098497 DOI: 10.1158/1535-7163.mct-09-0045] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arsenic trioxide (As(2)O(3)) is a frontline drug for treatment of acute promyelocytic leukemia and is in clinical trials for treatment of other malignancies, including multiple myeloma; however, efforts to expand clinical utility to solid tumors have been limited by toxicity. Nanoparticulate forms of As(2)O(3) encapsulated in 100-nm-scale, folate-targeted liposomes have been developed to lower systematic toxicity and provide a platform for targeting this agent. The resultant arsenic "nanobins" are stable under physiologic conditions but undergo triggered drug release when the pH is lowered to endosomal/lysosomal levels. Cellular uptake and antitumor efficacy of these arsenic liposomes have been evaluated in folate receptor (FR)-positive human nasopharyngeal (KB) and cervix (HeLa) cells, as well as FR-negative human breast (MCF-7) tumor cells through confocal microscopy, inductively coupled plasma mass spectroscopy, and cytotoxicity studies. Uptake of folate-targeted liposomal arsenic by KB cells was three to six times higher than that of free As(2)O(3) or nontargeted liposomal arsenic; the enhanced uptake occurs through folate-mediated endocytosis, leading to a 28-fold increase in cytotoxicity. In contrast, tumor cells with lower FR density on the surface (HeLa and MCF-7) showed much less uptake of the folate-targeted drug and lower efficacy. In cocultures of KB and MCF-7 cells, the folate-targeted arsenic liposomes were exclusively internalized by KB cells, showing high targeting specificity. Our studies further indicate that folate-targeted delivery of As(2)O(3) with coencapsulated nickel(II) ions (as a nontoxic adjuvant) potentiates the As(2)O(3) efficacy in relatively insensitive solid tumor-derived cells and holds the promise of improving drug therapeutic index.
Collapse
Affiliation(s)
- Haimei Chen
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
| | - Richard Ahn
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
| | | | | | - Thomas V. O’Halloran
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
| |
Collapse
|
39
|
Li L, Wang J, Ye RD, Shi G, Jin H, Tang X, Yi J. PML/RARalpha fusion protein mediates the unique sensitivity to arsenic cytotoxicity in acute promyelocytic leukemia cells: Mechanisms involve the impairment of cAMP signaling and the aberrant regulation of NADPH oxidase. J Cell Physiol 2008; 217:486-93. [PMID: 18636556 DOI: 10.1002/jcp.21523] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Acute promyelocytic leukemia (APL) cells are characterized by PML/RARalpha fusion protein, high responsiveness to arsenic trioxide (ATO)-induced cytotoxicity and an abundant generation of reactive oxygen species (ROS). In this study we investigated the association among these three features in APL-derived NB4 cells. We found that NADPH oxidase-derived ROS generation was more abundant in NB4 cells compared with monocytic leukemia U937 cells. By using PR9, a sub-line of U937 stably transduced with the inducible PML/RARalpha expression vectors, we attributed disparities on ROS generation and ATO sensitivity to the occurrence of PML/RARalpha fusion protein, since PML/RARalpha-expressing cells appeared higher NADPH oxidase activity, higher ROS level and higher sensitivity to ATO. On the other hand, the basal intensity of cAMP signaling pathway was compared between NB4 and U937 as well as between PR9 cells with or without PML/RARalpha, demonstrating that PML/RARalpha-expressing cells had an impaired cAMP signaling pathway which relieved its inhibitory effect on NADPH oxidase derived ROS generation. In summary, the present study demonstrated the correlation of PML/RARalpha with cAMP signaling pathway, NADPH oxidase and ROS generation in APL cells. PML/RARalpha that bestows NB4 cells various pathological features, paradoxically also endows these cells with the basis for susceptibility to ATO-induced cytotoxcity.
Collapse
Affiliation(s)
- Lingna Li
- Department of Cell Biology, Key Laboratory of The Education Ministry for Cell Differentiation and Apoptosis, Institutes of Medical Sciencies, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Wang J, Li L, Cang H, Shi G, Yi J. NADPH oxidase-derived reactive oxygen species are responsible for the high susceptibility to arsenic cytotoxicity in acute promyelocytic leukemia cells. Leuk Res 2008; 32:429-36. [PMID: 17804067 DOI: 10.1016/j.leukres.2007.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 05/29/2007] [Accepted: 06/04/2007] [Indexed: 10/22/2022]
Abstract
We have previously demonstrated that an acute promyelocytic leukemia (APL)-derived cell line NB4 exhibited a relatively higher basal level of reactive oxygen species (ROS) than other leukemia cell lines, which is one of the mechanisms determining a higher apoptotic susceptibility of NB4 cells to arsenic trioxide (ATO)-induced apoptosis. Here we identified the source of the basal ROS generation in NB4 cells. We demonstrated the existence of all the components of phagocytic NADPH oxidase in NB4 cells and found that this oxidase could be effectively activated. The basal ROS generation in NB4 cells could be blocked by diphenyleneiodonium (DPI), an inhibitor of NADPH oxidase, but not by inhibitors of mitochondria respiratory chain, implying that NADPH oxidase played an essential role in maintaining the basal ROS level in NB4 cells. Furthermore, ATO-induced cytotoxicity was reduced by pre-treatment with DPI in NB4 cells, suggesting the involvement of NADPH oxidase in ATO-induced cytotoxicity. Therefore, increasing the NADPH oxidase activity may be a novel mechanism to enhance cytotoxicity induced by anticancer agents.
Collapse
Affiliation(s)
- Jie Wang
- Department of Cell Biology, Key Laboratory of The Education Ministry for Cell differentiation and Apoptosis, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | |
Collapse
|
41
|
Lin TH, Kuo HC, Chou FP, Lu FJ. Berberine enhances inhibition of glioma tumor cell migration and invasiveness mediated by arsenic trioxide. BMC Cancer 2008; 8:58. [PMID: 18294404 PMCID: PMC2275285 DOI: 10.1186/1471-2407-8-58] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Accepted: 02/25/2008] [Indexed: 02/07/2023] Open
Abstract
Background Arsenic trioxide (As2O3) exhibits promising anticarcinogenic activity in acute promyelocytic leukemic patients and induces apoptosis in various tumor cells in vitro. Here, we investigated the effect of the natural alkaloid berberine on As2O3-mediated inhibition of cancer cell migration using rat and human glioma cell lines. Methods The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to determine the viability of rat C6 and human U-87 glioma cells after treatment with As2O3 or berberine, and after co-treatment with As2O3 and berberine. The wound scratch and Boyden chamber assays were applied to determine the effect of As2O3 and berberine on the migration capacity and invasiveness of glioma cancer cells. Zymography and Western blot analyses provided information on the effect of As2O3 and berberine on the intracellular translocation and activation of protein kinase C (PKC), and some PKC-related downstream factors. Most assays were performed three times, independently, and data were analyzed using ANOVA. Results The cell viability studies demonstrated that berberine enhances As2O3-mediated inhibition of glioma cell growth after 24 h incubation. Untreated control cells formed a confluent layer, the formation of which was inhibited upon incubation with 5 μM As2O3. The latter effect was even more pronounced in the presence of 10 μM berberine. The As2O3-mediated reduction in motility and invasion of glioma cells was enhanced upon co-treatment with berberine. Furthermore, it has been reported that PKC isoforms influence the morphology of the actin cytoskeleton, as well as the activation of metalloproteases MT1-MMP and MMP-2, reported to be involved in cancer cell migration. Treatment of glioma cells with As2O3 and berberine significantly decreased the activation of PKC α and ε and led to actin cytoskeleton rearrangements. The levels of two downstream transcription factors, myc and jun, and MT1-MMP and MMP-2 were also significantly reduced. Conclusion Upon co-treatment of glioma cells with As2O3 and berberine, cancer cell metastasis can be significantly inhibited, most likely by blocking the PKC-mediated signaling pathway involved in cancer cell migration. This study is potentially interesting for the development of novel chemotherapeutic approaches in the treatment of malignant gliomas and cancer development in general.
Collapse
Affiliation(s)
- Tseng-Hsi Lin
- 1Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan.
| | | | | | | |
Collapse
|
42
|
Dolniak B, Katsoulidis E, Carayol N, Altman JK, Redig AJ, Tallman MS, Ueda T, Watanabe-Fukunaga R, Fukunaga R, Platanias LC. Regulation of arsenic trioxide-induced cellular responses by Mnk1 and Mnk2. J Biol Chem 2008; 283:12034-42. [PMID: 18299328 DOI: 10.1074/jbc.m708816200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Arsenic trioxide (As(2)O(3)) is a potent inducer of apoptosis of malignant cells in vitro and in vivo, but the precise mechanisms by which it mediates such effects are not well defined. We provide evidence that As(2)O(3) induces phosphorylation/activation of the MAPK signal-integrating kinases (Mnks) 1 and 2 in leukemia cell lines. Such activation is defective in cells with targeted disruption of the p38alpha MAPK gene, indicating that it requires upstream engagement of the p38 MAPK pathway. Studies using Mnk1(-/-) or Mnk2(-/-), or double Mnk1(-/-)Mnk2(-/-) knock-out cells, establish that activation of Mnk1 and Mnk2 by arsenic trioxide regulates downstream phosphorylation of the eukaryotic initiation factor 4E at Ser-209. Importantly, arsenic-induced apoptosis is enhanced in cells with targeted disruption of the Mnk1 and/or Mnk2 genes, suggesting that these kinases are activated in a negative-feedback regulatory manner, to control generation of arsenic trioxide responses. Consistent with this, pharmacological inhibition of Mnk activity enhances the suppressive effects of arsenic trioxide on primary leukemic progenitors from patients with acute leukemias. Taken together, these findings indicate an important role for Mnk kinases, acting as negative regulators for signals that control generation of arsenic trioxide-dependent apoptosis and antileukemic responses.
Collapse
Affiliation(s)
- Blazej Dolniak
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Altman JK, Yoon P, Katsoulidis E, Kroczynska B, Sassano A, Redig AJ, Glaser H, Jordan A, Tallman MS, Hay N, Platanias LC. Regulatory Effects of Mammalian Target of Rapamycin-mediated Signals in the Generation of Arsenic Trioxide Responses. J Biol Chem 2008; 283:1992-2001. [DOI: 10.1074/jbc.m705227200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
44
|
Shackelford D, Kenific C, Blusztajn A, Waxman S, Ren R. Targeted degradation of the AML1/MDS1/EVI1 oncoprotein by arsenic trioxide. Cancer Res 2007; 66:11360-9. [PMID: 17145882 DOI: 10.1158/0008-5472.can-06-1774] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arsenic trioxide (ATO) has been found to be an effective treatment for acute promyelocytic leukemia patients and is being tested for treating other hematologic malignancies. We have previously shown that AML1/MDS1/EVI1 (AME), a fusion gene generated by a t(3;21)(q26;q22) translocation found in patients with chronic myelogenous leukemia during blast phase, myelodysplastic syndrome, or acute myelogenous leukemia (AML), impairs hematopoiesis and eventually induces an AML in mice. Both fusion partners of AME, AML1 and MDS1/EVI1, encode transcription factors and are also targets of a variety of genetic abnormalities in human hematologic malignancies. In addition, aberrant expression of ectopic viral integration site 1 (EVI1) has also been found in solid tumors, such as ovarian and colon cancers. In this study, we examined whether ATO could target AME and related oncoproteins. We found that ATO used at therapeutic levels degrades AME. The ATO treatment induces differentiation and apoptosis in AME leukemic cells in vitro as well as reduces tumor load and increases the survival of mice transplanted with these cells. We further found that ATO targets AME via both myelodysplastic syndrome 1 (MDS1) and EVI1 moieties and degrades EVI1 via the ubiquitin-proteasome pathway and MDS1 in a proteasome-independent manner. Our results suggest that ATO could be used as a part of targeted therapy for AME-, AML1/MDS1-, MDS1/EVI1-, and EVI1-positive human cancers.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Arsenic Trioxide
- Arsenicals/pharmacology
- Blotting, Western
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Dose-Response Relationship, Drug
- Down-Regulation/drug effects
- Flow Cytometry
- Gene Expression Regulation, Neoplastic/drug effects
- Growth Inhibitors/pharmacology
- Humans
- Leukemia, Experimental/genetics
- Leukemia, Experimental/pathology
- Leukemia, Experimental/prevention & control
- Male
- Mice
- Mice, Inbred BALB C
- NIH 3T3 Cells
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oxides/pharmacology
- Proteasome Endopeptidase Complex/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/drug effects
- Survival Analysis
- Transfection
- Ubiquitin/metabolism
Collapse
Affiliation(s)
- David Shackelford
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | | | | | | | |
Collapse
|
45
|
Gesundheit B, Shapira MY, Ackerstein A, Resnik IB, Bitan M, Or R. A patient with progressive multiple myeloma treated successfully with arsenic trioxide after allogeneic bone marrow transplantation. Acta Haematol 2006; 117:119-21. [PMID: 17135719 DOI: 10.1159/000097457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 08/20/2006] [Indexed: 11/19/2022]
Abstract
Multiple myeloma (MM) is an incurable progressive disease. Many therapeutic options are available to delay progression, including autologous and allogeneic bone marrow transplantation. At advanced stages, MM is often refractory to treatment. We report a heavily pretreated patient with graft-versus-host disease after bone marrow transplantations, treated at a terminal stage with a modified protocol for arsenic trioxide (ATO). This patient with poor clinical status tolerated the treatment very well. He had a remarkable clinical response and achieved complete remission. The mechanisms of ATO are presented and the potential role of ATO for MM is discussed.
Collapse
Affiliation(s)
- B Gesundheit
- Department of Bone Marrow Transplantation, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
46
|
Giafis N, Katsoulidis E, Sassano A, Tallman MS, Higgins LS, Nebreda AR, Davis RJ, Platanias LC. Role of the p38 mitogen-activated protein kinase pathway in the generation of arsenic trioxide-dependent cellular responses. Cancer Res 2006; 66:6763-71. [PMID: 16818652 DOI: 10.1158/0008-5472.can-05-3699] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Arsenic trioxide (As(2)O(3)) induces differentiation and apoptosis of leukemic cells in vitro and in vivo, but the precise mechanisms that mediate such effects are not known. In the present study, we provide evidence that the kinases MAPK kinase 3 (Mkk3) and Mkk6 are activated during treatment of leukemic cell lines with As(2)O(3) to regulate downstream engagement of the p38 mitogen-activated protein kinase. Using cells with targeted disruption of both the Mkk3 and Mkk6 genes, we show that As(2)O(3)-dependent activation of p38 is defective in the absence of Mkk3 and Mkk6, establishing that these kinases are essential for As(2)O(3)-dependent engagement of the p38 pathway. Pharmacologic inhibition of p38 enhances As(2)O(3)-dependent activation of the c-jun NH(2)-terminal kinase (JNK) and subsequent induction of apoptosis of chronic myelogenous leukemia (CML)- or acute promyelocytic leukemia (APL)-derived cell lines. In addition, in APL blasts, inhibition of p38 enhances myeloid cell differentiation in response to As(2)O(3), as well as suppression of Bcl-2 expression and loss of mitochondrial membrane potential. Similarly, induction of As(2)O(3)-dependent apoptosis is enhanced in mouse embryonic fibroblasts (MEF) with targeted disruption of both the Mkk3 and Mkk6 genes, establishing a key role for this pathway in the regulation of As(2)O(3)-induced apoptosis. In other studies, we show that the small-molecule p38 inhibitors SD-282 and SCIO-469 potentiate As(2)O(3)-mediated suppression of myeloid leukemic progenitor growth from CML patients, indicating a critical regulatory role for p38 in the induction of antileukemic responses. Altogether, our data indicate that the Mkk3/6-p38 signaling cascade is activated in a negative regulatory feedback manner to control induction of As(2)O(3)-mediated antileukemic effects.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Arsenic Trioxide
- Arsenicals/pharmacology
- Cell Line, Tumor
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/enzymology
- MAP Kinase Signaling System/drug effects
- Mice
- Mice, Knockout
- Oxides/pharmacology
- Phosphorylation/drug effects
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Nick Giafis
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School, 303 East Superior Street, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kannan-Thulasiraman P, Katsoulidis E, Tallman MS, Arthur JSC, Platanias LC. Activation of the mitogen- and stress-activated kinase 1 by arsenic trioxide. J Biol Chem 2006; 281:22446-52. [PMID: 16762916 DOI: 10.1074/jbc.m603111200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Arsenic trioxide (As2O3) is a potent inducer of apoptosis of leukemic cells in vitro and in vivo, but the precise mechanisms by which it mediates such effects are not well defined. We provide evidence that As2O3 induces activation of the mitogen- and stress-activated kinase 1 (MSK1) and downstream phosphorylation of its substrate, histone H3, in leukemia cell lines. Such activation requires upstream engagement of p38 MAPK, as demonstrated by experiments using pharmacological inhibitors of p38 or p38alpha knock-out cells. Arsenic-induced apoptosis was enhanced in cells in which MSK1 expression was decreased using small interfering RNA and in Msk1 knock-out mouse embryonic fibroblasts, suggesting that this kinase is activated in a negative feedback regulatory manner to regulate As2O3 responses. Consistent with this, pharmacological inhibition of MSK1 enhanced the suppressive effects of As2O3 on the growth of primary leukemic progenitors from chronic myelogenous leukemia patients. Altogether, these findings indicate an important role for MSK1 downstream of p38 in the regulation of As2O3 responses.
Collapse
Affiliation(s)
- Padma Kannan-Thulasiraman
- Robert H. Lurie Comprehensive Cancer Center and the Division of Hematology/Oncology, Department of Medicine, Northwestern University Medical School, and Lakeside VA Hospital Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
The proven efficacy of ATO in the treatment of APL and the emerging importance of ATO in other diseases prompted extensive studies of the mechanisms of action of ATO in APL and in other types of cancers. In this review we will focus on downstream events in ATO-induced intrinsic and extrinsic apoptotic pathways with an emphasis on the role of pro-apoptotic and anti-apoptotic proteins and the role of p53 in ATO-induced apoptosis including its effect on cell cycle, its anti-mitotic effect and the role of apoptosis inducing factors (AIF) in ATO-induced apoptosis, chromatin condensation and nuclear fragmentation in myeloma cells as a model.
Collapse
Affiliation(s)
- Yair Gazitt
- Department of Medicine/Hematology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78284, USA.
| | | |
Collapse
|
49
|
Chou WC, Dang CV. Acute promyelocytic leukemia: recent advances in therapy and molecular basis of response to arsenic therapies. Curr Opin Hematol 2005; 12:1-6. [PMID: 15604884 DOI: 10.1097/01.moh.0000148552.93303.45] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW While arsenic has long been known as a poison and environmental carcinogen, its dramatic effect in the treatment of acute promyelocytic leukemia (APL) has made its mechanism of action a topic of intense interest. This paper reviews recent findings that reveal why a traditional poison has become a magical potion for a major type of APL, which is characterized by a balanced chromosomal translocation t(15;17). RECENT FINDINGS Daily IV infusion of arsenic trioxide (As2O3; ATO) for 30 to 40 days can lead to complete remission in about 85% of patients with newly diagnosed or relapsed APL. Oral preparations of ATO and tetra-arsenic tetra-sulfide (As4S4) seem to be as effective as parenteral ATO, with similar toxicity profiles. The combination of all-trans retinoic acid and ATO in patients with newly diagnosed APL has yielded more durable remission than monotherapy. The mechanism of arsenic cytotoxicity is thought to involve posttranslational modification followed by degradation of the PML-retinoic acid receptor-alpha (PML-RARalpha) fusion protein; targeting of PML to nuclear bodies with restoration of its physiologic functions; and production of reactive oxygen species (ROS) by NADPH oxidase in leukemic cells or collapse of the mitochondrial transmembrane potential. The understanding of arsenic cytotoxicity has stimulated modifications that promise to improve efficacy, such as interfering with ROS scavenging or boosting of ROS production to enhance the cytotoxicity, and adding cAMP or interferons to ATO regimens. SUMMARY Recent advances in the clinical use of arsenic, the mechanism of arsenic-mediated cytotoxicity, and modulations of ATO to increase its efficacy and expand its clinical spectrum are reviewed.
Collapse
Affiliation(s)
- Wen-Chien Chou
- Department of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | |
Collapse
|
50
|
Griffin RJ, Williams BW, Park HJ, Song CW. Preferential action of arsenic trioxide in solid-tumor microenvironment enhances radiation therapy. Int J Radiat Oncol Biol Phys 2005; 61:1516-22. [PMID: 15817358 DOI: 10.1016/j.ijrobp.2004.12.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 12/07/2004] [Accepted: 12/16/2004] [Indexed: 12/09/2022]
Abstract
PURPOSE To investigate the effect of arsenic trioxide, Trisenox (TNX), on primary cultures of endothelial cells and tumor tissue under varying pH and pO(2) environments and the effects of combined TNX and radiation therapy on experimental tumors. METHODS AND MATERIALS Human dermal microvascular endothelial cells were cultured in vitro and exposed to TNX under various combinations of aerobic, hypoxic, neutral, or acidic conditions, and levels of activated JNK MAP kinase were assessed by Western blotting. FSaII fibrosarcoma cells grown in the hind limb of female C3H mice were used to study the effect of TNX on tumor blood perfusion and oxygenation. The tumor-growth delay after a single or fractionated irradiation with or without TNX treatment was assessed. RESULTS A single intraperitoneal injection of 8 mg/kg TNX reduced the blood perfusion in FSaII tumors by 53% at 2 hours after injection. To increase the oxygenation of the tumor vasculature during TNX treatment, some animals were allowed to breathe carbogen (95% O(2)/5% CO(2)). Carbogen breathing alone for 2 hours reduced tumor perfusion by 33%. When carbogen breathing was begun immediately after TNX injection, no further reduction occurred in tumor blood perfusion at 2 hours after injection. In vitro, TNX exposure increased activity JNK MAP kinase preferentially in endothelial cells cultured in an acidic or hypoxic environment. In vivo, the median oxygenation in FSaII tumors measured at 3 or 5 days after TNX injection was found to be significantly elevated compared with control tumors. Subsequently, radiation-induced tumor-growth delay was synergistically increased when radiation and TNX injection were fractionated at 3-day or 5-day intervals. CONCLUSIONS Trisenox has novel vascular-damaging properties, preferentially against endothelium in regions of low pH or pO(2), which leads to tumor cell death and enhancement of the response of tumors to radiotherapy.
Collapse
Affiliation(s)
- Robert J Griffin
- Department of Therapeutic Radiology, University of Minnesota Medical School, Minneapolis, USA.
| | | | | | | |
Collapse
|