1
|
Rudolf K, Rudolf E. An analysis of mitotic catastrophe induced cell responses in melanoma cells exposed to flubendazole. Toxicol In Vitro 2020; 68:104930. [PMID: 32652169 DOI: 10.1016/j.tiv.2020.104930] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/16/2020] [Accepted: 06/30/2020] [Indexed: 01/21/2023]
Abstract
Mitotic catastrophe induced by mictotubule-targeting drugs such as benzimidazole carbamates has been demonstrated to be an efficient mechanism for suppression of tumor cells growth and proliferation, with variable resulting endpoints. The present study was designed to explore some of these endpoints; i.e. the apoptosis as well as autophagy and their related signaling in several stabilized cell lines as well as human explant melanoma cells treated with flubendazole (FLU). FLU-induced mitotic catastrophe resulted in mitochondrial and caspase-dependent apoptosis, which occurred at various rates in all treated cells during 96 h of treatment. The process was characterized by enhanced transcriptional activity of TP53 and NF-κB as well as upregulated Noxa expression. Also, inactivation of Bcl-2, BclXL and Mcl-1 proteins by JNK mediated phosphorylation was observed. Although increased autophagic activity took place in treated cells too, no discernible functional linkage with ongoing cell death process was evidenced. Together these results advance our evidence over the effectiveness of FLU cytotoxicity-related killing of melanoma cells while calling for more extensive testing of melanoma samples as a prerequisite of further preclinical evaluation of FLU antineoplastic potential.
Collapse
Affiliation(s)
- K Rudolf
- Department of Medical Biology and Genetics, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic
| | - E Rudolf
- Department of Medical Biology and Genetics, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic.
| |
Collapse
|
2
|
Oxidative nucleophilic substitution selectively produces cambinol derivatives with antiproliferative activity on bladder cancer cell lines. Bioorg Med Chem Lett 2018; 29:78-82. [PMID: 30442421 DOI: 10.1016/j.bmcl.2018.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/19/2018] [Accepted: 11/06/2018] [Indexed: 11/24/2022]
Abstract
Methyltrioxorhenium mediated oxidative addition/elimination nucleophilic substitution yielded alkylamino and arylamino cambinol derivatives characterized by anti-proliferative activity against wild-type and p53 mutated MGH-U1 and RT112 bladder cancer cell lines. Some of the novel compounds showed an activity higher than that of the lead compound. The reaction was highly regioselective, affording for the first time a panel of C-2 cambinol substitution products. Aliphatic primary and secondary amines, and primary aromatic amines, were used as nitrogen centered nucleophiles. Surprisingly, the antiproliferative activity of C-2 substituted cambinol derivatives was not correlated to the induction of p53 protein, as evaluated by the analysis of the cell viability on wild-type and p53 mutated cancer cell lines, and further confirmed by western blot analyses. These data suggest that they exert their antiproliferative activity by a mechanism completely different from cambinol.
Collapse
|
3
|
Čáňová K, Rozkydalová L, Vokurková D, Rudolf E. Flubendazole induces mitotic catastrophe and apoptosis in melanoma cells. Toxicol In Vitro 2017; 46:313-322. [PMID: 29107018 DOI: 10.1016/j.tiv.2017.10.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 01/04/2023]
Abstract
Flubendazole (FLU) is a widely used anthelmintic drug belonging to benzimidazole group. Recently, several studies have been published demonstrating its potential to inhibit growth of various tumor cells including those derived from colorectal cancer, breast cancer or leukemia via several mechanisms. In the present study we have investigated cytotoxic effects of FLU on malignant melanoma using A-375, BOWES and RPMI-7951 cell lines representing diverse melanoma molecular types. In all three cell lines, FLU inhibited cell growth and proliferation and disrupted microtubule structure and function which was accompanied by dramatic changes in cellular morphology. In addition, FLU-treated cells accumulated at the G2/M phase of cell cycle and displayed the features of mitotic catastrophe characterized by formation of giant cells with multiple nuclei, abnormal spindles and subsequent apoptotic demise. Although this endpoint was observed in all treated melanoma lines, our analyses showed different activated biochemical signaling in particular cells, thus suggesting a promising treatment potential of FLU in malignant melanoma warranting its further testing.
Collapse
Affiliation(s)
- K Čáňová
- Department of Medical Biology and Genetics, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic
| | - L Rozkydalová
- Department of Pharmacology, Charles University, Faculty of Pharmacy in Hradec Králové, Czech Republic
| | - D Vokurková
- Department of Clinical Immunology and Allergology, University Hospital in Hradec Králové, Czech Republic
| | - E Rudolf
- Department of Medical Biology and Genetics, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic.
| |
Collapse
|
4
|
Patel S, Singh N, Kumar L. Anticancer role of antidiabetic drug Metformin in ovarian cancer cells. INTERNATIONAL JOURNAL OF CANCER THERAPY AND ONCOLOGY 2016. [DOI: 10.14319/ijcto.42.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
5
|
Earl J, Rico D, Carrillo-de-Santa-Pau E, Rodríguez-Santiago B, Méndez-Pertuz M, Auer H, Gómez G, Grossman HB, Pisano DG, Schulz WA, Pérez-Jurado LA, Carrato A, Theodorescu D, Chanock S, Valencia A, Real FX. The UBC-40 Urothelial Bladder Cancer cell line index: a genomic resource for functional studies. BMC Genomics 2015; 16:403. [PMID: 25997541 PMCID: PMC4470036 DOI: 10.1186/s12864-015-1450-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 03/09/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Urothelial bladder cancer is a highly heterogeneous disease. Cancer cell lines are useful tools for its study. This is a comprehensive genomic characterization of 40 urothelial bladder carcinoma (UBC) cell lines including information on origin, mutation status of genes implicated in bladder cancer (FGFR3, PIK3CA, TP53, and RAS), copy number alterations assessed using high density SNP arrays, uniparental disomy (UPD) events, and gene expression. RESULTS Based on gene mutation patterns and genomic changes we identify lines representative of the FGFR3-driven tumor pathway and of the TP53/RB tumor suppressor-driven pathway. High-density array copy number analysis identified significant focal gains (1q32, 5p13.1-12, 7q11, and 7q33) and losses (i.e. 6p22.1) in regions altered in tumors but not previously described as affected in bladder cell lines. We also identify new evidence for frequent regions of UPD, often coinciding with regions reported to be lost in tumors. Previously undescribed chromosome X losses found in UBC lines also point to potential tumor suppressor genes. Cell lines representative of the FGFR3-driven pathway showed a lower number of UPD events. CONCLUSIONS Overall, there is a predominance of more aggressive tumor subtypes among the cell lines. We provide a cell line classification that establishes their relatedness to the major molecularly-defined bladder tumor subtypes. The compiled information should serve as a useful reference to the bladder cancer research community and should help to select cell lines appropriate for the functional analysis of bladder cancer genes, for example those being identified through massive parallel sequencing.
Collapse
Affiliation(s)
- Julie Earl
- Epithelial Carcinogenesis Group, F BBVA Cancer Cell Biology Programme, CNIO (Spanish National Cancer Research Centre), Madrid, Spain. .,Servicio de Oncología Médica, Hospital Ramón y Cajal, Madrid, Spain.
| | - Daniel Rico
- Structural Computational Biology Group, Structural Biology and Biocomputing Programme, CNIO (Spanish National Cancer Research Centre), Madrid, Spain.
| | - Enrique Carrillo-de-Santa-Pau
- Epithelial Carcinogenesis Group, F BBVA Cancer Cell Biology Programme, CNIO (Spanish National Cancer Research Centre), Madrid, Spain.
| | - Benjamín Rodríguez-Santiago
- Quantitative Genomic Medicine Laboratory, qGenomics, Barcelona, Spain. .,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.
| | - Marinela Méndez-Pertuz
- Epithelial Carcinogenesis Group, F BBVA Cancer Cell Biology Programme, CNIO (Spanish National Cancer Research Centre), Madrid, Spain.
| | - Herbert Auer
- Institut de Recerca Biomèdica de Barcelona, Parc Científic de Barcelona, Barcelona, Spain.
| | - Gonzalo Gómez
- Bioinformatics Unit, Structural Biology and Biocomputing Programme, CNIO (Spanish National Cancer Research Centre), Madrid, Spain.
| | | | - David G Pisano
- Bioinformatics Unit, Structural Biology and Biocomputing Programme, CNIO (Spanish National Cancer Research Centre), Madrid, Spain.
| | - Wolfgang A Schulz
- Department of Urology, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Luis A Pérez-Jurado
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.
| | - Alfredo Carrato
- Servicio de Oncología Médica, Hospital Ramón y Cajal, Madrid, Spain.
| | - Dan Theodorescu
- University of Colorado Comprehensive Cancer Center, 80045, Aurora, CO, USA.
| | - Stephen Chanock
- Translational Genomics Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, USA.
| | - Alfonso Valencia
- Structural Computational Biology Group, Structural Biology and Biocomputing Programme, CNIO (Spanish National Cancer Research Centre), Madrid, Spain.
| | - Francisco X Real
- Epithelial Carcinogenesis Group, F BBVA Cancer Cell Biology Programme, CNIO (Spanish National Cancer Research Centre), Madrid, Spain. .,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain. .,Cancer Cell Biology Programme, Centro Nacional de Investigaciones Oncológicas, Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
6
|
Chen C, Zhang L, Huang NJ, Huang B, Kornbluth S. Suppression of DNA-damage checkpoint signaling by Rsk-mediated phosphorylation of Mre11. Proc Natl Acad Sci U S A 2013; 110:20605-10. [PMID: 24297933 PMCID: PMC3870678 DOI: 10.1073/pnas.1306328110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ataxia telangiectasia mutant (ATM) is an S/T-Q-directed kinase that is critical for the cellular response to double-stranded breaks (DSBs) in DNA. Following DNA damage, ATM is activated and recruited by the MRN protein complex [meiotic recombination 11 (Mre11)/DNA repair protein Rad50/Nijmegen breakage syndrome 1 proteins] to sites of DNA damage where ATM phosphorylates multiple substrates to trigger cell-cycle arrest. In cancer cells, this regulation may be faulty, and cell division may proceed even in the presence of damaged DNA. We show here that the ribosomal s6 kinase (Rsk), often elevated in cancers, can suppress DSB-induced ATM activation in both Xenopus egg extracts and human tumor cell lines. In analyzing each step in ATM activation, we have found that Rsk targets loading of MRN complex components onto DNA at DSB sites. Rsk can phosphorylate the Mre11 protein directly at S676 both in vitro and in intact cells and thereby can inhibit the binding of Mre11 to DNA with DSBs. Accordingly, mutation of S676 to Ala can reverse inhibition of the response to DSBs by Rsk. Collectively, these data point to Mre11 as an important locus of Rsk-mediated checkpoint inhibition acting upstream of ATM activation.
Collapse
Affiliation(s)
- Chen Chen
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710
| | - Liguo Zhang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710
| | - Nai-Jia Huang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710
| | - Bofu Huang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710
| | - Sally Kornbluth
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710
| |
Collapse
|
7
|
McKenna DJ, Doherty BA, Downes CS, McKeown SR, McKelvey-Martin VJ. Use of the comet-FISH assay to compare DNA damage and repair in p53 and hTERT genes following ionizing radiation. PLoS One 2012; 7:e49364. [PMID: 23145163 PMCID: PMC3492288 DOI: 10.1371/journal.pone.0049364] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/09/2012] [Indexed: 12/02/2022] Open
Abstract
The alkaline single cell gel electrophoresis (comet) assay can be combined with fluorescent in situ hybridisation (FISH) methodology in order to investigate the localisation of specific gene domains within an individual cell. The number and position of the fluorescent signal(s) provides information about the relative damage and subsequent repair that is occurring in the targeted gene domain(s). In this study, we have optimised the comet-FISH assay to detect and compare DNA damage and repair in the p53 and hTERT gene regions of bladder cancer cell-lines RT4 and RT112, normal fibroblasts and Cockayne Syndrome (CS) fibroblasts following γ-radiation. Cells were exposed to 5Gy γ-radiation and repair followed for up to 60 minutes. At each repair time-point, the number and location of p53 and hTERT hybridisation spots was recorded in addition to standard comet measurements. In bladder cancer cell-lines and normal fibroblasts, the p53 gene region was found to be rapidly repaired relative to the hTERT gene region and the overall genome, a phenomenon that appeared to be independent of hTERT transcriptional activity. However, in the CS fibroblasts, which are defective in transcription coupled repair (TCR), this rapid repair of the p53 gene region was not observed when compared to both the hTERT gene region and the overall genome, proving the assay can detect variations in DNA repair in the same gene. In conclusion, we propose that the comet-FISH assay is a sensitive and rapid method for detecting differences in DNA damage and repair between different gene regions in individual cells in response to radiation. We suggest this increases its potential for measuring radiosensitivity in cells and may therefore have value in a clinical setting.
Collapse
Affiliation(s)
- Declan J McKenna
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, United Kingdom.
| | | | | | | | | |
Collapse
|
8
|
Shen LF, Chen J, Zeng S, Zhou RR, Zhu H, Zhong MZ, Yao RJ, Shen H. The Superparamagnetic Nanoparticles Carrying the E1A Gene Enhance the Radiosensitivity of Human Cervical Carcinoma in Nude Mice. Mol Cancer Ther 2010; 9:2123-30. [PMID: 20587666 DOI: 10.1158/1535-7163.mct-09-1150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Liang-Fang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Lee M. Overexpression of human Raf-1 enhances radiosensitivity in fission yeast, Schizosaccharomyces pombe. Cell Biochem Funct 2009; 26:125-31. [PMID: 17614099 DOI: 10.1002/cbf.1428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recently we isolated Rad24, a 14-3-3 homologue, which is essential for DNA damage checkpoint, as a Raf-1 interacting protein by screening a Schizosaccharomyces pombe (S. pombe) cDNA library. Raf-1 was also found to recognize Cdc25 that is sequestered and inactivated by Rad24. In the present study, experiments were performed to determine the effect of overexpression of Raf-1 proteins on asynchronously growing S. pombe cells. The overexpression of Rad24 induced elongated cell morphology and reduction in growth rate, resulting in cell cycle arrest while the overexpression of catalytically active Raf-1 led to a decrease in cell size at division in S. pombe. However, the active Raf-1 failed to rescue the growth arrest induced by Rad24 overexpression. In addition, the cells carrying catalytically active Raf-1 were significantly more radiosensitive than those from a normal control as assessed by ultraviolet sensitivity assay, suggesting that constitutive overproduction of Raf-1 kinase can revert DNA replication checkpoint arrest caused by UV irradiation. Taken together, these data suggest that Raf-1 may interfere with the role of Rad24 by competing with Rad24 for binding to Cdc25 in DNA repair, bypassing the checkpoint pathway through Cdc25 activation.
Collapse
Affiliation(s)
- Michael Lee
- Department of Biology, College of Natural Sciences, University of Incheon, Incheon, Korea.
| |
Collapse
|
10
|
Böhnke A, Westphal F, Schmidt A, El-Awady RA, Dahm-Daphi J. Role of p53 mutations, protein function and DNA damage for the radiosensitivity of human tumour cells. Int J Radiat Biol 2009; 80:53-63. [PMID: 14761850 DOI: 10.1080/09553000310001642902] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE The tumour suppressor protein p53 is considered to have an impact on the radiosensitivity of tumour cells. However, this concept does not easily translate to the tumour sensitivity in the clinics. The aim of the present study was to determine whether a functional or dysfunctional p53 is associated with a sensitive or resistant phenotype. It was further studied whether DNA damage might be an additive factor by which p53 has impact on cell survival. MATERIALS AND METHODS Nine human tumour cell lines were studied for p53 mutation by direct sequencing of exons 4-9. Regulation of p53 and p21(cip1/waf1) protein was assessed by immunoblotting and cell cycle effects by combining 5-bromodeoxyuridine incorporation and flow cytometry. RESULTS AND CONCLUSION Three strains (RT112, Du145, SCC4451) were found to have a missense-mutation in the core domain and one did not express p53 at all (HeLa), presumably due to HPV18 infection. Immunoblots of these cells showed neither a regulated p53 nor p21 expression. The cells did not arrest in G1 phase after X-irradiation but did arrest in G2/M. All cells expressing wild-type protein (LNCaP, T47D-B8, MCF-7 and sublines BB and Bus) showed an intact p53 and p21 regulation and a modest arrest in both G1 and G2/M. Thus, in contrast to other studies, all tumour cells investigated showed either a typical p53wt or mutant (mut) pattern. Protein function was compared with cell survival and DNA damage, as assessed previously. p53 wild-type cells were on average 1.3-times (n.s.) more radiosensitive than mutant cells, but there was a considerable overlap between both groups. Further, the 1.3-fold enhanced resistance of cells lacking wild-type p53 was paralleled by a 1.3-fold lower number of induced double-strand breaks. The results suggest that p53 could have impact on chromatin compaction and thus effect DNA damage induction and radiosensitivity of tumour cells.
Collapse
Affiliation(s)
- A Böhnke
- University Hospital of Hamburg-Eppendorf, Department of Radiotherapy and Radiation Oncologyk Martinistr. 52k D-20246 Hamburgk Germany
| | | | | | | | | |
Collapse
|
11
|
|
12
|
Ortiz T, Burguillos MA, López-Lluch G, Navas P, Herrador M, González I, Piñero J. Enhanced induction of apoptosis in a radio-resistant bladder tumor cell line by combined treatments with X-rays and wortmannin. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2008; 47:445-452. [PMID: 18787832 DOI: 10.1007/s00411-008-0188-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 07/24/2008] [Indexed: 05/26/2023]
Abstract
The radiosensitizing effect of wortmannin (WM) treatment during and after irradiation was studied in radioresistant bladder tumor cell lines with normal (MGH-U1 cells) or defective p53 activity (RT112 cells). WM modulated G(2)/M cell cycle arrest induced by higher X-ray doses (10 Gy) in both cell lines, although the alteration was significant only in RT112 cells. The observation suggests that WM activity is independent of p53. Constitutive expression of DNA-PKcs was found to be higher in RT112 cells than in MGH-U1. Treatment with WM enhanced radiation-induced apoptosis significantly in RT112 cells while it had no effect on MGH-U1 cells. Although a variety of PI3-kinases and PI3-K like kinases (including ATM) could be inhibited by WM, our observation of increased early lethality by WM treatment in RT112 is in agreement with previous results. They suggest that the WM-dependent radiosensitization of RT112 is a direct consequence of the inhibition of DNA-PK, resulting in the inhibition of DSB repair in the fast component. This early effect in the p53 deficient cell line could also indicate that processes other than apoptosis may contribute to the increased radiosensitization. In our opinion, the expression level of DNA-PKcs in human tumor cells may be a good predictor for the success of DNA-PKcs inhibitors when used as radiosensitizers.
Collapse
Affiliation(s)
- Trinidad Ortiz
- Departamento de Biología Celular, Facultad de Biologia, Universidad de Sevilla Avda. Reina Mercedes s/n, 41012 Sevilla, Spain.
| | | | | | | | | | | | | |
Collapse
|
13
|
Ray S, Chatterjee A. Influence of glutathione on the induction of chromosome aberrations, delay in cell cycle kinetics and cell cycle regulator proteins in irradiated mouse bone marrow cells. Int J Radiat Biol 2007; 83:347-54. [PMID: 17457759 DOI: 10.1080/09553000701317887] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Reduced glutathione (GSH) is an endogenous thiol and has long been thought to affect the sensitivity of cells to radiation. The aim was to see the influence of GSH on: (i) the production of all types of radiation-induced chromosome aberrations (CA), and (ii) the radiation-induced delay in cell cycle and the levels of cell cycle regulator proteins. MATERIALS AND METHODS Cell cycle kinetics were determined by scoring the mitotic index (MI). CA and MI were scored in gamma-irradiated buthionine sulfoximine (BSO) (10 h) or GSH (1 h) pretreated and untreated mouse bone marrow cells (BMC). The expression of p53 and p21 proteins after 2 and 6 h of irradiation and for the B-cell lymphoma 2 (Bcl-2) associated X-protein (Bax) after 24 h of irradiation with or without BSO or GSH treatment was analyzed by immunoblotting. RESULTS Radiation delays mouse BMC in their passage through the cell cycle and induces CA. Exogenous addition of GSH protected CA uniformly at lower doses of radiation but differentially at higher doses, whereas GSH-depletion by BSO increased the frequency of radiation-induced CA. Both GSH and BSO-pretreated cells reduced the delay in cell kinetics after irradiation. Levels of both p53 and p21 were enhanced after irradiation to BSO-pretreated cells. However, in GSH-pretreated cells the level of these proteins was reduced. CONCLUSION Data indicate that the induction of CA and delay in cell kinetics by radiation may not always be interlinked and that the level of endogenous GSH exerts its influence on these parameters. Both GSH and BSO pretreatment reduce delays in cell kinetics of irradiated cells which may die apoptotically, since they have either a higher frequency of exchange aberrations or CA, respectively.
Collapse
Affiliation(s)
- S Ray
- Genetics Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, India
| | | |
Collapse
|
14
|
Seabra L, Warenius H. Proteomic co-expression of cyclin-dependent kinases 1 and 4 in human cancer cells. Eur J Cancer 2007; 43:1483-92. [PMID: 17481885 DOI: 10.1016/j.ejca.2007.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 03/08/2007] [Accepted: 03/15/2007] [Indexed: 10/23/2022]
Abstract
The roles of the cyclin-dependent kinases Cdk2, Cdk4 and Cdk6 and their complementary cyclin partners in moving cells from a quiescent state into active DNA synthesis are presently undergoing re-evaluation. Normal cell cycling now appears possible in the absence of any of these molecular controlling factors whilst certain cell-cycle control kinases, such as Cdk4, appear to be mandatory for cancer cell growth. Here, we describe a unique relationship between proteomic expression of Cdk1 and Cdk4 in human cancer cell lines and data from clinical malignant melanoma. The relationship was not present in normal diploid keratinocytes and fibroblasts. We suggest that the much tighter spread of Cdk1/Cdk4 ratios in human cancer cells compared to normal cells may selectively benefit the cancer cell and thus provide a potential novel anticancer target.
Collapse
Affiliation(s)
- Laurence Seabra
- Apoptosis Research Group, Life Sciences, Keele University, Keele, Staffordshire, UK
| | | |
Collapse
|
15
|
Ma BBY, Bristow RG, Kim J, Siu LL. Combined-modality treatment of solid tumors using radiotherapy and molecular targeted agents. J Clin Oncol 2003; 21:2760-76. [PMID: 12860956 DOI: 10.1200/jco.2003.10.044] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Molecular targeted agents have been combined with radiotherapy (RT) in recent clinical trials in an effort to optimize the therapeutic index of RT. The appeal of this strategy lies in their potential target specificity and clinically acceptable toxicity. DESIGN This article integrates the salient, published research findings into the underlying molecular mechanisms, preclinical efficacy, and clinical applicability of combining RT with molecular targeted agents. These agents include inhibitors of intracellular signal transduction molecules, modulators of apoptosis, inhibitors of cell cycle checkpoints control, antiangiogenic agents, and cyclo-oxygenase-2 inhibitors. RESULTS Molecular targeted agents can have direct effects on the cytoprotective and cytotoxic pathways implicated in the cellular response to ionizing radiation (IR). These pathways involve cellular proliferation, DNA repair, cell cycle progression, nuclear transcription, tumor angiogenesis, and prostanoid-associated inflammation. These pathways can also converge to alter RT-induced apoptosis, terminal growth arrest, and reproductive cell death. Pharmacologic modulation of these pathways may potentially enhance tumor response to RT though inhibition of tumor repopulation, improvement of tumor oxygenation, redistribution during the cell cycle, and alteration of intrinsic tumor radiosensitivity. CONCLUSION Combining RT and molecular targeted agents is a rational approach in the treatment of solid tumors. Translation of this approach from promising preclinical data to clinical trials is actively underway.
Collapse
Affiliation(s)
- Brigette B Y Ma
- Department of Medical Oncology and Hematology, Precess Margaret Hospital, University Health Network, Suite 5-210, 610 University Ave, Toronto, Ontario, Canada M5G 2M9
| | | | | | | |
Collapse
|
16
|
McKenna DJ, Rajab NF, McKeown SR, McKerr G, McKelvey-Martin VJ. Use of the comet-FISH assay to demonstrate repair of the TP53 gene region in two human bladder carcinoma cell lines. Radiat Res 2003; 159:49-56. [PMID: 12492368 DOI: 10.1667/0033-7587(2003)159[0049:uotcfa]2.0.co;2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The alkaline single-cell gel electrophoresis (comet) assay can be combined with fluorescence in situ hybridization (FISH) methodology to investigate the localization of specific gene domains within an individual cell. The position of the fluorescent hybridization spots in the comet head or tail indicates whether the sequence of interest lies within or in the vicinity of a damaged region of DNA. In this study, we used the comet-FISH assay to examine initial DNA damage and subsequent repair in the TP53 gene region of RT4 and RT112 bladder carcinoma cells after 5 Gy gamma irradiation. In addition to standard comet parameter measurements, the number and location of TP53 hybridization spots within each comet was recorded at each repair time. The results indicate that the rate of repair of the TP53 gene region was fastest during the first 15 min after damage in both cell lines. When compared to overall genomic repair, the repair of the TP53 gene region was observed to be significantly faster during the first 15 min and thereafter followed a rate similar to that for the overall genome. The data indicate that the TP53 domain in RT4 and RT112 cells is repaired rapidly after gamma irradiation. Furthermore, this repair may be preferential compared to the repair of overall genomic DNA, which gives a measure of the average DNA repair response of the whole genome. We suggest that the comet-FISH assay has considerable potential in the study of gene-specific repair after DNA damage.
Collapse
Affiliation(s)
- Declan J McKenna
- Cancer and Ageing Research Group, School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, BT52 1SA
| | | | | | | | | |
Collapse
|