1
|
Dixon S, O'connor AT, Brooks-Noreiga C, Clark MA, Levy A, Castejon AM. Role of renin angiotensin system inhibitors and metformin in Glioblastoma Therapy: a review. Cancer Chemother Pharmacol 2024; 94:1-23. [PMID: 38914751 DOI: 10.1007/s00280-024-04686-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive and incurable disease accounting for about 10,000 deaths in the USA each year. Despite the current treatment approach which includes surgery with chemotherapy and radiation therapy, there remains a high prevalence of recurrence. Notable improvements have been observed in persons receiving concurrent antihypertensive drugs such as renin angiotensin inhibitors (RAS) or the antidiabetic drug metformin with standard therapy. Anti-tumoral effects of RAS inhibitors and metformin have been observed in in vitro and in vivo studies. Although clinical trials have shown mixed results, the potential for the use of RAS inhibitors and metformin as adjuvant GBM therapy remains promising. Nevertheless, evidence suggest that these drugs exert multimodal antitumor actions; by particularly targeting several cancer hallmarks. In this review, we highlight the results of clinical studies using multidrug cocktails containing RAS inhibitors and or metformin added to standard therapy for GBM. In addition, we highlight the possible molecular mechanisms by which these repurposed drugs with an excellent safety profile might elicit their anti-tumoral effects. RAS inhibition elicits anti-inflammatory, anti-angiogenic, and immune sensitivity effects in GBM. However, metformin promotes anti-migratory, anti-proliferative and pro-apoptotic effects mainly through the activation of AMP-activated protein kinase. Also, we discussed metformin's potential in targeting both GBM cells as well as GBM associated-stem cells. Finally, we summarize a few drug interactions that may cause an additive or antagonistic effect that may lead to adverse effects and influence treatment outcome.
Collapse
Affiliation(s)
- Sashana Dixon
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA.
| | - Ann Tenneil O'connor
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Chloe Brooks-Noreiga
- Halmos College of Arts and Sciences, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Michelle A Clark
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Arkene Levy
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Ana M Castejon
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA
| |
Collapse
|
2
|
Pournajaf S, Afsordeh N, Pourgholami MH. In vivo C6 glioma models: an update and a guide toward a more effective preclinical evaluation of potential anti-glioblastoma drugs. Rev Neurosci 2024; 35:183-195. [PMID: 37651618 DOI: 10.1515/revneuro-2023-0067] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
Glioblastoma multiform (GBM) is the most common primary brain tumor with a poor prognosis and few therapeutic choices. In vivo, tumor models are useful for enhancing knowledge of underlying GBM pathology and developing more effective therapies/agents at the preclinical level, as they recapitulate human brain tumors. The C6 glioma cell line has been one of the most widely used cell lines in neuro-oncology research as they produce tumors that share the most similarities with human GBM regarding genetic, invasion, and expansion profiles and characteristics. This review provides an overview of the distinctive features and the different animal models produced by the C6 cell line. We also highlight specific applications of various C6 in vivo models according to the purpose of the study and offer some technical notes for more convenient/repeatable modeling. This work also includes novel findings discovered in our laboratory, which would further enhance the feasibility of the model in preclinical GBM investigations.
Collapse
Affiliation(s)
- Safura Pournajaf
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Nastaran Afsordeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | | |
Collapse
|
3
|
Hijazi MA, Gessner A, El-Najjar N. Repurposing of Chronically Used Drugs in Cancer Therapy: A Chance to Grasp. Cancers (Basel) 2023; 15:3199. [PMID: 37370809 DOI: 10.3390/cancers15123199] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the advancement in drug discovery for cancer therapy, drug repurposing remains an exceptional opportunistic strategy. This approach offers many advantages (faster, safer, and cheaper drugs) typically needed to overcome increased challenges, i.e., side effects, resistance, and costs associated with cancer therapy. However, not all drug classes suit a patient's condition or long-time use. For that, repurposing chronically used medications is more appealing. This review highlights the importance of repurposing anti-diabetic and anti-hypertensive drugs in the global fight against human malignancies. Extensive searches of all available evidence (up to 30 March 2023) on the anti-cancer activities of anti-diabetic and anti-hypertensive agents are obtained from multiple resources (PubMed, Google Scholar, ClinicalTrials.gov, Drug Bank database, ReDo database, and the National Institutes of Health). Interestingly, more than 92 clinical trials are evaluating the anti-cancer activity of 14 anti-diabetic and anti-hypertensive drugs against more than 15 cancer types. Moreover, some of these agents have reached Phase IV evaluations, suggesting promising official release as anti-cancer medications. This comprehensive review provides current updates on different anti-diabetic and anti-hypertensive classes possessing anti-cancer activities with the available evidence about their mechanism(s) and stage of development and evaluation. Hence, it serves researchers and clinicians interested in anti-cancer drug discovery and cancer management.
Collapse
Affiliation(s)
- Mohamad Ali Hijazi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Nahed El-Najjar
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
4
|
Li J, Wu X, Ni X, Li Y, Xu L, Hao X, Zhao W, Zhu X, Yin X. Angiotensin receptor blockers retard the progression and fibrosis via inhibiting the viability of AGTR1+ CAFs in intrahepatic cholangiocarcinoma. Clin Transl Med 2023; 13:e1213. [PMID: 36855786 PMCID: PMC9975461 DOI: 10.1002/ctm2.1213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (iCCA) is a highly lethal malignancy characterized by massive fibrosis and has ineffective adjuvant therapies. Here, we demonstrate the potential of angiotensin receptor blockers (ARBs) in targeting iCCA. METHODS Masson's trichrome staining was used to assess the effect of ARBs in iCCA specimens, CCK8 and gel contraction assays in vitro and in xenograft models in vivo. RNA-seq and ATAC-seq were used for mechanistic investigations. RESULTS Patients with iCCA who were administered ARBs had a better prognosis and a lower proportion of tumour stroma, indicating alleviated fibrosis. The presence of AGTR1, the ARBs receptor, is associated with a poor prognosis of iCCA and is highly expressed in tumour tissues and cancer-associated fibroblasts (CAFs). The ARBs strongly attenuated the viability of AGTR1+ CAFs in vitro and retarded tumour progression and fibrosis in xenograft models of co-cultured CAFs and iCCA cells. Still, they did not have a significant effect on AGTR1- CAFs. Moreover, ARBs decreased the secretion of AGTR1+ CAF-derived MFAP5 via the Hippo pathway, weakened the interaction between CAFs and iCCA cells, and impaired the aggressiveness of iCCA cells by attenuating the activation of the Notch1 pathway in iCCA cells. CONCLUSIONS ARBs exhibit anti-fibrotic function by inhibiting the viability of AGTR1+ CAFs. These findings support using ARBs as a novel therapeutic option for targeting iCCA.
Collapse
Affiliation(s)
- Jian‐Hui Li
- Department of Pancreato‐Biliary SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xiao Wu
- Department of Pancreato‐Biliary SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xuhao Ni
- Department of Pancreato‐Biliary SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Ya‐Xiong Li
- Department of Pancreato‐Biliary SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Long Xu
- Key Laboratory of Stem Cells and Tissue EngineeringSun Yat‐sen UniversityMinistry of EducationGuangzhouGuangdongChina
| | - Xiao‐Yi Hao
- Lau Luen Hung Private Medical CenterUnit 3 (Surgery)The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Wei Zhao
- Department of Physiology, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Xiao‐Xu Zhu
- Department of Pancreato‐Biliary SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xiao‐Yu Yin
- Department of Pancreato‐Biliary SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
5
|
Kashyap MK, Bhat A, Janjua D, Rao R, Thakur K, Chhokar A, Aggarwal N, Yadav J, Tripathi T, Chaudhary A, Senrung A, Chandra Bharti A. Role of angiotensin in different malignancies. ANGIOTENSIN 2023:505-544. [DOI: 10.1016/b978-0-323-99618-1.00019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Barzegar Behrooz A, Talaie Z, Jusheghani F, Łos MJ, Klonisch T, Ghavami S. Wnt and PI3K/Akt/mTOR Survival Pathways as Therapeutic Targets in Glioblastoma. Int J Mol Sci 2022; 23:ijms23031353. [PMID: 35163279 PMCID: PMC8836096 DOI: 10.3390/ijms23031353] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is a devastating type of brain tumor, and current therapeutic treatments, including surgery, chemotherapy, and radiation, are palliative at best. The design of effective and targeted chemotherapeutic strategies for the treatment of GBM require a thorough analysis of specific signaling pathways to identify those serving as drivers of GBM progression and invasion. The Wnt/β-catenin and PI3K/Akt/mTOR (PAM) signaling pathways are key regulators of important biological functions that include cell proliferation, epithelial–mesenchymal transition (EMT), metabolism, and angiogenesis. Targeting specific regulatory components of the Wnt/β-catenin and PAM pathways has the potential to disrupt critical brain tumor cell functions to achieve critical advancements in alternative GBM treatment strategies to enhance the survival rate of GBM patients. In this review, we emphasize the importance of the Wnt/β-catenin and PAM pathways for GBM invasion into brain tissue and explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Brain Cancer Department, Asu vanda Gene Industrial Research Company, Tehran 1533666398, Iran; (A.B.B.); (Z.T.)
| | - Zahra Talaie
- Brain Cancer Department, Asu vanda Gene Industrial Research Company, Tehran 1533666398, Iran; (A.B.B.); (Z.T.)
| | - Fatemeh Jusheghani
- Department of Biotechnology, Asu vanda Gene Industrial Research Company, Tehran 1533666398, Iran;
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
- Department of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Department of Surgery, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine, Katowice School of Technology, 40-555 Katowice, Poland
- Correspondence:
| |
Collapse
|
7
|
Panza S, Malivindi R, Caruso A, Russo U, Giordano F, Győrffy B, Gelsomino L, De Amicis F, Barone I, Conforti FL, Giordano C, Bonofiglio D, Catalano S, Andò S. Novel Insights into the Antagonistic Effects of Losartan against Angiotensin II/AGTR1 Signaling in Glioblastoma Cells. Cancers (Basel) 2021; 13:cancers13184555. [PMID: 34572782 PMCID: PMC8469998 DOI: 10.3390/cancers13184555] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Patients with high-grade glioma (HGG) such as glioblastoma (GBM) who undergo surgical resection with adjuvant therapy have a mean overall survival of 14.6 months and 100% of recurrence. Thus, these disappointing outcomes in terms of glioblastoma life expectancy require seeking novel pharmacological tools, including drug repurposing. In the present study, we identify a novel molecular mechanism through which Losartan antagonizes Angiotensin II (Ang II)/Angiotensin II type I receptor (AGTR1) signaling, overexpressed in GBM cells. For instance, we demonstrate how Losartan drastically inhibits the stimulatory effects of Ang II on aromatase activity and consequently reduces local estrogen production, sustaining cancer progression. Thus, it is reasonable to repurpose Losartan as an adjuvant pharmacological tool to be implemented prospectively in the novel therapeutic strategies adopted in GBM patients. Abstract New avenues for glioblastoma therapy are required due to the limited mortality benefit of the current treatments. The renin-angiotensin system (RAS) exhibits local actions and works as a paracrine system in different tissues and tumors, including glioma. The glioblastoma cell lines U-87 MG and T98G overexpresses Angiotensin II (Ang II)/Angiotensin II type I receptor (AGTR1) signaling, which enhances in vitro and in vivo local estrogen production through a direct up-regulation of the aromatase gene promoters p I.f and p I.4. In addition, Ang II/AGTR1 signaling transactivates estrogen receptor-α in a ligand-independent manner through mitogen-activated protein kinase (MAPK) activation. The higher aromatase mRNA expression in patients with glioblastoma was associated with the worst survival prognostic, according to The Cancer Genome Atlas (TCGA). An intrinsic immunosuppressive glioblastoma tumor milieu has been previously documented. We demonstrate how Ang II treatment in glioblastoma cells increases programmed death-ligand 1 (PD-L1) expression reversed by combined exposure to Losartan (LOS) in vitro and in vivo. Our findings highlight how LOS, in addition, antagonizes the previously documented neoangiogenetic, profibrotic, and immunosuppressive effects of Ang II and drastically inhibits its stimulatory effects on local estrogen production, sustaining glioblastoma cell growth. Thus, Losartan may represent an adjuvant pharmacological tool to be repurposed prospectively for glioblastoma treatment.
Collapse
Affiliation(s)
- Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (S.P.); (R.M.); (A.C.); (U.R.); (F.G.); (L.G.); (F.D.A.); (I.B.); (F.L.C.); (C.G.); (D.B.); (S.C.)
- Centro Sanitario, University of Calabria, 87036 Rende, CS, Italy
| | - Rocco Malivindi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (S.P.); (R.M.); (A.C.); (U.R.); (F.G.); (L.G.); (F.D.A.); (I.B.); (F.L.C.); (C.G.); (D.B.); (S.C.)
| | - Amanda Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (S.P.); (R.M.); (A.C.); (U.R.); (F.G.); (L.G.); (F.D.A.); (I.B.); (F.L.C.); (C.G.); (D.B.); (S.C.)
- Centro Sanitario, University of Calabria, 87036 Rende, CS, Italy
| | - Umberto Russo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (S.P.); (R.M.); (A.C.); (U.R.); (F.G.); (L.G.); (F.D.A.); (I.B.); (F.L.C.); (C.G.); (D.B.); (S.C.)
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (S.P.); (R.M.); (A.C.); (U.R.); (F.G.); (L.G.); (F.D.A.); (I.B.); (F.L.C.); (C.G.); (D.B.); (S.C.)
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, 1094 Budapest, Hungary;
- Cancer Biomarker Research Group, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (S.P.); (R.M.); (A.C.); (U.R.); (F.G.); (L.G.); (F.D.A.); (I.B.); (F.L.C.); (C.G.); (D.B.); (S.C.)
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (S.P.); (R.M.); (A.C.); (U.R.); (F.G.); (L.G.); (F.D.A.); (I.B.); (F.L.C.); (C.G.); (D.B.); (S.C.)
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (S.P.); (R.M.); (A.C.); (U.R.); (F.G.); (L.G.); (F.D.A.); (I.B.); (F.L.C.); (C.G.); (D.B.); (S.C.)
| | - Francesca Luisa Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (S.P.); (R.M.); (A.C.); (U.R.); (F.G.); (L.G.); (F.D.A.); (I.B.); (F.L.C.); (C.G.); (D.B.); (S.C.)
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (S.P.); (R.M.); (A.C.); (U.R.); (F.G.); (L.G.); (F.D.A.); (I.B.); (F.L.C.); (C.G.); (D.B.); (S.C.)
- Centro Sanitario, University of Calabria, 87036 Rende, CS, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (S.P.); (R.M.); (A.C.); (U.R.); (F.G.); (L.G.); (F.D.A.); (I.B.); (F.L.C.); (C.G.); (D.B.); (S.C.)
- Centro Sanitario, University of Calabria, 87036 Rende, CS, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (S.P.); (R.M.); (A.C.); (U.R.); (F.G.); (L.G.); (F.D.A.); (I.B.); (F.L.C.); (C.G.); (D.B.); (S.C.)
- Centro Sanitario, University of Calabria, 87036 Rende, CS, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (S.P.); (R.M.); (A.C.); (U.R.); (F.G.); (L.G.); (F.D.A.); (I.B.); (F.L.C.); (C.G.); (D.B.); (S.C.)
- Centro Sanitario, University of Calabria, 87036 Rende, CS, Italy
- Correspondence: ; Tel.: +39-0984-496201; Fax: +39-0984-496203
| |
Collapse
|
8
|
Le Joncour V, Guichet PO, Dembélé KP, Mutel A, Campisi D, Perzo N, Desrues L, Modzelewski R, Couraud PO, Honnorat J, Ferracci FX, Marguet F, Laquerrière A, Vera P, Bohn P, Langlois O, Morin F, Gandolfo P, Castel H. Targeting the Urotensin II/UT G Protein-Coupled Receptor to Counteract Angiogenesis and Mesenchymal Hypoxia/Necrosis in Glioblastoma. Front Cell Dev Biol 2021; 9:652544. [PMID: 33937253 PMCID: PMC8079989 DOI: 10.3389/fcell.2021.652544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastomas (GBMs) are the most common primary brain tumors characterized by strong invasiveness and angiogenesis. GBM cells and microenvironment secrete angiogenic factors and also express chemoattractant G protein-coupled receptors (GPCRs) to their advantage. We investigated the role of the vasoactive peptide urotensin II (UII) and its receptor UT on GBM angiogenesis and tested potential ligand/therapeutic options based on this system. On glioma patient samples, the expression of UII and UT increased with the grade with marked expression in the vascular and peri-necrotic mesenchymal hypoxic areas being correlated with vascular density. In vitro human UII stimulated human endothelial HUV-EC-C and hCMEC/D3 cell motility and tubulogenesis. In mouse-transplanted Matrigel sponges, mouse (mUII) and human UII markedly stimulated invasion by macrophages, endothelial, and smooth muscle cells. In U87 GBM xenografts expressing UII and UT in the glial and vascular compartments, UII accelerated tumor development, favored hypoxia and necrosis associated with increased proliferation (Ki67), and induced metalloproteinase (MMP)-2 and -9 expression in Nude mice. UII also promoted a “tortuous” vascular collagen-IV expressing network and integrin expression mainly in the vascular compartment. GBM angiogenesis and integrin αvβ3 were confirmed by in vivo99mTc-RGD tracer imaging and tumoral capture in the non-necrotic area of U87 xenografts in Nude mice. Peptide analogs of UII and UT antagonist were also tested as potential tumor repressor. Urotensin II-related peptide URP inhibited angiogenesis in vitro and failed to attract vascular and inflammatory components in Matrigel in vivo. Interestingly, the UT antagonist/biased ligand urantide and the non-peptide UT antagonist palosuran prevented UII-induced tubulogenesis in vitro and significantly delayed tumor growth in vivo. Urantide drastically prevented endogenous and UII-induced GBM angiogenesis, MMP, and integrin activations, associated with GBM tumoral growth. These findings show that UII induces GBM aggressiveness with necrosis and angiogenesis through integrin activation, a mesenchymal behavior that can be targeted by UT biased ligands/antagonists.
Collapse
Affiliation(s)
- Vadim Le Joncour
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Pierre-Olivier Guichet
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Kleouforo-Paul Dembélé
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Alexandre Mutel
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Daniele Campisi
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Nicolas Perzo
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Laurence Desrues
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Romain Modzelewski
- EA 4108, Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS), University of Rouen, Mont-Saint-Aignan, France
| | | | - Jérôme Honnorat
- Neuro-Oncology Department, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France.,Institute NeuroMyoGéne, INSERM U1217/CNRS UMR 5310, Lyon, France.,University Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - François-Xavier Ferracci
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France.,Neurosurgery Service, Rouen CHU Hospital, Rouen, France
| | - Florent Marguet
- Anathomocytopathology Service, Rouen CHU Hospital, Rouen, France
| | | | - Pierre Vera
- EA 4108, Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS), University of Rouen, Mont-Saint-Aignan, France
| | - Pierre Bohn
- EA 4108, Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS), University of Rouen, Mont-Saint-Aignan, France
| | - Olivier Langlois
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France.,Neurosurgery Service, Rouen CHU Hospital, Rouen, France
| | - Fabrice Morin
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Pierrick Gandolfo
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Hélène Castel
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| |
Collapse
|
9
|
Ramírez-Expósito MJ, Carrera-González MP, Martínez-Martos JM. Sex differences exist in brain renin-angiotensin system-regulating aminopeptidase activities in transplacental ethyl-nitrosourea-induced gliomas. Brain Res Bull 2021; 168:1-7. [PMID: 33359638 DOI: 10.1016/j.brainresbull.2020.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The renin angiotensin system (RAS) is emerging as an important target for the treatment of glioma. We had described that the local RAS is involved in vivo in tumor growth in the rat model of experimental C6 glioma implanted at the subcutaneous region, through the modification of several proteolytic regulatory enzymes of aminopeptidase type. METHODS We analyze RAS-regulating aminopeptidase activities in plasma and brain tissue of control male and female rats and rats with transplacental ethylnitrosourea-induced gliomas. RESULTS No differences were found either the mean total number of tumors per animal or the tumor volume between male and female animals. However, we have found increased levels in aspartyl aminopeptidase in both males and females and of aminopeptidase B only in males. On the contrary, decreased levels were found in aminopeptidase N and insulin-regulated aminopeptidase activities in both males and females, whereas aminopeptidase A only decreased in females. Decreased levels of aminopeptidase N, aminopeptidase B and insulin-regulated aminopeptidase were also shown in plasma of only female rats. CONCLUSIONS Under the complexity of RAS cascade, the changes found suggest the predominant actions of angiotensin III against a decreased action of angiotensin II and angiotensin IV. We conclude that angiotensin peptides are involved in tumor growth in this rat model of glioma and that their role in tumor growth can be analyzed through their corresponding proteolytic regulatory enzymes, which make them new and attractive therapeutic targets beyond the use or angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs).
Collapse
Affiliation(s)
- M J Ramírez-Expósito
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Health Sciences, University of Jaén, Jaén, Spain
| | - M P Carrera-González
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Health Sciences, University of Jaén, Jaén, Spain; Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Cordoba. IMIBIC, Córdoba, Spain
| | - J M Martínez-Martos
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Health Sciences, University of Jaén, Jaén, Spain.
| |
Collapse
|
10
|
Khoshghamat N, Jafari N, Toloue-Pouya V, Azami S, Mirnourbakhsh SH, Khazaei M, Ferns GA, Rajabian M, Avan A. The therapeutic potential of renin-angiotensin system inhibitors in the treatment of pancreatic cancer. Life Sci 2021; 270:119118. [PMID: 33548284 DOI: 10.1016/j.lfs.2021.119118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/05/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is among the most lethal malignancies with poor prognosis and patients become chemoresistant to current therapies, supporting further investigations to identify new therapeutic regimens in the treatment of this condition. Preclinical and clinical studies now appear to support the role of the renin-angiotensin system (RAS) in the regulation of tumor growth, angiogenesis, and metastasis in different malignancies including pancreatic cancer. These studies suggest that RAS blockers; Angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs); could have anti-carcinogenic effects and improve clinical outcomes in the management of pancreatic cancer. Here we provided an overview of ACE inhibitors and ARBs as a potential therapeutic option in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Negar Khoshghamat
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloufar Jafari
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vajiheh Toloue-Pouya
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Azami
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, UK
| | - Majid Rajabian
- Department of Biology, Faculty of Science, Payame Noor University Po Box 19395-3697 Tehran, IRAN
| | - Amir Avan
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Tan DC, Roth IM, Wickremesekera AC, Davis PF, Kaye AH, Mantamadiotis T, Stylli SS, Tan ST. Therapeutic Targeting of Cancer Stem Cells in Human Glioblastoma by Manipulating the Renin-Angiotensin System. Cells 2019; 8:cells8111364. [PMID: 31683669 PMCID: PMC6912312 DOI: 10.3390/cells8111364] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Patients with glioblastoma (GB), a highly aggressive brain tumor, have a median survival of 14.6 months following neurosurgical resection and adjuvant chemoradiotherapy. Quiescent GB cancer stem cells (CSCs) invariably cause local recurrence. These GB CSCs can be identified by embryonic stem cell markers, express components of the renin-angiotensin system (RAS) and are associated with circulating CSCs. Despite the presence of circulating CSCs, GB patients rarely develop distant metastasis outside the central nervous system. This paper reviews the current literature on GB growth inhibition in relation to CSCs, circulating CSCs, the RAS and the novel therapeutic approach by repurposing drugs that target the RAS to improve overall symptom-free survival and maintain quality of life.
Collapse
Affiliation(s)
- David Ch Tan
- Department of Neurosurgery, Wellington Regional Hospital, Wellington 6021, New Zealand.
| | - Imogen M Roth
- Gillies McIndoe Research Institute, Wellington 6021, New Zealand.
| | - Agadha C Wickremesekera
- Department of Neurosurgery, Wellington Regional Hospital, Wellington 6021, New Zealand.
- Gillies McIndoe Research Institute, Wellington 6021, New Zealand.
- Department of Surgery, The University of Melbourne, Parkville, Victoria 3050, Australia.
| | - Paul F Davis
- Gillies McIndoe Research Institute, Wellington 6021, New Zealand.
| | - Andrew H Kaye
- Department of Surgery, The University of Melbourne, Parkville, Victoria 3050, Australia.
- Department of Neurosurgery, Hadassah Hebrew University Medical Centre, Jerusalem 91120, Israel.
| | - Theo Mantamadiotis
- Department of Surgery, The University of Melbourne, Parkville, Victoria 3050, Australia.
| | - Stanley S Stylli
- Department of Surgery, The University of Melbourne, Parkville, Victoria 3050, Australia.
- Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington 6021, New Zealand.
- Department of Surgery, The University of Melbourne, Parkville, Victoria 3050, Australia.
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt 5040, New Zealand.
| |
Collapse
|
12
|
Ursu R, Thomas L, Psimaras D, Chinot O, Le Rhun E, Ricard D, Charissoux M, Cuzzubbo S, Sejalon F, Quillien V, Hoang-Xuan K, Ducray F, Portal JJ, Tibi A, Mandonnet E, Levy-Piedbois C, Vicaut E, Carpentier AF. Angiotensin II receptor blockers, steroids and radiotherapy in glioblastoma-a randomised multicentre trial (ASTER trial). An ANOCEF study. Eur J Cancer 2019; 109:129-136. [PMID: 30716716 DOI: 10.1016/j.ejca.2018.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/18/2018] [Accepted: 12/23/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Glioblastomas (GBMs) induce a peritumoural vasogenic oedema impairing functional status and quality of life. Steroids reduce brain tumour-related oedema but are associated with numerous side-effects. It was reported in a retrospective series that angiotensin receptor blockers might be associated with reduced peritumoural oedema. The ASTER study is a randomised, placebo-controlled trial to assess whether or not the addition of Losartan to standard of care (SOC) can reduce steroid requirement during radiotherapy (RT) in patients with newly diagnosed GBM. PATIENTS AND METHODS Patients with a histologically confirmed GBM after biopsy or partial surgical resection were randomised between Losartan or placebo in addition to SOC with RT and temozolomide (TMZ). The primary objective was to investigate the steroid dosage required to control brain oedema on the last day of RT in each arm. The secondary outcomes were steroids dosage 1 month after the end of RT, assessment of cerebral oedema on magnetic resonance imaging, tolerance and survival. RESULTS Seventy-five patients were randomly assigned to receive Losartan (37 patients) or placebo (38 patients). No difference in the steroid dosage required to control brain oedema on the last day of RT, or one month after completion of RT, was seen between both arms. The incidence of adverse events was similar in both arms. Median overall survival was similar in both arms. CONCLUSIONS Losartan, although well tolerated, does not reduce the steroid requirement in newly diagnosed GBM patients treated with concomitant RT and TMZ. Trial registration number NCT01805453 with ClinicalTrials.gov.
Collapse
Affiliation(s)
- R Ursu
- Department of Neurology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France.
| | - L Thomas
- Department of Neuro-Oncology, Hospices Civils de Lyon, Groupe Hospitalier Est, Lyon, France
| | - D Psimaras
- Department of Neurology Mazarin, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - O Chinot
- Department of Neuro-Oncology, CHU Timone, Marseille, France; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - E Le Rhun
- University of Lille, Inserm, U-1192, F-59000 Lille, France; CHU Lille, General and Stereotaxic Neurosurgery Service, F-59000 Lille, France; Oscar Lambret Center, Neurology, Medical Oncology Department, F-59000 Lille, France
| | - D Ricard
- Department of Neurology, Hôpital d'Instruction des Armées Percy, Service de Santé des Armées, Paris, France
| | - M Charissoux
- Department of Radiation Oncology, Institut du Cancer de Montpellier, Montpellier cedex 5, France
| | - S Cuzzubbo
- Department of Neurology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - F Sejalon
- Department of Neurology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - V Quillien
- Centre de Lutte Contre le Cancer Eugène Marquis, F-35042 Rennes, France; INSERM U1242, "Chemistry, Oncogenesis, Stress, Signaling", Université de Rennes 1, Rennes, France
| | - K Hoang-Xuan
- Department of Neurology Mazarin, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - F Ducray
- Department of Neuro-Oncology, Hospices Civils de Lyon, Groupe Hospitalier Est, Lyon, France; Department of Cancer Cell Plasticity, Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Lyon, France; University Claude Bernard Lyon 1, Lyon, France
| | - J-J Portal
- AP-HP, Unité de Recherche Clinique, Hôpital Fernand Widal, Université Paris-Diderot, Paris, France
| | - A Tibi
- Agence Générale des Equipements et Produits de Santé (AGEPS), Paris, France
| | - E Mandonnet
- Department of Neurosurgery, Lariboisière Hospital, APHP, Paris, France; University Paris 7, Paris, France; IMNC, UMR 8165, Orsay, France
| | - C Levy-Piedbois
- Ramsey Générale de Santé, Institut de Radiothérapie des Hauts-Energies, Bobigny, France
| | - E Vicaut
- AP-HP, Unité de Recherche Clinique, Hôpital Fernand Widal, Université Paris-Diderot, Paris, France
| | - A F Carpentier
- Department of Neurology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
13
|
Repurposing drugs for glioblastoma: From bench to bedside. Cancer Lett 2018; 428:173-183. [PMID: 29729291 DOI: 10.1016/j.canlet.2018.04.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme is the most common, aggressive and lethal type of brain tumor. It is a stage IV cancer disease with a poor prognosis, as the current therapeutic options (surgery, radiotherapy and chemotherapy) are not able to eradicate tumor cells. The approach to treat glioblastoma has not suffered major changes over the last decade and temozolomide (TMZ) remains the mainstay for chemotherapy. However, resistance mechanisms to TMZ and other chemotherapeutic agents are becoming more frequent. The lack of effective options is a reality that may be counterbalanced by repositioning known and commonly used drugs for other diseases. This approach takes into consideration the available pharmacokinetic, pharmacodynamic, toxicity and safety data, and allows a much faster and less expensive drug and product development process. In this review, an extensive literature search is conducted aiming to list drugs with repurposing usage, based on their preferential damage in glioblastoma cells through various mechanisms. Some of these drugs have already entered clinical trials, exhibiting favorable outcomes, which sparks their potential application in glioblastoma treatment.
Collapse
|
14
|
Renin angiotensin system and its role in biomarkers and treatment in gliomas. J Neurooncol 2018; 138:1-15. [PMID: 29450812 DOI: 10.1007/s11060-018-2789-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022]
Abstract
Gliomas are the most common primary intrinsic tumor in the brain and are classified as low- or high-grade according to the World Health Organization (WHO). Patients with high-grade gliomas (HGG) who undergo surgical resection with adjuvant therapy have a mean overall survival of 15 months and 100% recurrence. The renin-angiotensin system (RAS), the primary regulator of cardiovascular circulation, exhibits local action and works as a paracrine system. In the context of this local regulation, the expression of RAS peptides and receptors has been detected in different kinds of tumors, including gliomas. The dysregulation of RAS components plays a significant role in the proliferation, angiogenesis, and invasion of these tumors, and therefore in their outcomes. The study and potential application of RAS peptides and receptors as biomarkers in gliomas could bring advantages against the limitations of current tumoral markers and should be considered in the future. The targeting of RAS components by RAS blockers has shown potential of being protective against cancer and improving immunotherapy. In gliomas, RAS blockers have shown a broad spectrum for beneficial effects and are being considered for use in treatment protocols. This review aims to summarize the background behind how RAS plays a role in gliomagenesis and explore the evidence that could lead to their use as biomarkers and treatment adjuvants.
Collapse
|
15
|
Levin VA, Chan J, Datta M, Yee JL, Jain RK. Effect of angiotensin system inhibitors on survival in newly diagnosed glioma patients and recurrent glioblastoma patients receiving chemotherapy and/or bevacizumab. J Neurooncol 2017. [PMID: 28631191 DOI: 10.1007/s11060-017-2528-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Given prior studies that suggest the use of angiotensin system inhibitors (ASIs) is associated with prolonged overall survival (OS) in glioblastoma (GBM) patients, we evaluated the effect of ASIs in glioma patients receiving chemotherapy and/or bevacizumab (BEV). Using retrospective IRB-approved electronic chart review of newly diagnosed WHO grade 2-4 glioma patients from the Kaiser Permanente Tumor Registry of Northern California, we evaluated the impact of ASIs on OS by Cox proportional hazard model analysis for subgroups who received cytotoxic therapy, cytotoxic therapy with BEV, or BEV alone, as well as those with recurrent GBM (rGBM). Of the 1186 glioma patients who received chemotherapy ASI exposure improved OS (HR 0.82; 95% CI 0.71, 0.93; p = 0.003). When stratified by BEV exposure, a sub-analysis revealed further OS advantage for the BEV group (HR 0.75, 95% CI 0.62, 0.90; p = 0.002). In a second cohort of 181 rGBM patients who received BEV in varying dosages, ASI exposure conferred an OS advantage (HR 0.649; 95% CI 0.46, 0.92; p = 0.016). Moreover, patients with ASI exposure who received low-dose BEV treatment (AUCBEV < 3.6 mg wk/kg) had a significantly longer OS (median = 99 weeks; 95% CI 44.3, 205) than those without ASI (median OS = 55.6 weeks; 95% CI 37.7-73.7; p = 0.032). ASI use is associated with longer OS in glioma patients. Further survival advantage with ASI use was observed in rGBM patients receiving low-dose bevacizumab. These data warrant prospective evaluation of adding ASI to low-dose BEV treatment in GBM patients to improve the outcome of standard therapies.
Collapse
Affiliation(s)
- Victor A Levin
- Department of Neurosurgery and Neurosciences, Kaiser Permanente, Redwood City, CA, USA. .,The Universiy of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| | - James Chan
- Pharmacy Outcomes Research Group, Kaiser Permanente, Oakland, CA, USA
| | - Meenal Datta
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.,Department of Chemical and Biological Engineering, Tufts University, Medford, MA, 02155, USA
| | - Jennie L Yee
- Clinic Administered Medications Drug Use Management, Kaiser Permanente, Oakland, CA, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
16
|
Fan F, Tian C, Tao L, Wu H, Liu Z, Shen C, Jiang G, Lu Y. Candesartan attenuates angiogenesis in hepatocellular carcinoma via downregulating AT1R/VEGF pathway. Biomed Pharmacother 2016; 83:704-711. [PMID: 27470571 DOI: 10.1016/j.biopha.2016.07.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/17/2016] [Accepted: 07/18/2016] [Indexed: 12/16/2022] Open
Abstract
Angiotensin II type 1 receptor (AT1R) was reported to express in many types of tumors, promoting tumor growth and angiogenesis. We herein examined AT1R expression in liver cancer and the potential antitumor effects of AT1R antagonist Candesartan in liver cancer. We found that AT1R expression was positively correlated with VEGF-A expression and microvascular density (MVD) in 40 HCC patients. Angiotensin II and Candesartan neither had effects on the proliferation of liver cancer cells in vitro. However, Angiotensin II upregulated AT1R protein expression and promoted production of VEGF-A in liver cancer cells in a dose-dependent manner. Candesartan was able to reverse this process in a dose-dependent manner. Moreover, Candesartan downregulated the expression of VEGF-A in SMMC-7721 bearing xenografts in mice and inhibited tumor growth and angiogenesis in vivo. Our data suggested that AT1R antagonist Candesartan might be useful to suppress liver cancer by inhibiting angiogenesis.
Collapse
Affiliation(s)
- Fangtian Fan
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Pharmacy, Hanlin College, Nanjing University of Chinese Medicine, Taizhou 225300, China
| | - Chao Tian
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Tao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongyan Wu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhaoguo Liu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cunsi Shen
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guorong Jiang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Suzhou Traditional Chinese Medical Research Institute, The Affiliated Suzhou Hospital of TCM of Nanjing University of TCM, Suzhou 215003, China.
| | - Yin Lu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
17
|
Impact of Angiotensin-II receptor blockers on vasogenic edema in glioblastoma patients. J Neurol 2016; 263:524-30. [PMID: 26754004 DOI: 10.1007/s00415-015-8016-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 10/22/2022]
Abstract
Glioblastoma patients often require chronic administration of steroids due to peri-tumoral edema. Preliminary studies showed that treatment with Angiotensin-II Receptor Blockers (ARBs) for high blood pressure might be associated with reduced peri-tumoral edema. In this study, we aim to radiologically assess the effect of ARBs on peri-tumoral edema. We conducted a cross-sectional survey on patients with newly diagnosed GBM. Patients treated with ARBs for high blood pressure were paired to non ARB-treated patients based on similar age, tumor location and tumor size. Patients taking steroids at the time of pre-operative Magnetic Resonance Imaging were excluded from the study. In each pair of patients, we compared the volumes of peri-tumoral hyper T2-Fluid Attenuated Inversion Recovery (FLAIR) signal and the Apparent Diffusion Coefficient (ADC) in the same area. Eleven (11) ARB-treated patients were selected and paired to 11 non ARB-treated controls. Volumes of peri-tumoral hyper T2-FLAIR signal were significantly lower in the ARB-treated group than in the non ARB-treated group (p = 0.02). Additionally, peri-tumoral ADCs were also significantly lower in the treated group (p = 0.02), suggesting that the peri-tumoral area in this group had less edematous features. These results suggest that ARBs may reduce the volume of peri-tumoral hyper T2-FLAIR signal by decreasing edema.
Collapse
|
18
|
Rundle-Thiele D, Head R, Cosgrove L, Martin JH. Repurposing some older drugs that cross the blood-brain barrier and have potential anticancer activity to provide new treatment options for glioblastoma. Br J Clin Pharmacol 2015; 81:199-209. [PMID: 26374633 DOI: 10.1111/bcp.12785] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma is a brain neoplasm with limited 5-year survival rates. Developments of new treatment regimens that improve patient survival in patients with glioblastoma are needed. It is likely that a number of existing drugs used in other conditions have potential anticancer effects that offer significant survival benefit to glioblastoma patients. Identification of such drugs could provide a novel treatment paradigm.
Collapse
Affiliation(s)
| | - Richard Head
- Future Industries Institute, Research and Innovation Portfolio, University of South Australia, Adelaide, SA, Australia
| | - Leah Cosgrove
- CSIRO, Human and Nutrition Flagship, Adelaide, SA, Australia
| | - Jennifer H Martin
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
19
|
Purow B. Repurposing existing agents as adjunct therapies for glioblastoma. Neurooncol Pract 2015; 3:154-163. [PMID: 31386097 DOI: 10.1093/nop/npv041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Indexed: 12/16/2022] Open
Abstract
Numerous non-oncologic medications have been found in the last decade to have anti-cancer properties. While the focus in oncology research should clearly remain on deriving new therapeutic strategies, repurposing these existing medications may offer the potential to rapidly enhance the effectiveness of treatment for resistant cancers. Glioblastoma, the most common and lethal brain cancer, is highly resistant to standard therapies and would benefit from even minor improvements in treatment. Numerous agents already in the clinic for non-cancer applications have been found to also possess potential against cancer or specifically against glioblastoma. These include agents with activities affecting oxidative stress, the immune reponse, epigenetic modifiers, cancer cell metabolism, and angiogenesis and invasiveness. This review serves as a guide for potential ways to repurpose individual drugs alongside standard glioblastoma therapies.
Collapse
Affiliation(s)
- Benjamin Purow
- Neurology Department, University of Virginia Neuro-Oncology Division, Old Medical School Room 4881, 21 Hospital Drive, Charlottesville, VA 22908, USA (B.P.)
| |
Collapse
|
20
|
Izzedine H, Derosa L, Le Teuff G, Albiges L, Escudier B. Hypertension and angiotensin system inhibitors: impact on outcome in sunitinib-treated patients for metastatic renal cell carcinoma. Ann Oncol 2015; 26:1128-1133. [PMID: 25795198 DOI: 10.1093/annonc/mdv147] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/12/2015] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND To examine the association between hypertension (HTN), angiotensin system inhibitors (ASI) use and survival outcomes in patients with metastatic renal cell carcinoma (mRCC) treated with sunitinib (SU). METHODS We retrospectively reviewed all patients with mRCC who received SU as first-line treatment in Gustave Roussy from April 2004 to November 2013. The HTN (either pre-existing or secondary to SU), use of ASI (either before or during SU) were analysed. Overall survival (OS) and progression-free survival (PFS) of different exposures were compared with log-rank test. The associations between exposures and survival outcomes were estimated with hazard ratios (HRs) and 95% confidence interval (CI) through a multivariable Cox model adjusted for age, gender, International mRCC Database Consortium risk group and histology. RESULTS Among 213 patients with a 3.6-year median follow-up, 134 were hypertensive and 105 were ASI users with a significant association between the two exposures (P < 0.0001). Hypertensive patients have longer OS (median: 41.6 versus 16.4 months, P < 0.0001) and longer PFS (median: 12.9 versus 5.6 months, P < 0.0001) than non-hypertensive patients (n = 79). ASI users (n = 105) had more HTN_PRE compared with those (n = 108) who did not (65% versus 19%, P < 0.001). Multivariable analysis showed that hypertensive patients were significantly associated with OS (P = 0.05) and marginally with PFS (P = 0.06) while ASI intake was significantly associated with better OS [HR = 0.40; 95% CI (0.24-0.66), P < 0.001] and PFS [HR = 0.55 (0.35-0.86), P = 0.009]. The latter remain statistically significantly associated after controlling for the number of metastases. There is no difference on outcome between patients who receive ASI before starting SU and those who received ASI during SU treatment. CONCLUSION Concomitant use of ASI may significantly improve OS and PFS in mRCC patients receiving SU. HTN is marginally associated with the outcome in these patients.
Collapse
Affiliation(s)
- H Izzedine
- Department of Nephrology, Monceau Park International Clinic, Paris.
| | - L Derosa
- Department of Medical Oncology, Gustave Roussy, Villejuif, France; Department of Medical Oncology, Santa Chiara Hospital, Pisa, Italy
| | - G Le Teuff
- Department of Biostatistics and Epidemiology, Gustave Roussy, Villejuif, France
| | - L Albiges
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - B Escudier
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| |
Collapse
|
21
|
Papanagnou P, Baltopoulos P, Tsironi M. Marketed nonsteroidal anti-inflammatory agents, antihypertensives, and human immunodeficiency virus protease inhibitors: as-yet-unused weapons of the oncologists' arsenal. Ther Clin Risk Manag 2015; 11:807-19. [PMID: 26056460 PMCID: PMC4445694 DOI: 10.2147/tcrm.s82049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Experimental data indicate that several pharmacological agents that have long been used for the management of various diseases unrelated to cancer exhibit profound in vitro and in vivo anticancer activity. This is of major clinical importance, since it would possibly aid in reassessing the therapeutic use of currently used agents for which clinicians already have experience. Further, this would obviate the time-consuming process required for the development and the approval of novel antineoplastic drugs. Herein, both pre-clinical and clinical data concerning the antineoplastic function of distinct commercially available pharmacological agents that are not currently used in the field of oncology, ie, nonsteroidal anti-inflammatory drugs, antihypertensive agents, and anti-human immunodeficiency virus agents inhibiting viral protease, are reviewed. The aim is to provide integrated information regarding not only the molecular basis of the antitumor function of these agents but also the applicability of the reevaluation of their therapeutic range in the clinical setting.
Collapse
Affiliation(s)
- Panagiota Papanagnou
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| | - Panagiotis Baltopoulos
- Department of Sports Medicine and Biology of Physical Activity, Faculty of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Tsironi
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| |
Collapse
|
22
|
Singh A, Nunes JJ, Ateeq B. Role and therapeutic potential of G-protein coupled receptors in breast cancer progression and metastases. Eur J Pharmacol 2015; 763:178-83. [PMID: 25981295 PMCID: PMC4784721 DOI: 10.1016/j.ejphar.2015.05.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/21/2015] [Accepted: 05/11/2015] [Indexed: 12/19/2022]
Abstract
G-protein-coupled receptors (GPCRs) comprise a large family of cell-surface receptors, which have recently emerged as key players in tumorigenesis, angiogenesis and metastasis. In this review, we discussed our current understanding of the many roles played by GPCRs in general, and particularly Angiotensin II type I receptor (AGTR1), a member of the seven-transmembrane-spanning G-protein coupled receptor superfamily, and its significance in breast cancer progression and metastasis. We have also discussed different strategies for targeting AGTR1, and its ligand Angiotension II (Ang II), which might unravel unique opportunities for breast cancer prevention and treatment. For example, AGTR1 blockers (ARBs) which are already in clinical use for treating hypertension, merit further investigation as a therapeutic strategy for AGTR1-positive cancer patients and may have the potential to prevent Ang II-AGTR1 signalling mediated cancer pathogenesis and metastases.
Collapse
Affiliation(s)
- Anukriti Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Jessica J Nunes
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Bushra Ateeq
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India.
| |
Collapse
|
23
|
Structural and theoretical studies on rhodium and iridium complexes with 5-nitrosopyrimidines. Effects on the proteolytic regulatory enzymes of the renin-angiotensin system in human tumoral brain cells. J Inorg Biochem 2014; 143:20-33. [PMID: 25474363 DOI: 10.1016/j.jinorgbio.2014.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 02/02/2023]
Abstract
The reactions of [RhCl(CO)(PPh3)2], [RhCl(CO)2]2 and [IrCl(CO)(PPh3)2] with different 5-nitrosopyrimidines afforded sixteen complexes which have been structurally characterized by elemental analysis, IR and NMR ((1)H and (13)C) spectral methods and luminescence spectroscopy. The crystal and molecular structures of [Rh(III)Cl(VIOH-1)2(PPh3)], [Rh(III)Cl(DVIOH-1)2(PPh3)] and [Rh(II)(DVIOH-1)2(PPh3)2] have been established from single crystal x-ray structure analyses. The three complexes are six-coordinated with both violurato ligands into an equatorial N5,O4-bidentate fashion, but with different mutually arrangements. Theoretical studies were driven on the molecular structure of [Rh(III)Cl(VIOH-1)2(PPh3)] to assess the nature of the metal-ligand interaction as well as the foundations of the cis-trans (3L-2L) isomerism. An assortment of density functional (SOGGA11-X, B1LYP, B3LYP, B3LYP-D3 and wB97XD) has been used, all of them leading to a similar description of the target system. Thus, a topological analysis of the electronic density within AIM scheme and the study of the Mulliken charges yield a metal-ligand link of ionic character. Likewise, it has been proved that the cis-trans isomerism is mainly founded on that metal-ligand interaction with the relativistic effects playing a significant role. Although most of the compounds showed low direct toxicity against the human cell lines NB69 (neuroblastoma) and U373-MG (astroglioma), they differently modify in several ways the renin-angiotensin system (RAS)-regulating proteolytic regulatory enzymes aminopeptidase A (APA), aminopeptidase N (APN) and insulin-regulated aminopeptidase (IRAP). Therefore, these complexes could exert antitumor activity against both brain tumor types, acting through the paracrine regulating system mediated by tissue RAS rather than exerting a direct cytotoxic effect on tumor cells.
Collapse
|
24
|
Azevedo H, Fujita A, Bando SY, Iamashita P, Moreira-Filho CA. Transcriptional network analysis reveals that AT1 and AT2 angiotensin II receptors are both involved in the regulation of genes essential for glioma progression. PLoS One 2014; 9:e110934. [PMID: 25365520 PMCID: PMC4217762 DOI: 10.1371/journal.pone.0110934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 09/26/2014] [Indexed: 01/25/2023] Open
Abstract
Gliomas are aggressive primary brain tumors with high infiltrative potential. The expression of Angiotensin II (Ang II) receptors has been associated with poor prognosis in human astrocytomas, the most common type of glioma. In this study, we investigated the role of Angiotensin II in glioma malignancy through transcriptional profiling and network analysis of cultured C6 rat glioma cells exposed to Ang II and to inhibitors of its membrane receptor subtypes. C6 cells were treated with Ang II and specific antagonists of AT1 and AT2 receptors. Total RNA was isolated after three and six hours of Ang II treatment and analyzed by oligonucleotide microarray technology. Gene expression data was evaluated through transcriptional network modeling to identify how differentially expressed (DE) genes are connected to each other. Moreover, other genes co-expressing with the DE genes were considered in these analyses in order to support the identification of enriched functions and pathways. A hub-based network analysis showed that the most connected nodes in Ang II-related networks exert functions associated with cell proliferation, migration and invasion, key aspects for glioma progression. The subsequent functional enrichment analysis of these central genes highlighted their participation in signaling pathways that are frequently deregulated in gliomas such as ErbB, MAPK and p53. Noteworthy, either AT1 or AT2 inhibitions were able to down-regulate different sets of hub genes involved in protumoral functions, suggesting that both Ang II receptors could be therapeutic targets for intervention in glioma. Taken together, our results point out multiple actions of Ang II in glioma pathogenesis and reveal the participation of both Ang II receptors in the regulation of genes relevant for glioma progression. This study is the first one to provide systems-level molecular data for better understanding the protumoral effects of Ang II in the proliferative and infiltrative behavior of gliomas.
Collapse
Affiliation(s)
- Hátylas Azevedo
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - André Fujita
- Department of Computer Science, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Silvia Yumi Bando
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Priscila Iamashita
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Carlos Alberto Moreira-Filho
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
25
|
Fendrich V, Lopez CL, Manoharan J, Maschuw K, Wichmann S, Baier A, Holler JP, Ramaswamy A, Bartsch DK, Waldmann J. Enalapril and ASS inhibit tumor growth in a transgenic mouse model of islet cell tumors. Endocr Relat Cancer 2014; 21:813-24. [PMID: 25121552 DOI: 10.1530/erc-14-0175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Accumulating evidence suggests a role for angiotensin-converting enzymes involving the angiotensin II-receptor 1 (AT1-R) and the cyclooxygenase pathway in carcinogenesis. The effects of ASS and enalapril were assessed in vitro and in a transgenic mouse model of pancreatic neuroendocrine neoplasms (pNENs). The effects of enalapril and ASS on proliferation and expression of the AGTR1A and its target gene vascular endothelial growth factor (Vegfa) were assessed in the neuroendocrine cell line BON1. Rip1-Tag2 mice were treated daily with either 0.6 mg/kg bodyweight of enalapril i.p., 20 mg/kg bodyweight of ASS i.p., or a vehicle in a prevention (weeks 5-12) and a survival group (week 5 till death). Tumor surface, weight of pancreatic glands, immunostaining for AT1-R and nuclear factor kappa beta (NFKB), and mice survival were analyzed. In addition, sections from human specimens of 20 insulinomas, ten gastrinomas, and 12 non-functional pNENs were evaluated for AT1-R and NFKB (NFKB1) expression and grouped according to the current WHO classification. Proliferation was significantly inhibited by enalapril and ASS in BON1 cells, with the combination being the most effective. Treatment with enalapril and ASS led to significant downregulation of known target genes Vegf and Rela at RNA level. Tumor growth was significantly inhibited by enalapril and ASS in the prevention group displayed by a reduction of tumor size (84%/67%) and number (30%/45%). Furthermore, daily treatment with enalapril and ASS prolonged the overall median survival compared with vehicle-treated Rip1-Tag2 (107 days) mice by 9 and 17 days (P=0.016 and P=0.013). The AT1-R and the inflammatory transcription factor NFKB were abolished completely upon enalapril and ASS treatment. AT1-R and NFKB expressions were observed in 80% of human pNENs. Enalapril and ASS may provide an approach for chemoprevention and treatment of pNENs.
Collapse
Affiliation(s)
- V Fendrich
- Department of General SurgeryEndocrine Center, University Hospital Giessen and Marburg, Campus Marburg, Baldingerstrasse, 35043 Marburg, GermanyDepartment of General SurgeryUniversity Hospital Giessen and Marburg, Campus Giessen, Rudolf-Buchheim-Strasse 7, 35385 Giessen, Germany
| | - C L Lopez
- Department of General SurgeryEndocrine Center, University Hospital Giessen and Marburg, Campus Marburg, Baldingerstrasse, 35043 Marburg, GermanyDepartment of General SurgeryUniversity Hospital Giessen and Marburg, Campus Giessen, Rudolf-Buchheim-Strasse 7, 35385 Giessen, Germany
| | - J Manoharan
- Department of General SurgeryEndocrine Center, University Hospital Giessen and Marburg, Campus Marburg, Baldingerstrasse, 35043 Marburg, GermanyDepartment of General SurgeryUniversity Hospital Giessen and Marburg, Campus Giessen, Rudolf-Buchheim-Strasse 7, 35385 Giessen, Germany
| | - K Maschuw
- Department of General SurgeryEndocrine Center, University Hospital Giessen and Marburg, Campus Marburg, Baldingerstrasse, 35043 Marburg, GermanyDepartment of General SurgeryUniversity Hospital Giessen and Marburg, Campus Giessen, Rudolf-Buchheim-Strasse 7, 35385 Giessen, Germany
| | - S Wichmann
- Department of General SurgeryEndocrine Center, University Hospital Giessen and Marburg, Campus Marburg, Baldingerstrasse, 35043 Marburg, GermanyDepartment of General SurgeryUniversity Hospital Giessen and Marburg, Campus Giessen, Rudolf-Buchheim-Strasse 7, 35385 Giessen, Germany
| | - A Baier
- Department of General SurgeryEndocrine Center, University Hospital Giessen and Marburg, Campus Marburg, Baldingerstrasse, 35043 Marburg, GermanyDepartment of General SurgeryUniversity Hospital Giessen and Marburg, Campus Giessen, Rudolf-Buchheim-Strasse 7, 35385 Giessen, Germany
| | - J P Holler
- Department of General SurgeryEndocrine Center, University Hospital Giessen and Marburg, Campus Marburg, Baldingerstrasse, 35043 Marburg, GermanyDepartment of General SurgeryUniversity Hospital Giessen and Marburg, Campus Giessen, Rudolf-Buchheim-Strasse 7, 35385 Giessen, Germany
| | - A Ramaswamy
- Department of General SurgeryEndocrine Center, University Hospital Giessen and Marburg, Campus Marburg, Baldingerstrasse, 35043 Marburg, GermanyDepartment of General SurgeryUniversity Hospital Giessen and Marburg, Campus Giessen, Rudolf-Buchheim-Strasse 7, 35385 Giessen, Germany
| | - D K Bartsch
- Department of General SurgeryEndocrine Center, University Hospital Giessen and Marburg, Campus Marburg, Baldingerstrasse, 35043 Marburg, GermanyDepartment of General SurgeryUniversity Hospital Giessen and Marburg, Campus Giessen, Rudolf-Buchheim-Strasse 7, 35385 Giessen, Germany
| | - J Waldmann
- Department of General SurgeryEndocrine Center, University Hospital Giessen and Marburg, Campus Marburg, Baldingerstrasse, 35043 Marburg, GermanyDepartment of General SurgeryUniversity Hospital Giessen and Marburg, Campus Giessen, Rudolf-Buchheim-Strasse 7, 35385 Giessen, Germany
| |
Collapse
|
26
|
Ramírez-Expósito MJ, Mayas-Torres MD, Carrera-González MP, Jiménez-Pulido SB, Illán-Cabeza NA, Sánchez-Sánchez P, Hueso-Ureña F, Martínez-Martos JM, Moreno-Carretero MN. Silver(I)/6-hydroxyiminolumazine compounds differently modify renin–angiotensin system-regulating aminopeptidases A and N in human neuroblastoma and glioma cells. J Inorg Biochem 2014; 138:56-63. [DOI: 10.1016/j.jinorgbio.2014.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/27/2014] [Accepted: 04/28/2014] [Indexed: 12/28/2022]
|
27
|
Antitumor effect of angiotensin II type 1 receptor blocker losartan for orthotopic rat pancreatic adenocarcinoma. Pancreas 2014; 43:886-90. [PMID: 24717824 DOI: 10.1097/mpa.0000000000000125] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the synergistic inhibitory effects of gemcitabine and losartan, angiotensin II type 1 (AT1) receptor blockers, on an orthotopic rat pancreatic cancer model. METHODS The rat orthotopic pancreatic cancer model was prepared using DSL-6A/C cells, a rat ductal pancreatic adenocarcinoma cell line. The rats were treated with gemcitabine alone (100 mg/kg per week), losartan alone (100 mg/kg per day), or gemcitabine plus losartan. RESULTS Survival was significantly improved by treatment with gemcitabine (89.6 ± 21.8 days) or losartan (76.9 ± 18.7 days) alone compared with that in the control group (59.6 ± 13.4 days; P < 0.05). Treatment with gemcitabine plus losartan further prolonged the survival time to 102.6 ± 16.5 days compared with that in the control group (P < 0.0001). Gemcitabine or losartan significantly and dose-dependently reduced the proliferation of DSL-6A/C cells in vitro. Both drugs inhibited pancreatic vascular endothelial growth factor expression compared with that in the control group (P < 0.05). CONCLUSIONS The results of this study indicate that combined treatment with gemcitabine and losartan significantly improved the survival of rats with orthotopic pancreatic cancer by inhibiting vascular endothelial growth factor synthesis and suppressing cancer cell proliferation via AT1 receptor blockade. Thus, an AT1 receptor blocker in combination with gemcitabine might improve the clinical outcomes of patients with advanced pancreatic cancer.
Collapse
|
28
|
Kast RE, Boockvar JA, Brüning A, Cappello F, Chang WW, Cvek B, Dou QP, Duenas-Gonzalez A, Efferth T, Focosi D, Ghaffari SH, Karpel-Massler G, Ketola K, Khoshnevisan A, Keizman D, Magné N, Marosi C, McDonald K, Muñoz M, Paranjpe A, Pourgholami MH, Sardi I, Sella A, Srivenugopal KS, Tuccori M, Wang W, Wirtz CR, Halatsch ME. A conceptually new treatment approach for relapsed glioblastoma: coordinated undermining of survival paths with nine repurposed drugs (CUSP9) by the International Initiative for Accelerated Improvement of Glioblastoma Care. Oncotarget 2013; 4:502-30. [PMID: 23594434 PMCID: PMC3720600 DOI: 10.18632/oncotarget.969] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 04/11/2013] [Indexed: 02/06/2023] Open
Abstract
To improve prognosis in recurrent glioblastoma we developed a treatment protocol based on a combination of drugs not traditionally thought of as cytotoxic chemotherapy agents but that have a robust history of being well-tolerated and are already marketed and used for other non-cancer indications. Focus was on adding drugs which met these criteria: a) were pharmacologically well characterized, b) had low likelihood of adding to patient side effect burden, c) had evidence for interfering with a recognized, well-characterized growth promoting element of glioblastoma, and d) were coordinated, as an ensemble had reasonable likelihood of concerted activity against key biological features of glioblastoma growth. We found nine drugs meeting these criteria and propose adding them to continuous low dose temozolomide, a currently accepted treatment for relapsed glioblastoma, in patients with recurrent disease after primary treatment with the Stupp Protocol. The nine adjuvant drug regimen, Coordinated Undermining of Survival Paths, CUSP9, then are aprepitant, artesunate, auranofin, captopril, copper gluconate, disulfiram, ketoconazole, nelfinavir, sertraline, to be added to continuous low dose temozolomide. We discuss each drug in turn and the specific rationale for use- how each drug is expected to retard glioblastoma growth and undermine glioblastoma's compensatory mechanisms engaged during temozolomide treatment. The risks of pharmacological interactions and why we believe this drug mix will increase both quality of life and overall survival are reviewed.
Collapse
Affiliation(s)
| | | | | | | | - Wen-Wei Chang
- Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Boris Cvek
- Palacky University, Olomouc, Czech Republic
| | | | - Alfonso Duenas-Gonzalez
- Instituto de Investigaciones Biomedicas UNAM, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | | | | | | | - Kirsi Ketola
- University of British Columbia, Vancouver, Canada
| | | | - Daniel Keizman
- Oncology Department, Meir Medical Center, Tel Aviv University, Israel
| | - Nicolas Magné
- Institut de Cancérologie Lucien Neuwirth, Saint-Priest en Jarez, France
| | | | | | - Miguel Muñoz
- Virgen del Rocío University Hospital, Sevilla, Spain
| | - Ameya Paranjpe
- Texas Tech University Health Sciences Center, Amarillo, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yuge K, Miyajima A, Tanaka N, Shirotake S, Kosaka T, Kikuchi E, Oya M. Prognostic Value of Renin–Angiotensin System Blockade in Non-muscle-invasive Bladder Cancer. Ann Surg Oncol 2012; 19:3987-93. [DOI: 10.1245/s10434-012-2568-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Indexed: 01/22/2023]
|
30
|
Carpentier AF, Ferrari D, Bailon O, Ursu R, Banissi C, Dubessy AL, Belin C, Levy C. Steroid-sparing effects of angiotensin-II inhibitors in glioblastoma patients. Eur J Neurol 2012; 19:1337-42. [PMID: 22650322 DOI: 10.1111/j.1468-1331.2012.03766.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/24/2012] [Indexed: 11/27/2022]
Abstract
BACKGROUND The standard of care in patients with glioblastoma (GBM) relies on surgical resection, radiation therapy (RT), and temozolomide. Steroids are required in almost all patients to reduce peritumoral edema, but are associated with numerous side effects. Vascular endothelial growth factor (VEGF) is a key driver of peritumoral edema and angiogenesis in human GBM. Recently, angiotensin-II inhibitors were reported to reduce VEGF secretion and tumor growth in some animal models. METHODS To investigate whether angiotensin-II inhibitors might have a similar effect in humans and before undertaking a prospective study, we retrospectively investigated a series of 87 consecutive, newly diagnosed GBM patients, treated in a single center. Amongst these patients, 29 (33%) were already treated before RT for high blood pressure (HBP), 18 of them (21%) with an angiotensin-II inhibitor. In all patients, performance status, surgical procedures, and steroid dosages were documented. RESULTS Patients treated with angiotensin-II inhibitors, but not other antihypertensive drugs, required half of the steroids of the other patients during radiotherapy (P = 0.005 in multivariate analysis, considering other antihypertensive treatments, surgical resection, and performance status). This effect of angiotensin-II inhibitors was also significant at the beginning of radiotherapy (P = 0.03 in multivariate analysis). Treatment with angiotensin-II inhibitors had no effect on survival (16.2 vs. 17.9 months for the treated and the non-treated group, respectively, P = 0.77). CONCLUSION Angiotensin-II inhibitors might display significant steroid-sparing effects in brain tumor patients. Given the morbidity associated with steroids, this finding might have important practical consequences in these patients and warrants a randomized study.
Collapse
Affiliation(s)
- A F Carpentier
- Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne, Service de Neurologie, Bobigny, France.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ptasinska-Wnuk D, Lawnicka H, Mucha S, Kunert-Radek J, Pawlikowski M, Stepien H. Angiotensins inhibit cell growth in GH3 lactosomatotroph pituitary tumor cell culture: a possible involvement of the p44/42 and p38 MAPK pathways. ScientificWorldJournal 2012; 2012:189290. [PMID: 22619620 PMCID: PMC3349324 DOI: 10.1100/2012/189290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/22/2011] [Indexed: 12/13/2022] Open
Abstract
The local renin-angiotensin system is present in the pituitary. We investigated the effects of angiotensins on GH3 lactosomatotroph cells proliferation in vitro and the involvement of p44/42 and p38 MAPK inhibitors in the growth-regulatory effects of angiotensins. Materials and Methods. Cell viability using the Mosmann method and proliferation by the measurement of BrdU incorporation during DNA synthesis were estimated. Results. Ang II and ang IV decreased the viability and proliferation of GH3 cells. Inhibitor of p44/42 MAPK attenuated the effects of ang II on cell viability and proliferation but did not affect the ang 5-8-dependent actions. Inhibitor of p38 MAPK prevented the decrease in the number of GH3 cells in ang-II- and ang-IV-treated groups. Conclusions. The growth-inhibitory effect of ang II is possibly mediated by the p44/42 MAPK. The p38 MAPK appears to mediate the inhibitory effects of both ang II and ang 5-8 upon cell survival.
Collapse
Affiliation(s)
- Dorota Ptasinska-Wnuk
- Department of Endocrinology, The County Hospital of Kutno, 52 Kosciuszki Street, 99-300 Kutno, Poland
| | - Hanna Lawnicka
- Department of Immunoendocrinology, Chair of Endocrinology, Medical University of Lodz, Dr. Sterling 3 Street, 91-425 Lodz, Poland
| | - Slawomir Mucha
- Clinic of Endocrinology, Medical University of Lodz, Dr. Sterling 3 Street, 91-425 Lodz, Poland
| | - Jolanta Kunert-Radek
- Clinic of Endocrinology, Medical University of Lodz, Dr. Sterling 3 Street, 91-425 Lodz, Poland
| | - Marek Pawlikowski
- Department of Immunoendocrinology, Chair of Endocrinology, Medical University of Lodz, Dr. Sterling 3 Street, 91-425 Lodz, Poland
| | - Henryk Stepien
- Department of Immunoendocrinology, Chair of Endocrinology, Medical University of Lodz, Dr. Sterling 3 Street, 91-425 Lodz, Poland
| |
Collapse
|
32
|
Effect of AT1R knockdown on ishikawa cell proliferation induced by estrogen. Arch Gynecol Obstet 2012; 286:481-7. [PMID: 22484478 DOI: 10.1007/s00404-012-2305-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 03/20/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE This study aimed to study the effects of angiotensin receptor (AT1R) on proliferation, cell cycle progression, and apoptosis of estrogen-induced ishikawa cell by the transfection of AT1R-siRNA. METHODS Immunofluorescence method was used to detect AT1R in ishikawa cell. Western blot was used to detect the expression of AT1R protein in ishikawa cell before and after the transfection of AT1R-siRNA. MTT method was used to test the cell proliferation of estrogen-induced ishikawa cell before and after the transfection. Western blot was used to detect the expression of extracellular regulated protein kinase1/2(ERK1/2). RESULTS The result of immunofluorescence shows that AT1R was expressed in ishikawa cell. The expression of AT1R protein was inhibited obviously by 72 h after the transfection of AT1R-siRNA. The results of MTT show that estrogen could induce the cell proliferation of ishikawa cell. The expression of ERK1/2 was down-regulated after the transfection of AT1R-siRNA. CONCLUSION AT1R can promote the cell proliferation of estrogen-induced ishikawa cell. The possible mechanism may be down-regulating the expression of ERK1/2 protein.
Collapse
|
33
|
Abstract
Much evidence now suggests that angiotensin II has roles in normal functions of the breast that may be altered or attenuated in cancer. Both angiotensin type 1 (AT1) and type 2 (AT2) receptors are present particularly in the secretory epithelium. Additionally, all the elements of a tissue renin-angiotensin system, angiotensinogen, prorenin and angiotensin-converting enzyme (ACE), are also present and distributed in different cell types in a manner suggesting a close relationship with sites of angiotensin II activity. These findings are consistent with the concept that stromal elements and myoepithelium are instrumental in maintaining normal epithelial structure and function. In disease, this system becomes disrupted, particularly in invasive carcinoma. Both AT1 and AT2 receptors are present in tumours and may be up-regulated in some. Experimentally, angiotensin II, acting via the AT1 receptor, increases tumour cell proliferation and angiogenesis, both these are inhibited by blocking its production or function. Epidemiological evidence on the effect of expression levels of ACE or the distribution of ACE or AT1 receptor variants in many types of cancer gives indirect support to these concepts. It is possible that there is a case for the therapeutic use of high doses of ACE inhibitors and AT1 receptor blockers in breast cancer, as there may be for AT2 receptor agonists, though this awaits full investigation. Attention is drawn to the possibility of blocking specific AT1-mediated intracellular signalling pathways, for example by AT1-directed antibodies, which exploit the possibility that the extracellular N-terminus of the AT1 receptor may have previously unsuspected signalling roles.
Collapse
Affiliation(s)
- Gavin P Vinson
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK.
| | | | | |
Collapse
|
34
|
A Novel Cellular Model to Study Angiotensin II AT2 Receptor Function in Breast Cancer Cells. INTERNATIONAL JOURNAL OF PEPTIDES 2011; 2012:745027. [PMID: 22187571 PMCID: PMC3236472 DOI: 10.1155/2012/745027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/06/2011] [Accepted: 09/06/2011] [Indexed: 01/05/2023]
Abstract
Recent studies have highlighted the AT1 receptor as a potential therapeutic target in breast cancer, while the role of the AT2 subtype in this disease has remained largely neglected. The present study describes the generation and characterization of a new cellular model of human invasive breast cancer cells (D3H2LN-AT2) stably expressing high levels of Flag-tagged human AT2 receptor (Flag-hAT2). These cells exhibit high-affinity binding sites for AngII, and total binding can be displaced by the AT2-selective antagonist PD123319 but not by the AT1-selective antagonist losartan. Of interest, high levels of expression of luciferase and green fluorescent protein make these cells suitable for bioluminescence and fluorescence studies in vitro and in vivo. We provide here a novel tool to investigate the AT2 receptor functions in breast cancer cells, independently of AT1 receptor activation.
Collapse
|
35
|
Acquired platinum resistance enhances tumour angiogenesis through angiotensin II type 1 receptor in bladder cancer. Br J Cancer 2011; 105:1331-7. [PMID: 21970881 PMCID: PMC3241561 DOI: 10.1038/bjc.2011.399] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND We investigated the changes in reactive oxygen species (ROS) and angiogenesis through angiotensin II (Ang II) type 1 receptor (AT1R) after the development of acquired platinum resistance in bladder cancer. METHODS Four invasive human bladder cancer cell lines, T24, 5637, T24PR, and 5637PR, were used in vitro, whereas in vivo, T24 and T24PR cells were used. T24PR and 5637PR cells were newly established at our institution as acquired platinum-resistant sublines by culturing in cisplatin (CDDP)-containing conditioned medium for 6 months. RESULTS Ang II induced significantly higher vascular endothelial growth factor (VEGF) production in T24PR and 5637PR cells than in their corresponding parent cells in vitro, whereas Ang II induced a further increase in VEGF production. These platinum-resistant cells also showed significantly higher AT1R expression than their corresponding parent cells. ROS was also significantly upregulated in T24PR and 5637PR cells, whereas increased AT1R expression was significantly downregulated by scavenging free radicals. We also demonstrated the efficacy of AT1R blockade at suppressing the growth of platinum-resistant xenograft model. CONCLUSION Our findings indicate a new molecular mechanism for upregulated AT1R signalling through increased ROS when tumours progressed after the CDDP-based regimens, and shed light on the importance of AT1R blockade for platinum-resistant bladder cancers.
Collapse
|
36
|
Angiotensin receptor blockers and angiogenesis: clinical and experimental evidence. Clin Sci (Lond) 2011; 120:307-19. [PMID: 21488224 DOI: 10.1042/cs20100389] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Angiotensin II type 1 receptor antagonists [ARBs (angiotensin receptor blockers)] are indicated for BP (blood pressure)-lowering, renal protection and cardioprotection in patients unable to tolerate ACEIs (angiotensin-converting enzyme inhibitors). A recent meta-analysis revealed an association between ARBs and tumour development, possibly due to enhancement of angiogenesis. However, published evidence is conflicting on the effects of ARBs on angiogenesis or the expansion of the existing vascular network. ARBs have been shown to exert primarily anti-angiogenic effects in basic science studies of cancer, retinopathy, peripheral artery disease and some models of cardiovascular disease. In animal and cellular models of myocardial infarction and stroke, however, ARB administration has been associated with robust increases in vascular density and improved recovery. The aim of the present review is to examine the angiogenic effects of ARBs in animal and cellular models of relevant disease states, including proposed molecular mechanisms of action of ARBs and the clinical consequences of ARB use.
Collapse
|
37
|
Clere N, Corre I, Faure S, Guihot AL, Vessières E, Chalopin M, Morel A, Coqueret O, Hein L, Delneste Y, Paris F, Henrion D. Deficiency or blockade of angiotensin II type 2 receptor delays tumorigenesis by inhibiting malignant cell proliferation and angiogenesis. Int J Cancer 2010; 127:2279-91. [PMID: 20143398 DOI: 10.1002/ijc.25234] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Despite significant expression level in cancer cells, the role of the angiotensin II Type 2 receptor (AT2R) in cancer progression remains poorly understood. We aimed to investigate the involvement of AT2R in tumorigenesis, hypothesizing a role in tumor cell proliferation and/or tumor angiogenesis. Two animal tumor models were used: fibrosarcoma induced by 3-methylcholanthrene (3-MCA) in FVB/N mice invalidated for AT2R (AT2R-KO) and carcinoma LL/2 cells injected in C57BL/6N mice treated with AT2R antagonist PD123,319. Tumor growth was monitored, microvascular density (MVD) evaluated by CD31 staining. Proliferation index of LL/2 and 3-MCA tumor cells was evaluated by expression of Ki-67. Angiogenesis was assessed by aorta ring assay and angiogenic mediators' expression by real-time RT-PCR. Tumor induction by 3-MCA was significantly delayed in AT2R-KO compared to wild-type mice (56 days vs. 28 days). Tumorigenesis following LL/2 cell injection in mice was also significantly reduced by early administration of the antagonist PD123,319. In vitro, inactivation or invalidation of AT2R inhibited proliferation of LL/2 and 3-MCA tumor cells, respectively. Tumor MVD was reduced in mice treated early with PD123,319. Ex vivo experiments revealed a significant decrease in angiogenesis after PD123,319 treatment or in AT2R-KO mice. Finally, we identified vascular endothelial growth factor (VEGF) as a soluble proangiogenic factor produced by LL/2 cells and we showed that in LL/2 and 3-MCA tumor cells, inhibition or deficiency of AT2R was associated with impaired production of proangiogenic factors included VEGF. This study uncovered novel mechanisms by which AT2R would promote tumor development, favoring both malignant cell proliferation and tumor angiogenesis.
Collapse
Affiliation(s)
- Nicolas Clere
- Faculté de Médecine, CNRS UMR 6214, INSERM UMR U771, Université d'Angers, Angers, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
For cancers to develop, sustain and spread, the appropriation of key homeostatic physiological systems that influence cell growth, migration and death, as well as inflammation and the expansion of vascular networks are required. There is accumulating molecular and in vivo evidence to indicate that the expression and actions of the renin-angiotensin system (RAS) influence malignancy and also predict that RAS inhibitors, which are currently used to treat hypertension and cardiovascular disease, might augment cancer therapies. To appreciate this potential hegemony of the RAS in cancer, an expanded comprehension of the cellular actions of this system is needed, as well as a greater focus on translational and in vivo research.
Collapse
Affiliation(s)
- Amee J George
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | |
Collapse
|
39
|
Serpi R, Tolonen AM, Tenhunen O, Pieviläinen O, Kubin AM, Vaskivuo T, Soini Y, Kerkelä R, Leskinen H, Ruskoaho H. Divergent effects of losartan and metoprolol on cardiac remodeling, c-kit+ cells, proliferation and apoptosis in the left ventricle after myocardial infarction. Clin Transl Sci 2010; 2:422-30. [PMID: 20443934 DOI: 10.1111/j.1752-8062.2009.00163.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
There is strong evidence for the use of angiotensin converting enzyme inhibitors and beta-blockers to reduce morbidity and mortality in patients with myocardial infarction (MI), whereas the effect of angiotensin receptor blockers is less clear. We evaluated the effects of an angiotensin receptor blocker losartan and a beta-blocker metoprolol on left ventricular (LV) remodeling, c-kit+ cells, proliferation, fibrosis, apoptosis, and angiogenesis using a model of coronary ligation in rats. Metoprolol treatment for 2 weeks improved LV systolic function. In contrast, losartan triggered deleterious structural remodeling and functional deterioration of LV systolic function, ejection fraction being 41% and fractional shortening 47% lower in losartan group than in controls 2 weeks after MI. The number of c-kit+ cells as well as expression of Ki-67 was increased by metoprolol. Losartan-induced thinning of the anterior wall and ventricular dilation were associated with increased apoptosis and fibrosis, while losartan had no effect on the expression of c-kit or Ki-67. Metoprolol or losartan had no effect on microvessel density. These results demonstrate that beta-blocker treatment attenuated adverse remodeling via c-kit+ cells and proliferation, whereas angiotensin receptor blocker-induced worsening of LV systolic function was associated with increased apoptosis and fibrosis in the peri-infarct region.
Collapse
Affiliation(s)
- Raisa Serpi
- Institute of Biomedicine, Department of Pharmacology and Toxicology, Biocenter, Oulu, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Current Research of the RAS in Pancreatitis and Pancreatic Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 690:179-99. [DOI: 10.1007/978-90-481-9060-7_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Clapp C, Thebault S, Jeziorski MC, Martínez De La Escalera G. Peptide hormone regulation of angiogenesis. Physiol Rev 2009; 89:1177-215. [PMID: 19789380 DOI: 10.1152/physrev.00024.2009] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is now apparent that regulation of blood vessel growth contributes to the classical actions of hormones on development, growth, and reproduction. Endothelial cells are ideally positioned to respond to hormones, which act in concert with locally produced chemical mediators to regulate their growth, motility, function, and survival. Hormones affect angiogenesis either directly through actions on endothelial cells or indirectly by regulating proangiogenic factors like vascular endothelial growth factor. Importantly, the local microenvironment of endothelial cells can determine the outcome of hormone action on angiogenesis. Members of the growth hormone/prolactin/placental lactogen, the renin-angiotensin, and the kallikrein-kinin systems that exert stimulatory effects on angiogenesis can acquire antiangiogenic properties after undergoing proteolytic cleavage. In view of the opposing effects of hormonal fragments and precursor molecules, the regulation of the proteases responsible for specific protein cleavage represents an efficient mechanism for balancing angiogenesis. This review presents an overview of the actions on angiogenesis of the above-mentioned peptide hormonal families and addresses how specific proteolysis alters the final outcome of these actions in the context of health and disease.
Collapse
Affiliation(s)
- Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.
| | | | | | | |
Collapse
|
42
|
Otake AH, Mattar AL, Freitas HC, Machado CML, Nonogaki S, Fujihara CK, Zatz R, Chammas R. Inhibition of angiotensin II receptor 1 limits tumor-associated angiogenesis and attenuates growth of murine melanoma. Cancer Chemother Pharmacol 2009; 66:79-87. [PMID: 19771429 DOI: 10.1007/s00280-009-1136-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 09/08/2009] [Indexed: 12/22/2022]
Abstract
PURPOSE We evaluated the involvement of angiotensin II (AngII)-dependent pathways in melanoma growth, through the pharmacological blockage of AT1 receptor by the anti-hypertensive drug losartan (LOS). RESULTS We showed immunolabeling for both AngII and the AT1 receptor within the human melanoma microenvironment. Like human melanomas, we showed that murine melanomas also express the AT1 receptor. Growth of murine melanoma, both locally and at distant sites, was limited in mice treated with LOS. The reduction in tumor growth was accompanied by a twofold decrease in tumor-associated microvessel density and by a decrease in CD31 mRNA levels. While no differences were found in the VEGF expression levels in tumors from treated animals, reduction in the expression of the VEGFR1 (Flt-1) at the mRNA and protein levels was observed. We also showed downregulation of mRNA levels of both Flt-4 and its ligand, VEGF-C. CONCLUSIONS Together, these results show that blockage of AT1 receptor signaling may be a promising anti-tumor strategy, interfering with angiogenesis by decreasing the expression of angiogenic factor receptors.
Collapse
Affiliation(s)
- Andréia Hanada Otake
- Laboratório de Oncologia Experimental (LIM-24), Departamento de Radiologia e Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, Av Dr Arnaldo, 455 room 4112/4122, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Franklin PH, Banfor PN, Tapang P, Segreti JA, Widomski DL, Larson KJ, Noonan WT, Gintant GA, Davidsen SK, Albert DH, Fryer RM, Cox BF. Effect of the multitargeted receptor tyrosine kinase inhibitor, ABT-869 [N-(4-(3-amino-1H-indazol-4-yl)phenyl)-N'-(2-fluoro-5-methylphenyl)urea], on blood pressure in conscious rats and mice: reversal with antihypertensive agents and effect on tumor growth inhibition. J Pharmacol Exp Ther 2009; 329:928-37. [PMID: 19255283 DOI: 10.1124/jpet.108.144816] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
ABT-869 [N-(4-(3-amino-1H-indazol-4-yl)phenyl)-N'-(2-fluoro-5-methylphenyl)urea] is a novel multitargeted inhibitor of the vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) receptor tyrosine kinase family members. ABT-869 demonstrates tumor growth inhibition in multiple preclinical animal models and in early clinical trials. VEGF receptor inhibition is also associated with reversible hypertension that may limit its benefit clinically. To evaluate optimal therapeutic approaches to prevent hypertension with VEGF receptor inhibition, we characterized the dose-dependent effects of seven antihypertensive agents from three mechanistic classes [angiotensin-converting enzyme inhibitors (ACEis), angiotensin receptor blockers (ARBs), calcium channel blockers (CCBs)] on hypertension induced by ABT-869 in conscious telemetry rats. We report that ABT-869-induced hypertension can be prevented and reversed with subtherapeutic or therapeutic doses of antihypertensive drugs with a general rank order of ACEi > ARB > CCB. In SCID mice, the ACE inhibitor, enalapril (C(20)H(28)N(2)O(5) x C(4)H(4)O(4)) at 30 mg/kg, prevented hypertension, with no attenuation of the antitumor efficacy of ABT-869. These studies demonstrate that the adverse cardiovascular effects of the VEGF/PDGF receptor tyrosine kinase inhibitor, ABT-869, are readily controlled by conventional antihypertensive therapy without affecting antitumor efficacy.
Collapse
Affiliation(s)
- Pamela H Franklin
- Department of Integrative Pharmacology, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064-6119, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
AGTR1 overexpression defines a subset of breast cancer and confers sensitivity to losartan, an AGTR1 antagonist. Proc Natl Acad Sci U S A 2009; 106:10284-9. [PMID: 19487683 DOI: 10.1073/pnas.0900351106] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Breast cancer patients have benefited from the use of targeted therapies directed at specific molecular alterations. To identify additional opportunities for targeted therapy, we searched for genes with marked overexpression in subsets of tumors across a panel of breast cancer profiling studies comprising 3,200 microarray experiments. In addition to prioritizing ERBB2, we found AGTR1, the angiotensin II receptor type I, to be markedly overexpressed in 10-20% of breast cancer cases across multiple independent patient cohorts. Validation experiments confirmed that AGTR1 is highly overexpressed, in several cases more than 100-fold. AGTR1 overexpression was restricted to estrogen receptor-positive tumors and was mutually exclusive with ERBB2 overexpression across all samples. Ectopic overexpression of AGTR1 in primary mammary epithelial cells, combined with angiotensin II stimulation, led to a highly invasive phenotype that was attenuated by the AGTR1 antagonist losartan. Similarly, losartan reduced tumor growth by 30% in AGTR1-positive breast cancer xenografts. Taken together, these observations indicate that marked AGTR1 overexpression defines a subpopulation of ER-positive, ERBB2-negative breast cancer that may benefit from targeted therapy with AGTR1 antagonists, such as losartan.
Collapse
|
45
|
Chow L, Rezmann L, Catt KJ, Louis WJ, Frauman AG, Nahmias C, Louis SNS. Role of the renin-angiotensin system in prostate cancer. Mol Cell Endocrinol 2009; 302:219-29. [PMID: 18824067 DOI: 10.1016/j.mce.2008.08.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 08/29/2008] [Accepted: 08/29/2008] [Indexed: 11/19/2022]
Abstract
Prostate cancer is highly prevalent in Western society, and its early stages can be controlled by androgen ablation therapy. However, the cancer eventually regresses to an androgen-independent state for which there is no effective treatment. The renin-angiotensin system (RAS), in particular the octapeptide angiotensin II, is now recognised to have important effects on growth factor signalling and cell growth in addition to its well known actions on blood pressure, fluid homeostasis and electrolyte balance. All components of the RAS have been recently identified in the prostate, consistent with the expression of a local RAS system in this tissue. This review focuses on the role of the RAS in the prostate, and the possibility that this pathway may be a potential therapeutic target for the treatment of prostate cancer and other prostatic diseases.
Collapse
Affiliation(s)
- L Chow
- University of Melbourne, Department of Medicine, Austin Health, Heidelberg, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
46
|
Kosugi M, Miyajima A, Kikuchi E, Kosaka T, Horiguchi Y, Murai M, Oya M. Angiotensin II Type 1 Receptor Antagonist Enhances Cis-dichlorodiammineplatinum-Induced Cytotoxicity in Mouse Xenograft Model of Bladder Cancer. Urology 2009; 73:655-60. [DOI: 10.1016/j.urology.2008.10.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Revised: 09/15/2008] [Accepted: 10/09/2008] [Indexed: 10/21/2022]
|
47
|
Arrieta O, Pineda-Olvera B, Guevara-Salazar P, Hernández-Pedro N, Morales-Espinosa D, Cerón-Lizarraga TL, González-De la Rosa CH, Rembao D, Segura-Pacheco B, Sotelo J. Expression of AT1 and AT2 angiotensin receptors in astrocytomas is associated with poor prognosis. Br J Cancer 2008; 99:160-6. [PMID: 18594540 PMCID: PMC2453037 DOI: 10.1038/sj.bjc.6604431] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Astrocytomas develop intense vascular proliferation, essential for tumour growth and invasiveness. Angiotensin II (ANGII) was initially described as a vasoconstrictor; recent studies have shown its participation in cellular proliferation, vascularisation, and apoptosis. We conducted a prospective study to evaluate the expression of ANGII receptors – AT1 and AT2 – and their relationship with prognosis. We studied 133 tumours from patients with diagnosis of astrocytoma who underwent surgery from 1997 to 2002. AT1 and AT2 were expressed in 52 and 44% of the tumours, respectively, when determined by both reverse transcriptase–polymerase chain reaction and immunohistochemistry. Ten per cent of low-grade astrocytomas were positive for AT1, whereas grade III and IV astrocytomas were positive in 67% (P<0.001). AT2 receptors were positive in 17% of low-grade astrocytomas and in 53% of high-grade astrocytomas (P=0.01). AT1-positive tumours showed higher cellular proliferation and vascular density. Patients with AT1-positive tumours had a lower survival rate than those with AT1-negative (P<0.001). No association to survival was found for AT2 in the multivariate analysis. Expression of AT1 and AT2 is associated with high grade of malignancy, increased cellular proliferation, and angiogenesis, and is thus related to poor prognosis. These findings suggest that ANGII receptors might be potential therapeutic targets for high-grade astrocytomas.
Collapse
Affiliation(s)
- O Arrieta
- Experimental Oncology Laboratory and Medical Oncology Department, Instituto Nacional de Cancerología (INCan), Tlalpan 14080, México.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The renin-angiotensin system (RAS) is usually associated with its systemic action on cardiovascular homoeostasis. However, recent studies suggest that at a local tissue level, the RAS influences tumour growth. The potential of the RAS as a target for cancer treatment and the suggested underlying mechanisms of its paracrine effects are reviewed here. These include modulation of angiogenesis, cellular proliferation, immune responses and extracellular matrix formation. Knowledge of the RAS has increased dramatically in recent years with the discovery of new enzymes, peptides and feedback mechanisms. The local RAS appears to influence tumour growth and metastases and there is evidence of tissue- and tumour-specific differences. Recent experimental studies provide strong evidence that drugs that inhibit the RAS have the potential to reduce cancer risk or retard tumour growth and metastases. Manipulation of the RAS may, therefore, provide a safe and inexpensive anticancer strategy.
Collapse
Affiliation(s)
- Eleanor I Ager
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, Victoria 3084, Australia.
| | | | | |
Collapse
|
49
|
de Resende MM, Greene AS. Effect of ANG II on endothelial cell apoptosis and survival and its impact on skeletal muscle angiogenesis after electrical stimulation. Am J Physiol Heart Circ Physiol 2008; 294:H2814-21. [PMID: 18441208 PMCID: PMC2579789 DOI: 10.1152/ajpheart.00095.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that skeletal muscle angiogenesis induced by electrical stimulation is significantly attenuated when SS-13BN/Mcwi rats are fed a high-salt diet. This effect was associated with a large increase in endothelial cell (EC) apoptosis. We hypothesized that the low levels of ANG II during high-salt diet would increase EC apoptosis and consequently diminish the angiogenic response. To test this hypothesis, a series of in vitro and in vivo studies was performed. EC apoptosis and viability were evaluated after incubation with ANG II under serum-free conditions. After 24 h of incubation, ANG II increased EC viability and Bcl-2-to-Bax ratio along with a dose-dependent decrease in EC apoptosis. This effect was blocked by the ANG II type 1 receptor antagonist losartan. To confirm our in vitro results, ANG II (3 ng.kg(-1).min(-1)) was chronically infused in rats fed a high-salt diet (4% NaCl). ANG II decreased EC apoptosis and produced a significant increase (40%) in skeletal muscle angiogenesis after electrical stimulation. These in vivo results were in agreement with our in vitro results and demonstrate that the attenuation of ANG II levels during a high-salt diet may induce EC apoptosis and consequently block the angiogenic response induced by electrical stimulation. Furthermore, under normal conditions, ANG II increases EC viability and protects EC from apoptosis possibly by inactivation of the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Micheline M de Resende
- Biotechnology and Bioengineering Center, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | |
Collapse
|
50
|
Angiotensin II type 1 receptor antagonist suppress angiogenesis and growth of gastric cancer xenografts. Dig Dis Sci 2008; 53:1206-10. [PMID: 17934850 DOI: 10.1007/s10620-007-0009-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 08/28/2007] [Indexed: 12/14/2022]
Abstract
Angiotensin II (Ang II) has been reported to promote tumor progression, tumor growth and angiogenesis in many cancers. We previously observed that angiotensin II type 1 receptors (AT1R) were upregulated in human gastric cancer and may be involved in the progression of gastric cancer. We studied the effects of AT1R antagonist on angiogenesis and growth in gastric cancer xenografts to observe the mechanism action of AT1R in the gastric cancer. The results showed that the growth of gastric cancer cells was significantly suppressed by treatment with AT1R antagonist. In vivo, TCV-116, at doses of both 2 and 5 mg/kg/day, significantly suppressed tumor growth in mice (47.3 and 70.2%). Microvessel density was significantly decreased by TCV-116 (3.4 +/- 0.9 and 2.8 +/- 0.5 per field) compared with the control group (12.9 +/- 1.1 per field), and VEGF expression was significantly suppressed by AT1R antagonist. These results demonstrate that AT1R plays an important role in the progression of gastric cancer. Suppression tumor angiogenesis could be one of the mechanisms by which AT1R antagonist suppresses the growth of gastric cancer. These findings also provide a theoretical basis for the future clinical application of AT1R antagonist against gastric cancer.
Collapse
|