1
|
Aghris S, Alaoui OT, Laghrib F, Farahi A, Bakasse M, Saqrane S, Lahrich S, El Mhammedi M. Extraction and determination of flubendiamide insecticide in food samples: A review. Curr Res Food Sci 2022; 5:401-413. [PMID: 35243353 PMCID: PMC8861570 DOI: 10.1016/j.crfs.2022.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 01/06/2023] Open
Abstract
Flubendiamide (FBD) is the first commercially available phthalic acid diamide that targets ryanodine receptors (RyRs) in insects, which play a major role in lepidoptera control. However, excessive use of FBD can influence the quality of treated products leading to toxic effects on human health. The availability of rapid and convenient methods for evaluating FBD amount in the environment is necessary. Therefore, analytical methods were developed for the determination of residues of FBD and its metabolite desiodo in different food matrices like tomato, cabbage, pigeon pea, apple, chilli and rice. The current review carries forward methods for FBD residues analysis in foods by using several chromatographic techniques including sample preparation steps. The comparison between the different methods employed for quantitative and qualitative analysis of food quality and safety is also discussed. Liquid chromatography (LC) is the predominant analytical method for assessing the quality of foods treated with FBD. Studies related to LC coupled multichannel detector (Ultraviolet (UV), Mass spectrometry (MS)) are also applied to detect pesticide residues. Extraction and clean up steps are essential to obtain reliable results. Moreover, this review reports the allowed limits of residues for the safety of consuming products treated with FBD.
Collapse
Affiliation(s)
- S. Aghris
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - O. Tahiri Alaoui
- Moulay Ismail University, Laboratory of Physical Chemistry, Materials and Environment, Sciences and Technologies Faculty, Errachidia, Morocco
| | - F. Laghrib
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
- Sidi Mohamed Ben Abdellah University, Engineering Laboratory of Organometallic, Molecular Materials, and Environment, Faculty of sciences, Fes, Morocco
| | - A. Farahi
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - M. Bakasse
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
- Chouaib Doukkali University, Organic Micropollutants Analysis Team, Faculty of Sciences, Morocco
| | - S. Saqrane
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - S. Lahrich
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - M.A. El Mhammedi
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| |
Collapse
|
2
|
Kadala A, Charreton M, Collet C. Flubendiamide, the first phthalic acid diamide insecticide, impairs neuronal calcium signalling in the honey bee's antennae. JOURNAL OF INSECT PHYSIOLOGY 2020; 125:104086. [PMID: 32628959 DOI: 10.1016/j.jinsphys.2020.104086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Calcium is an important intracellular second messenger involved in several processes such as the transduction of odour signals and neuronal excitability. Despite this critical role, relatively little information is available with respect to the impact of insecticides on the dynamics of intracellular calcium homeostasis in olfactory neurons. For the first time here, physiological stimuli (depolarizing current or pheromone) were shown to elicit calcium transients in peripheral neurons from the honey bee antenna. In addition, neurotoxic xenobiotics (the first synthetic phthalic diamide insecticide flubendiamide or botanical alkaloids ryanodine and caffeine) do interfere with normal calcium homeostasis. Our in vitro experiments show that these three xenobiotics can induce sustained abnormal calcium transients in antennal neurons. The present results provide a new insight into the toxicity of diamides, showing that flubendiamide drastically impairs calcium homeostasis in antennal neurons. We propose that a calcium imaging assay should provide an efficient tool dedicated to the modern assessment strategies of insecticides toxicity.
Collapse
Affiliation(s)
- Aklesso Kadala
- INRAE, UR406 Abeilles et Environnement, 84914 Avignon, France; UMT PRADE, Protection des Abeilles dans l'Environnement, 84914 Avignon, France
| | - Mercédès Charreton
- INRAE, UR406 Abeilles et Environnement, 84914 Avignon, France; UMT PRADE, Protection des Abeilles dans l'Environnement, 84914 Avignon, France
| | - Claude Collet
- INRAE, UR406 Abeilles et Environnement, 84914 Avignon, France; UMT PRADE, Protection des Abeilles dans l'Environnement, 84914 Avignon, France.
| |
Collapse
|
3
|
Goldammer J, Mantziaris C, Büschges A, Schmidt J. Calcium imaging of CPG-evoked activity in efferent neurons of the stick insect. PLoS One 2018; 13:e0202822. [PMID: 30142206 PMCID: PMC6108493 DOI: 10.1371/journal.pone.0202822] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/09/2018] [Indexed: 12/11/2022] Open
Abstract
The stick insect is a well-established experimental animal to study the neural basis of walking. Here, we introduce a preparation that allows combining calcium imaging in efferent neurons with electrophysiological recordings of motor neuron activity in the stick insect thoracic nerve cord. The intracellular free calcium concentration in middle leg retractor coxae motor neurons and modulatory octopaminergic DUM neurons was monitored after backfilling lateral nerve nl5 that contains the axons of these neurons with the calcium indicator Oregon Green BAPTA-1. Rhythmic spike activity in retractor and protractor motor neurons was evoked by pharmacological activation of central pattern generating neuronal networks and recorded extracellularly from lateral nerves. A primary goal of this study was to investigate whether changes in the intracellular free calcium concentration observed in motor neurons during oscillatory activity depend on action potentials. We show that rhythmic spike activity in leg motor neurons induced either pharmacologically or by tactile stimulation of the animal is accompanied by a synchronous modulation in the intracellular free calcium concentration. Calcium oscillations in motor neurons do not appear to depend on calcium influx through voltage-sensitive calcium channels that are gated by action potentials because Calcium oscillations persist after pharmacologically blocking action potentials in the motor neurons. Calcium oscillations were also apparent in the modulatory DUM neurons innervating the same leg muscle. However, the timing of calcium oscillations varied not only between DUM neurons and motor neurons, but also among different DUM neurons. Therefore, we conclude that the motor neurons and the different DUM neurons receive independent central drive.
Collapse
Affiliation(s)
- Jens Goldammer
- Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Charalampos Mantziaris
- Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Ansgar Büschges
- Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Joachim Schmidt
- Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
4
|
Rittschof CC, Schirmeier S. Insect models of central nervous system energy metabolism and its links to behavior. Glia 2017; 66:1160-1175. [DOI: 10.1002/glia.23235] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/30/2017] [Accepted: 09/08/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Clare C. Rittschof
- Department of Entomology; College of Agriculture, Food, and the Environment, University of Kentucky; Lexington Kentucky
| | - Stefanie Schirmeier
- Institut für Neuro-und Verhaltensbiologie, University of Münster; Münster Germany
| |
Collapse
|
5
|
Behringer EJ, Leite LD, Buchholz NE, Keeney MG, Pearce WJ, Vanterpool CK, Wilson SM, Buchholz JN. Maturation and long-term hypoxia alters Ca2+-induced Ca2+ release in sheep cerebrovascular sympathetic neurons. J Appl Physiol (1985) 2009; 107:1223-34. [PMID: 19644029 PMCID: PMC2763832 DOI: 10.1152/japplphysiol.00363.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 07/24/2009] [Indexed: 11/22/2022] Open
Abstract
The contribution of sympathetic nerves arising from the superior cervical ganglia (SCG) toward the growth and function of cerebral blood vessels is pertinent throughout maturation as well as in response to cardiovascular stress imposed by high-altitude long-term hypoxia (LTH). The function of SCG sympathetic neurons is dependent on intracellular Ca2+ concentration ([Ca2+]i) signaling, which is strongly influenced by a process known as Ca(2+)-induced Ca2+ release (CICR) from the smooth endoplasmic reticulum (SER). In this study, we used the sheep SCG neuronal model to test the hypotheses that maturation decreases CICR and high-altitude LTH depresses CICR in fetal SCG neurons but not in those of the adult. We found that the contribution of CICR to electric field stimulation (EFS)-evoked [Ca2+]i transients was greatest in SCG cells from normoxic fetuses and was abolished by LTH. The decline in CICR was associated with a reduction in sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) function in fetal SCG cells during LTH, reducing SER Ca2+ levels below the threshold needed for the coupling of Ca2+ influx and CICR. With respect to the maturation from the fetus to adult, the decrease in CICR may reflect both a reduction in the levels of ryanodine receptor isoforms 2 and 3 and SERCA function. In response to LTH and in contrast to the fetus, CICR function in adult SCG cells is maintained and may reflect alterations in other mechanisms that modulate the CICR process. As CICR is instrumental in the function of sympathetic neurons within the cerebrovasculature, the loss of this signaling mechanism in the fetus may have consequences for the adaptation to LTH in terms of fetal susceptibility to vascular insults.
Collapse
Affiliation(s)
- Erik J Behringer
- Department of Physiology and Pharmacology, Loma Linda Univ. School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Behringer EJ, Vanterpool CK, Pearce WJ, Wilson SM, Buchholz JN. Advancing age alters the contribution of calcium release from smooth endoplasmic reticulum stores in superior cervical ganglion cells. J Gerontol A Biol Sci Med Sci 2009; 64:34-44. [PMID: 19196634 PMCID: PMC2673896 DOI: 10.1093/gerona/gln053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In superior cervical ganglion (SCG) neurons calcium-induced calcium release (CICR), mediated by ryanodine receptors (RyRs), contributes to stimulation-evoked intracellular calcium ([Ca2+]i) transients. Hypothesis: The contribution of CICR to electrical field stimulation (EFS)–evoked [Ca2+]i transients in SCG cells declines with senescence and may be partially recovered in the presence of caffeine. We measured EFS-evoked [Ca2+]i transients in isolated fura-2–loaded SCG cells from Fischer-344 rats aged 6, 12, and 24 months with either the RyR antagonist ryanodine to block the contribution of CICR to [Ca2+]i transients or caffeine to sensitize CICR to EFS. EFS-evoked [Ca2+]i transients increased from 6 to 12 months and declined at 24 months and ryanodine decreased [Ca2+]i transients in SCG cells from 6- and 12-month-old animals only. Caffeine significantly increased EFS-evoked [Ca2+]i transients in all age groups. These data suggest that CICR declines with senescence and residual CICR function may be reclaimed in senescent cells with caffeine.
Collapse
Affiliation(s)
- Erik J Behringer
- Department of Physiology and Pharmacology, Loma Linda University, CA 92354, USA
| | | | | | | | | |
Collapse
|
7
|
Wicher D, Schäfer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 2008; 452:1007-11. [PMID: 18408711 DOI: 10.1038/nature06861] [Citation(s) in RCA: 634] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 02/18/2008] [Indexed: 11/09/2022]
Abstract
From worm to man, many odorant signals are perceived by the binding of volatile ligands to odorant receptors that belong to the G-protein-coupled receptor (GPCR) family. They couple to heterotrimeric G-proteins, most of which induce cAMP production. This second messenger then activates cyclic-nucleotide-gated ion channels to depolarize the olfactory receptor neuron, thus providing a signal for further neuronal processing. Recent findings, however, have challenged this concept of odorant signal transduction in insects, because their odorant receptors, which lack any sequence similarity to other GPCRs, are composed of conventional odorant receptors (for example, Or22a), dimerized with a ubiquitously expressed chaperone protein, such as Or83b in Drosophila. Or83b has a structure akin to GPCRs, but has an inverted orientation in the plasma membrane. However, G proteins are expressed in insect olfactory receptor neurons, and olfactory perception is modified by mutations affecting the cAMP transduction pathway. Here we show that application of odorants to mammalian cells co-expressing Or22a and Or83b results in non-selective cation currents activated by means of an ionotropic and a metabotropic pathway, and a subsequent increase in the intracellular Ca(2+) concentration. Expression of Or83b alone leads to functional ion channels not directly responding to odorants, but being directly activated by intracellular cAMP or cGMP. Insect odorant receptors thus form ligand-gated channels as well as complexes of odorant-sensing units and cyclic-nucleotide-activated non-selective cation channels. Thereby, they provide rapid and transient as well as sensitive and prolonged odorant signalling.
Collapse
Affiliation(s)
- Dieter Wicher
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-St 8, D-07745 Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
8
|
Pszczolkowski MA, Olson E, Rhine C, Ramaswamy SB. Role for calcium in the development of ovarial patency in Heliothis virescens. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:358-66. [PMID: 18036609 DOI: 10.1016/j.jinsphys.2007.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 10/03/2007] [Accepted: 10/04/2007] [Indexed: 05/11/2023]
Abstract
Insect oocytes sequester nutritive proteins from the hemolymph under the regulation by juvenile hormone (JH), in a process called patency. Here, a pharmacological approach was used to decipher the role for calcium in ovarial patency in the moth, Heliothis virescens. Follicular epithelial cells were exposed in calcium-free or calcium-containing media to JH I, JH II or JH III alone, or in combination with various inhibitors of signal transduction. Protein kinase inhibitors, Na(+)/K(+) -ATPase inhibitor, ouabain, an inhibitor of voltage-dependent calcium channels in plasma membrane, omega-Conotoxin MVII, endoplasmic reticulum (ER) Ca(2+) -ATPase inhibitor, thapsigargin, ER inositol 1,4,5-triphosphate receptor (IP(3)R) inhibitor, 2-ABP and ER ryanodine receptor (RyR) inhibitor, ryanodine, were used. The results of our study suggest that JH II evokes patency via protein kinase C-dependent signaling pathway, and activation of Na(+)/K(+) -ATPase, similar to JH III. Response to JH II and JH III predominantly relies upon external and internal calcium stores, using voltage-dependent calcium channels, IP(3)Rs and RyRs. In contrast, regulation of patency by JH I appears to be largely calcium independent, and the calcium-dependent component of the signaling pathway likely does not use IP(3)Rs, but RyRs only. The JH II, JH III and calcium-dependent component of JH I signaling pathway probably utilize calcium/calmodulin-dependent kinase II for activation of Na(+)/K(+) -ATPase.
Collapse
|
9
|
Judd K, Shugert E, Vélez SJ. Depressing effects of caffeine at crayfish neuromuscular synapses I. Dosage response and Ca++ gradient effects. Cell Mol Neurobiol 2007; 27:367-80. [PMID: 17387608 PMCID: PMC11517282 DOI: 10.1007/s10571-006-9130-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 11/02/2006] [Indexed: 10/23/2022]
Abstract
The response of crayfish synaptic terminals to drugs began to be studied to characterize the terminal's physiological characteristics. Caffeine, the first drug to be studied, was selected to enhance synaptic transmission because of its ability to increase calcium release from internal stores.1. The largest excitor neuron to the superficial flexor muscle system of Procambarus clarkii was stimulated at 10 Hz while recording junction potentials from several lateral muscle fibers.2. Caffeine unexpectedly decreased synaptic transmission in this system in a dosage-dependent manner. The depressing effect of caffeine was observed at 5 mM caffeine and junction potentials disappeared completely at 50 mM. Washing the preparation in fresh control Ringers did not restore the amplitudes of the junction potentials.3. Changes in extracellular calcium concentrations delayed or depressed the caffeine effect depending on the calcium gradient across the membrane or the caffeine dosage. The data suggest that calcium is involved in caffeine's response in this system in a way yet to be determined.
Collapse
Affiliation(s)
- Kristin Judd
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755 Germany
| | - Elizabeth Shugert
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755 Germany
| | - Samuel J. Vélez
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755 Germany
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755 Germany
| |
Collapse
|
10
|
Celenza KM, Shugert E, Vélez SJ. Depressing effect of caffeine at crayfish neuromuscular synapses II. Initial search for possible sites of action. Cell Mol Neurobiol 2007; 27:381-93. [PMID: 17235692 PMCID: PMC11517379 DOI: 10.1007/s10571-006-9131-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 11/02/2006] [Indexed: 11/26/2022]
Abstract
Caffeine's unexpected depression of synaptic transmission in the superficial flexor muscle system (SFM) of Procambarus clarkii was studied by looking at three known sites of action of this drug: via adenosine and ryanodine receptors and inhibition of phosphodiesterase.1. JPs did not change in size when exposed to physiological concentrations of adenosine, suggesting that the SFM system lacks presynaptic adenosine receptors.2. JPs slightly increased in size in the presence of a phosphodiesterase inhibitor, the opposite response to that obtained with caffeine, suggesting that caffeine is not acting via this pathway.3. A calcium ionophore immediately enhanced synaptic transmission in the SFM system but when given in combination with caffeine the enhancement is reduced and declines over time.4. Serotonin enhanced synaptic transmission in the SFM system, but when given in combination with caffeine this enhancement was not observed.5. These caffeine effects are interpreted in terms of alterations to the calcium homeostatic mechanisms of the terminals.
Collapse
Affiliation(s)
- Kathryn M. Celenza
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755 USA
| | - Elizabeth Shugert
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755 USA
| | - Samuel J. Vélez
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755 USA
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755 USA
| |
Collapse
|
11
|
Wicher D, Agricola HJ, Schönherr R, Heinemann SH, Derst C. TRPgamma channels are inhibited by cAMP and contribute to pacemaking in neurosecretory insect neurons. J Biol Chem 2005; 281:3227-36. [PMID: 16319060 DOI: 10.1074/jbc.m511741200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
From a neuronal cDNA library of the cockroach Periplaneta americana we isolated a 3585-bp cDNA sequence encoding Periplaneta transient receptor potential gamma (pTRPgamma), a protein of 1194 amino acids showing 65% identity to the orthologous Drosophila channel protein dTRPgamma. Heterologous expression of pTRPgamma in HEK293 cells produced a constitutively active, non-selective cation channel with a Ca2+:Na+ permeability ratio of 2. In contrast to dTRPgamma-mediated currents, pTRPgamma currents were partially inhibited by 8-bromo-cAMP, and this effect was not mediated by protein kinase A (PKA) activation. pTRPgammab, a truncated pTRPgamma splice variant missing most of the C terminus, was insensitive to 8-bromo-cAMP. Thus, the critical cAMP-binding site seems to be located in the C-terminal part of pTRPgamma, although there is no common cAMP-binding consensus sequence. While dTRPgamma is only expressed in the photoreceptors, pTRPgamma is expressed throughout the nervous system. In particular it is expressed in dorsal unpaired median (DUM) neurons. In these octopamine-releasing, neurosecretory cells a Ca2+ background current contributing to pacemaker activity was found to be up-regulated by the reduction of cAMP level. In addition, the Ca2+ background current was inhibited by LOE-908, 2-APB, and La3+, which similarly affected the pTRPgamma current. We thus propose that the pTRPgamma protein is involved in forming the channel passing the Ca2+ pakemaking background current in DUM neurons.
Collapse
Affiliation(s)
- Dieter Wicher
- Department of Neurohormones, Saxon Academy of Sciences, 07743 Jena, Germany.
| | | | | | | | | |
Collapse
|
12
|
Vanterpool CK, Pearce WJ, Buchholz JN. Advancing age alters rapid and spontaneous refilling of caffeine-sensitive calcium stores in sympathetic superior cervical ganglion cells. J Appl Physiol (1985) 2005; 99:963-71. [PMID: 15845773 PMCID: PMC1188236 DOI: 10.1152/japplphysiol.00343.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intracellular calcium concentration ([Ca2+]i) release from smooth endoplasmic reticulum (SER) stores plays an important role in cell signaling. These stores are rapidly refilled via influx through voltage-gated calcium channels or spontaneously via store-operated calcium channels and subsequent pumping by SER Ca2+-ATPases. We measured [Ca2+]i transients in isolated fura 2-loaded superior cervical ganglion cells from 6-, 12-, 20-, and 24-mo-old Fischer 344 rats. For rapid refilling, [Ca2+]i transients were elicited by a 1) 5-s exposure to K+, 2) caffeine to release Ca2+ from SER stores, 3) K+ to refill SER Ca2+ stores, and 4) caffeine. The percent difference between the peak and rate of rise of the first and second caffeine-evoked [Ca2+]i transient significantly declined over the age range of 12-24 mo. To estimate spontaneous refilling, cells were depolarized for 5 s with 68 mM K+ (control), followed by a 10-s exposure to 10 mM caffeine "conditioning stimulus" to deplete [Ca2+]i stores. Caffeine was then rapidly applied for 5 s at defined intervals from 60 to 300 s. Integrated caffeine-evoked [Ca2+]i transients were measured and plotted as a percentage of the K+ response vs. time. The derivative of the refilling time curves significantly declined over the age range from 12-24 mo. Overall, these data suggest that the ability of superior cervical ganglion cells to sustain release of [Ca2+]i following rapid or spontaneous refilling declines with advancing age. Compromised ability to sustain calcium signaling may possibly alter the overall function of adrenergic neurons innervating the cerebrovasculature.
Collapse
Affiliation(s)
| | | | - John N. Buchholz
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Loma Linda, California, 92354
| |
Collapse
|
13
|
Verkhratsky A. Physiology and Pathophysiology of the Calcium Store in the Endoplasmic Reticulum of Neurons. Physiol Rev 2005; 85:201-79. [PMID: 15618481 DOI: 10.1152/physrev.00004.2004] [Citation(s) in RCA: 567] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum (ER) is the largest single intracellular organelle, which is present in all types of nerve cells. The ER is an interconnected, internally continuous system of tubules and cisterns, which extends from the nuclear envelope to axons and presynaptic terminals, as well as to dendrites and dendritic spines. Ca2+release channels and Ca2+pumps residing in the ER membrane provide for its excitability. Regulated ER Ca2+release controls many neuronal functions, from plasmalemmal excitability to synaptic plasticity. Enzymatic cascades dependent on the Ca2+concentration in the ER lumen integrate rapid Ca2+signaling with long-lasting adaptive responses through modifications in protein synthesis and processing. Disruptions of ER Ca2+homeostasis are critically involved in various forms of neuropathology.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester, Faculty of Biological Sciences, United Kingdom.
| |
Collapse
|
14
|
Wicher D, Messutat S, Lavialle C, Lapied B. A new regulation of non-capacitative calcium entry in insect pacemaker neurosecretory neurons. Involvement of arachidonic acid, no-guanylyl cyclase/cGMP, and cAMP. J Biol Chem 2004; 279:50410-9. [PMID: 15364947 DOI: 10.1074/jbc.m405800200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efferent dorsal unpaired median neurons are pacemaker neurosecretory cells. A Ca(2+) background current contributing to the pacemaker activity of cockroach dorsal unpaired median neurons is up-regulated by neurohormone D (NHD), an octapeptide belonging to the adipokinetic hormone family. This modulation accelerates spiking and increases [Ca(2+)](i). Using patch clamp, calcium imaging, and immunocytochemistry, we investigated the signaling pathway of NHD-induced current modulation. The membrane depolarization produced by NHD was related to the increase in membrane conductance for Ca(2+), Ba(2+), or Sr(2+). This increase was abolished by LOE 908, an inhibitor of noncapacitive Ca(2+) entry (NCCE), and it was strongly attenuated by the phospholipase C inhibitor U37122 and the diacylglycerol lipase inhibitor RHC80267. Arachidonic acid and ETYA mimicked the NHD effect on background current. This was abolished by l-NAME and ODQ, inhibitors of NO synthase and NO-sensitive guanylyl cyclase, respectively, but mimicked by the NO donor sodium nitroprusside and 8-bromo-cGMP. Immunocytochemistry using cGMP antibodies indicated that NHD and ETYA increase cGMP. Inhibition of protein kinase G with KT5823 and R(p)-8-pCPT-cGMPS had no effect, whereas zaprinast, a cGMP-specific phosphodiesterase 5,6,9 inhibitor, mimicked the NHD effect. Furthermore, inhibition of the cGMP-activated phosphodiesterase 2 by EHNA and trequinsin abolished the effect of NHD. We conclude that the final step of the NHD signal transduction is the phosphodiesterase 2-induced down-regulation of the cAMP level. This removes a depression of NCCE directly attributed to cAMP because inhibition of protein kinase A with KT5720, R(p)-cAMPS, and PKI14-22 amide did not mimic the NHD effect. We also demonstrate that any mechanism increasing the cGMP level can induce NCCE.
Collapse
Affiliation(s)
- Dieter Wicher
- Saxon Academy of Sciences, Department Neurohormones, Erbertstrasse 1, 07743 Jena, Germany.
| | | | | | | |
Collapse
|
15
|
Kárai LJ, Russell JT, Iadarola MJ, Oláh Z. Vanilloid receptor 1 regulates multiple calcium compartments and contributes to Ca2+-induced Ca2+ release in sensory neurons. J Biol Chem 2004; 279:16377-87. [PMID: 14963041 DOI: 10.1074/jbc.m310891200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Vanilloid receptor 1 belongs to the transient receptor potential ion channel family and transduces sensations of noxious heat and inflammatory hyperalgesia in nociceptive neurons. These neurons contain two vanilloid receptor pools, one in the plasma membrane and the other in the endoplasmic reticulum. The present experiments characterize these two pools and their functional significance using calcium imaging and 45Ca uptake in stably transfected cells or dorsal root ganglion neurons. The plasma membrane localized receptor is directly activated by vanilloids. The endoplasmic reticulum pool was demonstrated to be independently activated with 20 microm capsaicin or 1.6 microm resiniferatoxin using a bathing solution containing 10 microm Ruthenium Red (to selectively block plasma membrane-localized receptors) and 100 microm EGTA. We also demonstrate an overlap between the endoplasmic reticulum-localized vanilloid receptor regulated stores and thapsigargin-sensitive stores. Direct depletion of calcium via activation of endoplasmic reticulum-localized vanilloid receptor 1 triggered store operated calcium entry. Furthermore, we found that, in the presence of low extracellular calcium (10(-5) m), either 2 microm capsaicin or 0.1 nm-1.6 microm resiniferatoxin caused a pronounced calcium-induced calcium release in either vanilloid receptor-expressing neurons or heterologous expression systems. This phenomenon may allow new insight into how nociceptive neuron function in response to a variety of nociceptive stimuli both acutely and during prolonged nociceptive signaling.
Collapse
Affiliation(s)
- László J Kárai
- Neuronal Gene Expression Unit, Pain and Neurosensory Mechanisms Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
16
|
Wegener C, Hamasaka Y, Nässel DR. Acetylcholine increases intracellular Ca2+ via nicotinic receptors in cultured PDF-containing clock neurons of Drosophila. J Neurophysiol 2003; 91:912-23. [PMID: 14534288 DOI: 10.1152/jn.00678.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Light entrains the biological clock both in adult and larval Drosophila melanogaster. The Bolwig organ photoreceptors most likely constitute one substrate for this light entrainment in larvae. Acetylcholine (ACh) has been suggested as the neurotransmitter in these photoreceptors, but there is no evidence that ACh signaling is involved in photic input onto circadian pacemaker neurons. Here we demonstrate that the putative targets of the Bolwig photoreceptors, the PDF-containing clock neurons (LNs), in the larval brain express functional ACh receptors (AChRs). With the use of GAL4-UAS-driven expression of green fluorescent protein (GFP), we were able to identify LNs in dissociated cell culture. After loading with the Ca(2+)-sensitive dye fura-2, we monitored changes in intracellular Ca(2+) levels ([Ca(2+)](i)) in GFP-marked LNs while applying candidate neurotransmitters. ACh induced transient increases in [Ca(2+)](i) at physiological concentrations. These increases were dependent on extracellular Ca(2+) and Na(+) and were likely caused by activation of voltage-dependent Ca(2+) channels. Application of nicotinic and muscarinic agonists and antagonists showed that the AChRs on cultured LNs have a nicotinic pharmacology. Antibodies to several subunits of nicotinic AChRs (nAChRs) labeled the putative contact site of the Bolwig organ axon terminals with the dendrites of LNs, as well as dissociated LNs in culture. Our findings support a role of ACh as input factor onto the LNs and suggest that Ca(2+) is used as a second messenger mediating cholinergic input within the LNs. Experiments using a more general GAL4-UAS-driven expression of GFP showed that functional expression of nAChRs is a widespread phenomenon in peptidergic neurons.
Collapse
Affiliation(s)
- Christian Wegener
- Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | |
Collapse
|
17
|
Courjaret R, Grolleau F, Lapied B. Two distinct calcium-sensitive and -insensitive PKC up- and down-regulate an alpha-bungarotoxin-resistant nAChR1 in insect neurosecretory cells (DUM neurons). Eur J Neurosci 2003; 17:2023-34. [PMID: 12786968 DOI: 10.1046/j.1460-9568.2003.02644.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
While there is mounting knowledge about the structure and diversity of insect neuronal nicotinic acetylcholine receptors, less attention has been directed towards their intracellular regulation by calcium-mediated activation or inhibition of protein phosphorylation. The main goal of this work was to delineate the chain of molecular events that lead to the up- and down-regulation by two protein kinase Cs of an insect neuronal alpha-bungarotoxin-resistant nicotinic acetylcholine receptor (called nAChR1). The native nicotinic acetylcholine receptor intracellular regulation was studied on dissociated adult dorsal unpaired median neurons isolated from the terminal abdominal ganglion of the cockroach Periplaneta americana using whole-cell patch-clamp technique and calcium imaging. We report that under 0.5 micro malpha-bungarotoxin treatment, the inward current produced by pressure ejection application of nicotine onto the cell body was differentially sensitive to specific protein kinase C activators and inhibitors. The phorbol ester PMA produced a calcium-dependent increase in current amplitude blocked by chelerythrine. By contrast, the diacylglycerol analogue 1,2-dioctanoyl-sn-glycerol produced a calcium-independent reduction of the nicotinic response, reversed by rottlerin and chelerythrine. This indicated that two protein kinase C isozymes ('classical' and 'novel' protein kinase C, named PKC1 and PKC2, respectively) up- and down-regulated nicotinic acetylcholine receptor function. PMA and 1,2-dioctanoyl-sn-glycerol effects were mimicked by pirenzepine-sensitive M1 muscarinic receptor subtype coupled to phospholipase C second messenger pathway. Low concentration of muscarine elevated internal calcium levels, which thereby activated PKC1. By contrast, a high concentration of muscarine strongly increased [Ca 2+]i, which induced inhibition of PKC1. This effect was reversed by FK506, suggesting the implication of PP2B which unmasked PKC2 activity mediating down-regulation of nicotinic acetylcholine receptor.
Collapse
Affiliation(s)
- Raphaël Courjaret
- Laboratoire de Neurophysiologie UPRES EA 2647, Récepteurs et Canaux Ioniques Membranaires, Université d'Angers, UFR Sciences, 2 Boulevard Lavoisier, F-49045 Angers Cedex, France
| | | | | |
Collapse
|
18
|
Brône B, Tytgat J, Wang DC, Van Kerkhove E. Characterization of Na(+) currents in isolated dorsal unpaired median neurons of Locusta migratoria and effect of the alpha-like scorpion toxin BmK M1. JOURNAL OF INSECT PHYSIOLOGY 2003; 49:171-182. [PMID: 12770010 DOI: 10.1016/s0022-1910(02)00263-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A primary cell culture was developed for efferent dorsal unpaired median (DUM) neurons of the locust. The isolated somata were able to generate Tetrodotoxin (TTX)-sensitive action potentials in vitro. The alpha-like scorpion toxin BmK M1, from the Asian scorpion Buthus martensi Karsch, prolonged the duration of the action potential up to 50 times. To investigate the mechanism of action of BmK M1, the TTX-sensitive voltage gated Na(+) currents were studied in detail using the whole cell patch clamp technique. BmK M1 slowed down and partially inhibited the inactivation of the TTX-sensitive Na(+) current in a dose dependent manner (EC50=326.8+/-34.5 nM). Voltage and time dependence of the Na(+) current were described in terms of the Hodgkin-Huxley model and compared in control conditions and in the presence of 500 nM BmK M1. The BmK M1 shifted steady state inactivation by 10.8 mV to less negative potentials. The steady state activation was shifted by 5.5 mV to more negative potentials, making the activation window larger. Moreover, BmK M1 increased the fast time constant of inactivation, leaving the activation time constant unchanged. In summary, BmK M1 primarily affected the inactivation parameters of the voltage gated Na(+) current in isolated locust DUM neurons.
Collapse
Affiliation(s)
- B Brône
- Laboratory of Physiology, Biomed, Limburgs Universitair Centrum, Universitaire Campus Gebouw D, B-3590 Diepenbeek, Belgium
| | | | | | | |
Collapse
|
19
|
Abstract
The endoplasmic reticulum (ER) is a multifunctional signalling organelle regulating a wide range of neuronal functional responses. The ER is intimately involved in intracellular Ca(2+) signalling, producing local or global cytosolic calcium fluctuations via Ca(2+)-induced Ca(2+) release (CICR) or inositol-1,4,5-trisphosphate-induced Ca(2+) release (IICR). The CICR and IICR are controlled by two subsets of Ca(2+) release channels residing in the ER membrane, the Ca(2+)-gated Ca(2+) release channels, generally known as ryanodine receptors (RyRs) and InsP(3)-gated Ca(2+) release channels, referred to as InsP(3)-receptors (InsP(3)Rs). Both types of Ca(2+) release channels are expressed abundantly in nerve cells and their activation triggers cytoplasmic Ca(2+) signals important for synaptic transmission and plasticity. The RyRs and InsP(3)Rs show heterogeneous localisation in distinct cellular sub-compartments, conferring thus specificity in local Ca(2+) signals. At the same time, the ER Ca(2+) store emerges as a single interconnected pool fenced by the endomembrane. The continuity of the ER Ca(2+) store could play an important role in various aspects of neuronal signalling. For example, Ca(2+) ions may diffuse within the ER lumen with comparative ease, endowing this organelle with the capacity for "Ca(2+) tunnelling". Thus, continuous intra-ER Ca(2+) highways may be very important for the rapid replenishment of parts of the pool subjected to excessive stimulation (e.g. in small compartments within dendritic spines), the facilitated removal of localised Ca(2+) loads, and finally in conveying Ca(2+) signals from the site of entry towards the cell interior and nucleus.
Collapse
Affiliation(s)
- A Verkhratsky
- School of Biological Sciences, The University of Manchester, 1.124 Stopford Building, Oxford Road, M13 9PT, Manchester, UK.
| |
Collapse
|
20
|
Hajnóczky G, Csordás G, Yi M. Old players in a new role: mitochondria-associated membranes, VDAC, and ryanodine receptors as contributors to calcium signal propagation from endoplasmic reticulum to the mitochondria. Cell Calcium 2002; 32:363-77. [PMID: 12543096 DOI: 10.1016/s0143416002001872] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In many cell types, IP(3) and ryanodine receptor (IP(3)R/RyR)-mediated Ca(2+) mobilization from the sarcoendoplasmic reticulum (ER/SR) results in an elevation of mitochondrial matrix [Ca(2+)]. Although delivery of the released Ca(2+) to the mitochondria has been established as a fundamental signaling process, the molecular mechanism underlying mitochondrial Ca(2+) uptake remains a challenge for future studies. The Ca(2+) uptake can be divided into the following three steps: (1) Ca(2+) movement from the IP(3)R/RyR to the outer mitochondrial membrane (OMM); (2) Ca(2+) transport through the OMM; and (3) Ca(2+) transport through the inner mitochondrial membrane (IMM). Evidence has been presented that Ca(2+) delivery to the OMM is facilitated by a local coupling between closely apposed regions of the ER/SR and mitochondria. Recent studies of the dynamic changes in mitochondrial morphology and visualization of the subcellular pattern of the calcium signal provide important clues to the organization of the ER/SR-mitochondrial interface. Interestingly, key steps of phospholipid synthesis and transfer to the mitochondria have also been confined to subdomains of the ER tightly associated with the mitochondria, referred as mitochondria-associated membranes (MAMs). Through the OMM, the voltage-dependent anion channels (VDAC, porin) have been thought to permit free passage of ions and other small molecules. However, recent studies suggest that the VDAC may represent a regulated step in Ca(2+) transport from IP(3)R/RyR to the IMM. A novel proposal regarding the IMM Ca(2+) uptake site is a mitochondrial RyR that would mediate rapid Ca(2+) uptake by mitochondria in excitable cells. An overview of the progress in these directions is described in the present paper.
Collapse
Affiliation(s)
- G Hajnóczky
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 19107, Philadelphia, PA, USA.
| | | | | |
Collapse
|
21
|
Verkhratsky A, Petersen OH. The endoplasmic reticulum as an integrating signalling organelle: from neuronal signalling to neuronal death. Eur J Pharmacol 2002; 447:141-54. [PMID: 12151006 DOI: 10.1016/s0014-2999(02)01838-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The endoplasmic reticulum is one of the largest intracellular organelles represented by continuous network of cisternae and tubules, which occupies the substantial part of neuronal somatas and extends into finest neuronal processes. The endoplasmic reticulum controls protein synthesis as well as their post-translational processing, and generates variety of nucleus-targeted signals through Ca(2+)-binding chaperones. The normal functioning of the endoplasmic reticulum signalling cascades requires high concentrations of free calcium ions within the endoplasmic reticulum lumen ([Ca(2+)](L)), and severe alterations in [Ca(2+)](L) trigger endoplasmic reticulum stress response, manifested by either unfolded protein response (UPR) or endoplasmic reticulum overload response (EOR). At the same time, the endoplasmic reticulum is critically involved in fast neuronal signalling, by producing local or global cytosolic calcium signals via Ca(2+)-induced Ca(2+) release (CICR) or inositol-1,4,5-trisphosphate-induced Ca(2+) release (IICR). Both CICR and IICR are important for synaptic transmission and synaptic plasticity. Several special techniques allowing real-time [Ca(2+)](L) monitoring were developed recently. Video-imaging of [Ca(2+)](L) in neurones demonstrates that physiological signalling triggers minor decreases in overall intraluminal Ca(2+) concentration due to strong activation of Ca(2+) uptake, which prevents severe [Ca(2+)](L) alterations. The endoplasmic reticulum lumen also serves as a "tunnel" which allows rapid transport of Ca(2+) ions within highly polarised nerve cells. Fluctuations of intraluminal free Ca(2+) concentration represent a universal mechanism, which integrates physiological cellular signalling with protein synthesis and processing. In pathological conditions, fluctuations in [Ca(2+)](L) may initiate either adaptive or fatal stress responses.
Collapse
Affiliation(s)
- Alexej Verkhratsky
- School of Biological Sciences, The University of Manchester, 1.124 Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| | | |
Collapse
|
22
|
Wicher D. Peptidergic modulation of insect voltage-gated Ca(2+) currents: role of resting Ca(2+) current and protein kinases A and C. J Neurophysiol 2001; 86:2353-62. [PMID: 11698525 DOI: 10.1152/jn.2001.86.5.2353] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The modulation of voltage-gated Ca(2+) currents in isolated dorsal unpaired median (DUM) neurons of cockroach was investigated using whole cell patch clamp. The neuropeptide neurohormone D (NHD), a member of the adipokinetic hormone family, affected Ca(2+) currents at pico- to nanomolar concentrations. It strongly enhanced currents activating at lower depolarizations, whereas those activating at strong depolarizations were slightly attenuated. The first effect results from upregulation of a previously characterized omega-conotoxin MVIIC- and omega-agatoxin IVA-sensitive "mid/low voltage-activated" (M-LVA) Ca(2+) current. The cAMP-analogue 8-bromo-cAMP, forskolin, and the catalytic subunit of protein kinase A (PKA) mimicked the stimulating action of NHD. In addition, preincubation of neurons with the PKA inhibitor KT 5720 abolished the action of NHD. Thus NHD seems to upregulate the M-LVA current via channel phosphorylation by PKA. Activation of protein kinase C by oleoylacetylglycerol (OAG) mimicked the effect of NHD, and subsequent NHD application only enhanced the current to a moderate extent. On the other hand, inhibition of protein kinase C (PKC) by Gö 6976 abolished the NHD effect. These results indicate that also PKC, too, may play a role in the peptidergic modulation of the M-LVA Ca(2+) current. The reduction of Ca(2+) currents in the high-voltage-range is caused by the NHD-induced upregulation of a voltage-independent Ca(2+) resting current, I(Ca,R), which most probably leads to enhanced Ca(2+)-dependent inactivation of voltage-gated Ca(2+) currents. To assess the major consequences of the Ca(2+) current changes, current-clamp investigations were performed. Experiments with iberiotoxin, a specific blocker of BK-type Ca(2+)-dependent K(+) currents, and the M-LVA current-blocking omega-toxins suggested that NHD causes-via increasing Ca(2+)-dependent K(+) currents-a larger hyperpolarization of action potentials. The lowering in the action potential threshold produced by NHD, however, seems to be a direct consequence of the hyperpolarizing shift of the activation curve of total Ca(2+) current resulting from NHD-induced upregulation of the M-LVA current component.
Collapse
Affiliation(s)
- D Wicher
- Sächsische Akademie der Wissenschaften zu Leipzig, D-07743 Jena, Germany.
| |
Collapse
|