1
|
Ko J, Song J, Choi N, Kim HN. Patient-Derived Microphysiological Systems for Precision Medicine. Adv Healthc Mater 2024; 13:e2303161. [PMID: 38010253 PMCID: PMC11469251 DOI: 10.1002/adhm.202303161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Patient-derived microphysiological systems (P-MPS) have emerged as powerful tools in precision medicine that provide valuable insight into individual patient characteristics. This review discusses the development of P-MPS as an integration of patient-derived samples, including patient-derived cells, organoids, and induced pluripotent stem cells, into well-defined MPSs. Emphasizing the necessity of P-MPS development, its significance as a nonclinical assessment approach that bridges the gap between traditional in vitro models and clinical outcomes is highlighted. Additionally, guidance is provided for engineering approaches to develop microfluidic devices and high-content analysis for P-MPSs, enabling high biological relevance and high-throughput experimentation. The practical implications of the P-MPS are further examined by exploring the clinically relevant outcomes obtained from various types of patient-derived samples. The construction and analysis of these diverse samples within the P-MPS have resulted in physiologically relevant data, paving the way for the development of personalized treatment strategies. This study describes the significance of the P-MPS in precision medicine, as well as its unique capacity to offer valuable insights into individual patient characteristics.
Collapse
Affiliation(s)
- Jihoon Ko
- Department of BioNano TechnologyGachon UniversitySeongnam‐siGyeonggi‐do13120Republic of Korea
| | - Jiyoung Song
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Nakwon Choi
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science & TechnologyKIST SchoolSeoul02792Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Hong Nam Kim
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science & TechnologyKIST SchoolSeoul02792Republic of Korea
- School of Mechanical EngineeringYonsei UniversitySeoul03722Republic of Korea
- Yonsei‐KIST Convergence Research InstituteYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
2
|
Targeting of the Interleukin-13 Receptor (IL-13R)α2 Expressing Prostate Cancer by a Novel Hybrid Lytic Peptide. Biomolecules 2023; 13:biom13020356. [PMID: 36830725 PMCID: PMC9953383 DOI: 10.3390/biom13020356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
The IL-13Rα2 cell surface receptor is highly expressed in tumours such as prostate cancer. In this report, we evaluated the hypothesis that prostate cancer cells with enhanced IL-13Rα2 expression are a suitable target for the hybrid lytic peptide (Pep-1-Phor21) peptide, which is generated by fusing the IL-13Rα2 specific ligand (Pep-1) and a cell membrane disrupting lytic peptide (Phor21). The expression of IL-13Rα2 mRNA and protein in prostate cancer tissues and cell lines was assessed via real-time PCR (RT-PCR) and immunoblotting. The effect of Pep-1-Phor21 on the viability of prostate cancer cells grown in monolayers (2D) and microtissue spheroids (3D) was assessed via CellTox green cytotoxic assay. IL-13Rα2 expression and Pep-1-Phor21-mediated killing were also determined in the cells treated with epigenetic regulators (Trichostatin A (TSA) and 5-aza-2 deoxycytidine (5-Aza-dC)). The hybrid lytic peptide cytotoxic activity correlated with the expression of IL-13Rα2 in prostate cancer cell lines cultured as monolayers (2D) or 3D spheroids. In addition, TSA or 5-Aza-dC treatment of prostate cancer cells, particularly those with low expression of IL-13Rα2, enhanced the cells' sensitivity to the lytic peptide by increasing IL-13Rα2 expression. These results demonstrate that the Pep-1-Phor21 hybrid lytic peptide has potent and selective anticancer properties against IL-13Rα2-expressing prostate cancer cells.
Collapse
|
3
|
Fan TW, Higashi RM, Song H, Daneshmandi S, Mahan AL, Purdom MS, Bocklage TJ, Pittman TA, He D, Wang C, Lane AN. Innate immune activation by checkpoint inhibition in human patient-derived lung cancer tissues. eLife 2021; 10:69578. [PMID: 34406120 PMCID: PMC8476122 DOI: 10.7554/elife.69578] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Although Pembrolizumab-based immunotherapy has significantly improved lung cancer patient survival, many patients show variable efficacy and resistance development. A better understanding of the drug’s action is needed to improve patient outcomes. Functional heterogeneity of the tumor microenvironment (TME) is crucial to modulating drug resistance; understanding of individual patients’ TME that impacts drug response is hampered by lack of appropriate models. Lung organotypic tissue slice cultures (OTC) with patients’ native TME procured from primary and brain-metastasized (BM) non-small cell lung cancer (NSCLC) patients were treated with Pembrolizumab and/or beta-glucan (WGP, an innate immune activator). Metabolic tracing with 13C6-Glc/13C5,15N2-Gln, multiplex immunofluorescence, and digital spatial profiling (DSP) were employed to interrogate metabolic and functional responses to Pembrolizumab and/or WGP. Primary and BM PD-1+ lung cancer OTC responded to Pembrolizumab and Pembrolizumab + WGP treatments, respectively. Pembrolizumab activated innate immune metabolism and functions in primary OTC, which were accompanied by tissue damage. DSP analysis indicated an overall decrease in immunosuppressive macrophages and T cells but revealed microheterogeneity in immune responses and tissue damage. Two TMEs with altered cancer cell properties showed resistance. Pembrolizumab or WGP alone had negligible effects on BM-lung cancer OTC but Pembrolizumab + WGP blocked central metabolism with increased pro-inflammatory effector release and tissue damage. In-depth metabolic analysis and multiplex TME imaging of lung cancer OTC demonstrated overall innate immune activation by Pembrolizumab but heterogeneous responses in the native TME of a patient with primary NSCLC. Metabolic and functional analysis also revealed synergistic action of Pembrolizumab and WGP in OTC of metastatic NSCLC.
Collapse
Affiliation(s)
- Teresa Wm Fan
- Center for Environmental and Systems Biochemistry (CESB), University of Kentucky, Lexington, United States.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States.,Markey Cancer Center, University of Kentucky, Lexington, United States
| | - Richard M Higashi
- Center for Environmental and Systems Biochemistry (CESB), University of Kentucky, Lexington, United States.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States.,Markey Cancer Center, University of Kentucky, Lexington, United States
| | - Huan Song
- Center for Environmental and Systems Biochemistry (CESB), University of Kentucky, Lexington, United States.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States.,Markey Cancer Center, University of Kentucky, Lexington, United States
| | - Saeed Daneshmandi
- Center for Environmental and Systems Biochemistry (CESB), University of Kentucky, Lexington, United States.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States.,Markey Cancer Center, University of Kentucky, Lexington, United States
| | - Angela L Mahan
- Markey Cancer Center, University of Kentucky, Lexington, United States.,Departement of Surgery, University of Kentucky, Lexington, United States
| | - Matthew S Purdom
- Markey Cancer Center, University of Kentucky, Lexington, United States.,Departement of Pathology and Laboratory Medicine, University of Kentucky, Lexington, United States
| | - Therese J Bocklage
- Markey Cancer Center, University of Kentucky, Lexington, United States.,Departement of Pathology and Laboratory Medicine, University of Kentucky, Lexington, United States
| | - Thomas A Pittman
- Department of Neurosurgery, University of Kentucky, Lexington, United States
| | - Daheng He
- Markey Cancer Center, University of Kentucky, Lexington, United States.,Department Internal Medicine, University of Kentucky, Lexington, United States
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, United States.,Department Internal Medicine, University of Kentucky, Lexington, United States
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry (CESB), University of Kentucky, Lexington, United States.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States.,Markey Cancer Center, University of Kentucky, Lexington, United States
| |
Collapse
|
4
|
De Las Rivas J, Brozovic A, Izraely S, Casas-Pais A, Witz IP, Figueroa A. Cancer drug resistance induced by EMT: novel therapeutic strategies. Arch Toxicol 2021; 95:2279-2297. [PMID: 34003341 PMCID: PMC8241801 DOI: 10.1007/s00204-021-03063-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
Over the last decade, important clinical benefits have been achieved in cancer patients by using drug-targeting strategies. Nevertheless, drug resistance is still a major problem in most cancer therapies. Epithelial-mesenchymal plasticity (EMP) and tumour microenvironment have been described as limiting factors for effective treatment in many cancer types. Moreover, epithelial-to-mesenchymal transition (EMT) has also been associated with therapy resistance in many different preclinical models, although limited evidence has been obtained from clinical studies and clinical samples. In this review, we particularly deepen into the mechanisms of which intermediate epithelial/mesenchymal (E/M) states and its interconnection to microenvironment influence therapy resistance. We also describe how the use of bioinformatics and pharmacogenomics will help to figure out the biological impact of the EMT on drug resistance and to develop novel pharmacological approaches in the future.
Collapse
Affiliation(s)
- Javier De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Salamanca, Spain
| | - Anamaria Brozovic
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Sivan Izraely
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Alba Casas-Pais
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Spain.,Universidade da Coruña (UDC), Coruña, Spain
| | - Isaac P Witz
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Angélica Figueroa
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Spain. .,Universidade da Coruña (UDC), Coruña, Spain.
| |
Collapse
|
5
|
Luan S, Zeng X, Zhang C, Qiu J, Yang Y, Mao C, Xiao X, Zhou J, Zhang Y, Yuan Y. Advances in Drug Resistance of Esophageal Cancer: From the Perspective of Tumor Microenvironment. Front Cell Dev Biol 2021; 9:664816. [PMID: 33816512 PMCID: PMC8017339 DOI: 10.3389/fcell.2021.664816] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/28/2021] [Indexed: 02/05/2023] Open
Abstract
Drug resistance represents the major obstacle to get the maximum therapeutic benefit for patients with esophageal cancer since numerous patients are inherently or adaptively resistant to therapeutic agents. Notably, increasing evidence has demonstrated that drug resistance is closely related to the crosstalk between tumor cells and the tumor microenvironment (TME). TME is a dynamic and ever-changing complex biological network whose diverse cellular and non-cellular components influence hallmarks and fates of tumor cells from the outside, and this is responsible for the development of resistance to conventional therapeutic agents to some extent. Indeed, the formation of drug resistance in esophageal cancer should be considered as a multifactorial process involving not only cancer cells themselves but cancer stem cells, tumor-associated stromal cells, hypoxia, soluble factors, extracellular vesicles, etc. Accordingly, combination therapy targeting tumor cells and tumor-favorable microenvironment represents a promising strategy to address drug resistance and get better therapeutic responses for patients with esophageal cancer. In this review, we mainly focus our discussion on molecular mechanisms that underlie the role of TME in drug resistance in esophageal cancer. We also discuss the opportunities and challenges for therapeutically targeting tumor-favorable microenvironment, such as membrane proteins, pivotal signaling pathways, and cytokines, to attenuate drug resistance in esophageal cancer.
Collapse
Affiliation(s)
- Siyuan Luan
- Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiajun Qiu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yushang Yang
- Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Chengyi Mao
- Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Xiao
- Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jianfeng Zhou
- Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yonggang Zhang
- Department of Periodical Press, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Nursing Key Laboratory of Sichuan Province, Chengdu, China
| | - Yong Yuan
- Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Dai L, Song K, Di W. Adipocytes: active facilitators in epithelial ovarian cancer progression? J Ovarian Res 2020; 13:115. [PMID: 32967712 PMCID: PMC7513299 DOI: 10.1186/s13048-020-00718-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
There is growing evidence that adipocytes play important roles in the progression of multiple cancers. Moreover, in obesity, adipocytes alter their original functions and contribute to the metabolic and inflammatory changes of adipose tissue microenvironment, which can further enhance tumor development. At present, the roles of adipocytes in the pathogenesis of epithelial ovarian cancer (EOC) are far from being fully elucidated. Herein, we summarized the recent advances in understanding the roles of adipocytes in EOC progression. Adipocytes, close neighbors of EOC tissue, promote EOC growth, invasion, metastasis and angiogenesis through adipokine secretion, metabolic remodeling and immune microenvironment modulation. Moreover, adipocytes are important therapeutic targets and may work as useful anticancer drug delivery depot for EOC treatment. Furthermore, adipocytes also act as a therapeutic obstacle for their involvement in EOC treatment resistance. Hence, better characterization of the adipocytes in EOC microenvironment and the crosstalk between adipocytes and EOC cells may provide insights into EOC progression and suggest novel therapeutic opportunities.
Collapse
Affiliation(s)
- Lan Dai
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Keqi Song
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wen Di
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,State Key Laboratory of Oncogene and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
7
|
Wang T, Wang L, Wang G, Zhuang Y. Leveraging and manufacturing in vitro multicellular spheroid-based tumor cell model as a preclinical tool for translating dysregulated tumor metabolism into clinical targets and biomarkers. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00325-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
8
|
Gooding AJ, Schiemann WP. Epithelial-Mesenchymal Transition Programs and Cancer Stem Cell Phenotypes: Mediators of Breast Cancer Therapy Resistance. Mol Cancer Res 2020; 18:1257-1270. [PMID: 32503922 DOI: 10.1158/1541-7786.mcr-20-0067] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/20/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
Abstract
Epithelial-mesenchymal transition (EMT) programs play essential functions in normal morphogenesis and organogenesis, including that occurring during mammary gland development and glandular regeneration. Historically, EMT programs were believed to reflect a loss of epithelial gene expression signatures and morphologies that give way to those associated with mesenchymal cells and their enhanced migratory and invasive behaviors. However, accumulating evidence now paints EMT programs as representing a spectrum of phenotypic behaviors that also serve to enhance cell survival, immune tolerance, and perhaps even metastatic dormancy. Equally important, the activation of EMT programs in transformed mammary epithelial cells not only enhances their acquisition of invasive and metastatic behaviors, but also expands their generation of chemoresistant breast cancer stem cells (BCSC). Importantly, the net effect of these events results in the appearance of recurrent metastatic lesions that remain refractory to the armamentarium of chemotherapies and targeted therapeutic agents deployed against advanced stage breast cancers. Here we review the molecular and cellular mechanisms that contribute to the pathophysiology of EMT programs in human breast cancers and how these events impact their "stemness" and acquisition of chemoresistant phenotypes.
Collapse
Affiliation(s)
- Alex J Gooding
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
9
|
Ma B, Wells A, Clark AM. The pan-therapeutic resistance of disseminated tumor cells: Role of phenotypic plasticity and the metastatic microenvironment. Semin Cancer Biol 2020; 60:138-147. [PMID: 31376430 PMCID: PMC6992520 DOI: 10.1016/j.semcancer.2019.07.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023]
Abstract
Cancer metastasis is the leading cause of mortality in patients with solid tumors. The majority of these deaths are associated with metastatic disease that occurs after a period of clinical remission, anywhere from months to decades following removal of the primary mass. This dormancy is prominent in cancers of the breast and prostate among others, leaving the survivors uncertain about their longer-term prognosis. The most daunting aspect of this dormancy and re-emergence is that the micrometastases in particular, and even large lethal outgrowths are often show resistance to agents to which they have not been exposed. This suggests that in addition to specific mutations that target single agents, there also exist adaptive mechanisms that provide this pan-resistance. Potential molecular underpinnings of which are the topic of this review.
Collapse
Affiliation(s)
- Bo Ma
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA; VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, USA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA; VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Amanda M Clark
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA; VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, USA.
| |
Collapse
|
10
|
Fan JH, Fan GL, Yuan P, Deng FA, Liu LS, Zhou X, Yu XY, Cheng H, Li SY. A Theranostic Nanoprobe for Hypoxia Imaging and Photodynamic Tumor Therapy. Front Chem 2019; 7:868. [PMID: 31921785 PMCID: PMC6933523 DOI: 10.3389/fchem.2019.00868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/03/2019] [Indexed: 01/25/2023] Open
Abstract
Hypoxia is a common feature for most malignant tumors, which was also closely related to the oxygen-dependent photodynamic therapy. Based on Förster resonance energy transfer (FRET), a smart nanoprobe (designated as H-Probe) was designed in this paper for hypoxia imaging and photodynamic tumor therapy. Due to the FRET process, H-Probe could respond to hypoxia with a significant fluorescence recovery. Moreover, abundant in vitro investigations demonstrated that the photosensitizer of PpIX in H-Probe could generate large amounts of singlet oxygen to kill cancer cells in the presence of oxygen and light with appropriate wavelength. Also, intravenously injected H-Probe with light irradiation achieved an effective tumor inhibition in vivo with a reduced side effect. This original strategy of integrating hypoxia imaging and tumor therapy in one nanoplatform would promote the development of theranostic nanoplatform for tumor precision therapy.
Collapse
Affiliation(s)
- Jing Hao Fan
- Key Laboratory of Molecular Target & Clinical Pharmacology and The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Gui Ling Fan
- Key Laboratory of Molecular Target & Clinical Pharmacology and The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ping Yuan
- Key Laboratory of Molecular Target & Clinical Pharmacology and The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fu An Deng
- Key Laboratory of Molecular Target & Clinical Pharmacology and The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ling Shan Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Xiang Zhou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Xi Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hong Cheng
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Shi Ying Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Meng Q, Wang S, Zhou S, Liu H, Ma X, Zhou X, Liu H, Xu C, Jiang W. Dissecting the m6A methylation affection on afatinib resistance in non-small cell lung cancer. THE PHARMACOGENOMICS JOURNAL 2019; 20:227-234. [DOI: 10.1038/s41397-019-0110-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 09/11/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022]
|
12
|
Gooding AJ, Parker KA, Valadkhan S, Schiemann WP. The IncRNA BORG: A novel inducer of TNBC metastasis, chemoresistance, and disease recurrence. ACTA ACUST UNITED AC 2019; 5. [PMID: 31435529 DOI: 10.20517/2394-4722.2019.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although greater than 90% of breast cancer-related mortality can be attributed to metastases, the molecular mechanisms underpinning the dissemination of primary breast tumor cells and their ability to establish malignant lesions in distant tissues remain incompletely understood. Genomic and transcriptomic analyses identified a class of transcripts called long noncoding RNA (lncRNA), which interact both directly and indirectly with key components of gene regulatory networks to alter cell proliferation, invasion, and metastasis. We identified a pro-metastatic lncRNA BORG whose aberrant expression promotes metastatic relapse by reactivating proliferative programs in dormant disseminated tumor cells (DTCs). BORG expression is broadly and strongly induced by environmental and chemotherapeutic stresses, a transcriptional response that facilitates the survival of DTCs. Transcriptomic reprogramming in response to BORG resulted in robust signaling via survival and viability pathways, as well as decreased activation of cell death pathways. As such, BORG expression acts as a (i) marker capable of predicting which breast cancer patients are predisposed to develop secondary metastatic lesions, and (ii) unique therapeutic target to maximize chemosensitivity of DTCs. Here we review the molecular and cellular factors that contribute to the pathophysiological activities of BORG during its regulation of breast cancer metastasis, chemoresistance, and disease recurrence.
Collapse
Affiliation(s)
- Alex J Gooding
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Kimberly A Parker
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Saba Valadkhan
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
13
|
Fiedler EC, Hemann MT. Aiding and Abetting: How the Tumor Microenvironment Protects Cancer from Chemotherapy. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019. [DOI: 10.1146/annurev-cancerbio-030518-055524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Disease recurrence following cancer therapy remains an intractable clinical problem and represents a major impediment to reducing the mortality attributable to malignant tumors. While research has traditionally focused on the cell-intrinsic mechanisms and mutations that render tumors refractory to both classical chemotherapeutics and targeted therapies, recent studies have begun to uncover myriad roles for the tumor microenvironment (TME) in modulating therapeutic efficacy. This work suggests that drug resistance is as much ecological as it is evolutionary. Specifically, cancers resident in organs throughout the body do not develop in isolation. Instead, tumor cells arise in the context of nonmalignant cellular components of a tissue. While the roles of these cell-extrinsic factors in cancer initiation and progression are well established, our understanding of the TME's influence on therapeutic outcome is in its infancy. Here, we focus on mechanisms by which neoplastic cells co-opt preexisting or treatment-induced signaling networks to survive chemotherapy.
Collapse
Affiliation(s)
- Eleanor C. Fiedler
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Michael T. Hemann
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
14
|
Efremov YR, Proskurina AS, Potter EA, Dolgova EV, Efremova OV, Taranov OS, Ostanin AA, Chernykh ER, Kolchanov NA, Bogachev SS. Cancer Stem Cells: Emergent Nature of Tumor Emergency. Front Genet 2018; 9:544. [PMID: 30505319 PMCID: PMC6250818 DOI: 10.3389/fgene.2018.00544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
A functional analysis of 167 genes overexpressed in Krebs-2 tumor initiating cells was performed. In the first part of the study, the genes were analyzed for their belonging to one or more of the three groups, which represent the three major phenotypic manifestation of malignancy of cancer cells, namely (1) proliferative self-sufficiency, (2) invasive growth and metastasis, and (3) multiple drug resistance. 96 genes out of 167 were identified as possible contributors to at least one of these fundamental properties. It was also found that substantial part of these genes are also known as genes responsible for formation and/or maintenance of the stemness of normal pluri-/multipotent stem cells. These results suggest that the malignancy is simply the ability to maintain the stem cell specific genes expression profile, and, as a consequence, the stemness itself regardless of the controlling effect of stem niches. In the second part of the study, three stress factors combined into the single concept of "generalized cellular stress," which are assumed to activate the expression of these genes, were defined. In addition, possible mechanisms for such activation were identified. The data obtained suggest the existence of a mechanism for the de novo formation of a pluripotent/stem phenotype in the subpopulation of "committed" tumor cells.
Collapse
Affiliation(s)
- Yaroslav R Efremov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Anastasia S Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina A Potter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgenia V Dolgova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oksana V Efremova
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Oleg S Taranov
- The State Research Center of Virology and Biotechnology Vector, Koltsovo, Russia
| | - Aleksandr A Ostanin
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Elena R Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey S Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
15
|
Nunes AS, Barros AS, Costa EC, Moreira AF, Correia IJ. 3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs. Biotechnol Bioeng 2018; 116:206-226. [DOI: 10.1002/bit.26845] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/30/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Ana S. Nunes
- Health Sciences Research Centre, Universidade da Beira Interior (CICS-UBI); Covilhã Portugal
| | - Andreia S. Barros
- Health Sciences Research Centre, Universidade da Beira Interior (CICS-UBI); Covilhã Portugal
| | - Elisabete C. Costa
- Health Sciences Research Centre, Universidade da Beira Interior (CICS-UBI); Covilhã Portugal
| | - André F. Moreira
- Health Sciences Research Centre, Universidade da Beira Interior (CICS-UBI); Covilhã Portugal
| | - Ilídio J. Correia
- Health Sciences Research Centre, Universidade da Beira Interior (CICS-UBI); Covilhã Portugal
- Departamento de Engenharia Química; Universidade de Coimbra, (CIEPQF); Coimbra Portugal
| |
Collapse
|
16
|
Sterzyńska K, Klejewski A, Wojtowicz K, Świerczewska M, Andrzejewska M, Rusek D, Sobkowski M, Kędzia W, Brązert J, Nowicki M, Januchowski R. The Role of Matrix Gla Protein (MGP) Expression in Paclitaxel and Topotecan Resistant Ovarian Cancer Cell Lines. Int J Mol Sci 2018; 19:E2901. [PMID: 30257426 PMCID: PMC6213242 DOI: 10.3390/ijms19102901] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 02/07/2023] Open
Abstract
The major cause of ovarian cancer treatment failure in cancer patients is inherent or acquired during treatment drug resistance of cancer. Matrix Gla protein (MGP) is a secreted, non-collagenous extracellular matrix protein involved in inhibition of tissue calcification. Recently, MGP expression was related to cellular differentiation and tumor progression. A detailed MGP expression analysis in sensitive (A2780) and resistant to paclitaxel (PAC) (A2780PR) and topotecan (TOP) (A2780TR) ovarian cancer cell lines and their corresponding media was performed. MGP mRNA level (real time PCR analysis) and protein expression in cell lysates and cell culture medium (Western blot analysis) and protein expression in cancer cells (immunofluorescence analysis) and cancer patient lesions (immunohistochemistry) were determined in this study. We observed increased expression of MGP in PAC and TOP resistant cell lines at both mRNA and protein level. MGP protein was also detected in the corresponding culture media. Finally, we detected expression of MGP protein in ovarian cancer lesions from different histological type of cancer. MGP is an important factor that might contribute to cancer resistance mechanism by augmenting the interaction of cells with ECM components leading to increased resistance of ovarian cancer cells to paclitaxel and topotecan. Expression found in ovarian cancer tissue suggests its possible role in ovarian cancer pathogenesis.
Collapse
Affiliation(s)
- Karolina Sterzyńska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland.
| | - Andrzej Klejewski
- Department of Nursing, Poznan University of Medical Sciences, Smoluchowskiego 11 St., 60-179 Poznań, Poland.
- Department of Obstetrics and Women's Diseases, Poznan University of Medical Sciences, Polna 33 St, 60-535 Poznań, Poland.
| | - Karolina Wojtowicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland.
| | - Monika Świerczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland.
| | - Małgorzata Andrzejewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland.
| | - Damian Rusek
- Department of Pathomorphology, Non-public Health Care Facility Alfamed, Jana Pawła II 10 St, 22-400 Zamość, Poland.
| | - Maciej Sobkowski
- Department of Mother and Child Health, Poznan University of Medical Sciences, Polna 33 St, 60-535 Poznań, Poland.
| | - Witold Kędzia
- Department of Gynecology, Poznan University of Medical Sciences, Polna 33 St, 60-535 Poznań, Poland.
| | - Jacek Brązert
- Department of Obstetrics and Women's Diseases, Poznan University of Medical Sciences, Polna 33 St, 60-535 Poznań, Poland.
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland.
| | - Radosław Januchowski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland.
| |
Collapse
|
17
|
Musculoskeletal Metastasis from Primary Rectal Cancer: Series of Two Cases of a Very Rare Occurrence with a Short Literature Review. J Gastrointest Cancer 2018; 50:991-996. [PMID: 30175394 DOI: 10.1007/s12029-018-0165-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Hoshiba T. An extracellular matrix (ECM) model at high malignant colorectal tumor increases chondroitin sulfate chains to promote epithelial-mesenchymal transition and chemoresistance acquisition. Exp Cell Res 2018; 370:571-578. [PMID: 30016638 DOI: 10.1016/j.yexcr.2018.07.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 01/03/2023]
Abstract
Chemoresistance is one of the major barriers for tumor chemotherapy. It is clinically known that chemoresistance increases during tumor progression. Additionally, the extracellular matrix (ECM) is also remodeled during tumor progression. However, it remains unclear how ECM remodeling contributes to chemoresistance acquisition. Recently, it has been reported that epithelial-mesenchymal transition (EMT) contributes to chemoresistance acquisition. Here, how ECM remodeling contributes to 5-fluorouracil (5-FU) resistance acquisition was investigated from the viewpoints of EMT using in vitro ECM models mimicking native ECM in colorectal tumor tissue at three different malignant levels. 5-FU partially induced EMT and increased ABCB1 in colorectal HT-29 cells via TGF-β signaling (an invasive tumor cell model). When HT-29 cells were cultured on an ECM model (high malignant matrices) mimicking native ECM in highly malignant tumor tissues, the cells facilitated TGF-β-induced EMT and increased ABCB1 upregulation compared with that of other ECM models mimicking the low malignant level and normal tissues. High malignant matrices contained more chondroitin sulfate (CS) chains than those of other ECM models. Finally, CS chain-reduced high malignant matrices could not facilitate ABCB1 upregulation and TGF-β-induced EMT. These results demonstrated that ECM remodeling during tumor progression increased CS chains to facilitate EMT and ABCB1 upregulation, contributing to chemoresistance acquisition.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Frontier Center for Organic Materials, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan; Innovative Flex Course for Frontier Organic Material Systems, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan; Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|
19
|
Dickreuter E, Cordes N. The cancer cell adhesion resistome: mechanisms, targeting and translational approaches. Biol Chem 2017; 398:721-735. [PMID: 28002024 DOI: 10.1515/hsz-2016-0326] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023]
Abstract
Cell adhesion-mediated resistance limits the success of cancer therapies and is a great obstacle to overcome in the clinic. Since the 1990s, where it became clear that adhesion of tumor cells to the extracellular matrix is an important mediator of therapy resistance, a lot of work has been conducted to understand the fundamental underlying mechanisms and two paradigms were deduced: cell adhesion-mediated radioresistance (CAM-RR) and cell adhesion-mediated drug resistance (CAM-DR). Preclinical work has evidently demonstrated that targeting of integrins, adapter proteins and associated kinases comprising the cell adhesion resistome is a promising strategy to sensitize cancer cells to both radiotherapy and chemotherapy. Moreover, the cell adhesion resistome fundamentally contributes to adaptation mechanisms induced by radiochemotherapy as well as molecular drugs to secure a balanced homeostasis of cancer cells for survival and growth. Intriguingly, this phenomenon provides a basis for synthetic lethal targeted therapies simultaneously administered to standard radiochemotherapy. In this review, we summarize current knowledge about the cell adhesion resistome and highlight targeting strategies to override CAM-RR and CAM-DR.
Collapse
Affiliation(s)
| | - Nils Cordes
- , Faculty of Medicine and University Hospital Carl Gustav Carus
| |
Collapse
|
20
|
Lindsay D, Garvey CM, Mumenthaler SM, Foo J. Leveraging Hypoxia-Activated Prodrugs to Prevent Drug Resistance in Solid Tumors. PLoS Comput Biol 2016; 12:e1005077. [PMID: 27560187 PMCID: PMC4999195 DOI: 10.1371/journal.pcbi.1005077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/25/2016] [Indexed: 11/21/2022] Open
Abstract
Experimental studies have shown that one key factor in driving the emergence of drug resistance in solid tumors is tumor hypoxia, which leads to the formation of localized environmental niches where drug-resistant cell populations can evolve and survive. Hypoxia-activated prodrugs (HAPs) are compounds designed to penetrate to hypoxic regions of a tumor and release cytotoxic or cytostatic agents; several of these HAPs are currently in clinical trial. However, preliminary results have not shown a survival benefit in several of these trials. We hypothesize that the efficacy of treatments involving these prodrugs depends heavily on identifying the correct treatment schedule, and that mathematical modeling can be used to help design potential therapeutic strategies combining HAPs with standard therapies to achieve long-term tumor control or eradication. We develop this framework in the specific context of EGFR-driven non-small cell lung cancer, which is commonly treated with the tyrosine kinase inhibitor erlotinib. We develop a stochastic mathematical model, parametrized using clinical and experimental data, to explore a spectrum of treatment regimens combining a HAP, evofosfamide, with erlotinib. We design combination toxicity constraint models and optimize treatment strategies over the space of tolerated schedules to identify specific combination schedules that lead to optimal tumor control. We find that (i) combining these therapies delays resistance longer than any monotherapy schedule with either evofosfamide or erlotinib alone, (ii) sequentially alternating single doses of each drug leads to minimal tumor burden and maximal reduction in probability of developing resistance, and (iii) strategies minimizing the length of time after an evofosfamide dose and before erlotinib confer further benefits in reduction of tumor burden. These results provide insights into how hypoxia-activated prodrugs may be used to enhance therapeutic effectiveness in the clinic. It has been suggested that one key factor driving the emergence of drug resistance is the spatial heterogeneity in the distribution of drug and oxygen throughout a tumor due to disorganized tumor vasculatures. Researchers have developed a class of novel drugs that penetrate to hypoxic regions where they are activated to kill tumor cells. The inclusion of these drugs, called hypoxia-activated prodrugs (HAPs) alongside standard therapies in combination may be the key to long-term tumor control or eradication. However, identifying the right timing and administration sequence of combination therapies is an extremely difficult task, and the time and human costs of clinical trials to investigate even a few options is often prohibitive. In this work we design a mathematical model based upon evolutionary principles to investigate the potential of combining HAPs with standard targeted therapy for a specific example in non-small cell lung cancer. We formulate novel toxicity constraints from existing clinical data to estimate the shape of the tolerated drug combination treatment space. We find that (i) combining these therapies delays resistance longer than any monotherapy schedule with either evofosfamide or erlotinib alone, and (ii) the best strategy for combination involves single doses of each drug sequentially administered in an alternating sequence. These model predictions of tumor dynamics during treatment provide insight into the role of the tumor microenvironment in combination therapy and identify treatment hypotheses for further experimental and clinical testing.
Collapse
Affiliation(s)
- Danika Lindsay
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Colleen M. Garvey
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Shannon M. Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail: (SMM); (JF)
| | - Jasmine Foo
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (SMM); (JF)
| |
Collapse
|
21
|
Hoshiba T, Tanaka M. Decellularized matrices as in vitro models of extracellular matrix in tumor tissues at different malignant levels: Mechanism of 5-fluorouracil resistance in colorectal tumor cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2749-2757. [PMID: 27558478 DOI: 10.1016/j.bbamcr.2016.08.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 12/31/2022]
Abstract
Chemoresistance is a major barrier for tumor chemotherapy. It is well-known that chemoresistance increases with tumor progression. Chemoresistance is altered by both genetic mutations and the alteration of extracellular microenvironment. Particularly, the extracellular matrix (ECM) is remodeled during tumor progression. Therefore, ECM remodeling is expected to cause the acquisition of chemoresistance in highly malignant tumor tissue. Here, we prepared cultured cell-derived decellularized matrices that mimic native ECM in tumor tissues at different stages of malignancy, and 5-fluorouracil (5-FU) resistance was compared among these matrices. 5-FU resistance of colorectal tumor cells increased on the matrices derived from highly malignant tumor HT-29 cells, although the resistance did not increase on the matrices derived from low malignant tumor SW480 cells and normal CCD-841-CoN cells. The resistance on HT-29 cell-derived matrices increased through the activation of Akt and the upregulation of ABCB1 and ABCC1 without cell growth promotion, suggesting that ECM remodeling plays important roles in the acquisition of chemoresistance during tumor progression. It is expected that our decellularized matrices, or "staged tumorigenesis-mimicking matrices", will become preferred cell culture substrates for in vitro analysis of comprehensive ECM roles in chemoresistance and the screening and pharmacokinetic analysis of anti-cancer drugs.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Frontier Center for Organic Materials, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan; International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Masaru Tanaka
- Frontier Center for Organic Materials, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan; Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
| |
Collapse
|
22
|
Januchowski R, Świerczewska M, Sterzyńska K, Wojtowicz K, Nowicki M, Zabel M. Increased Expression of Several Collagen Genes is Associated with Drug Resistance in Ovarian Cancer Cell Lines. J Cancer 2016; 7:1295-310. [PMID: 27390605 PMCID: PMC4934038 DOI: 10.7150/jca.15371] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/23/2016] [Indexed: 12/30/2022] Open
Abstract
Ovarian cancer is the most lethal gynaecological cancer. The main reason for the high mortality among ovarian cancer patients is the development of drug resistance. The expression of collagen genes by cancer cells can increase drug resistance by inhibiting the penetration of the drug into the cancer tissue as well as increase apoptosis resistance. In this study, we present data that shows differential expression levels of collagen genes and proteins in cisplatin- (CIS), paclitaxel- (PAC), doxorubicin- (DOX), topotecan- (TOP), vincristine- (VIN) and methotrexate- (MTX) resistant ovarian cancer cell lines. Quantitative real-time polymerase chain reactions were performed to determine the mRNA levels. Protein expression was detected using Western blot and immunocytochemistry assays. In the drug resistant cell lines, we observed the upregulation of eight collagen genes at the mRNA level and based on these expression levels, we divided the collagen genes into the following three groups: 1. Genes with less than a 50-fold increase in expression: COL1A1, COL5A2, COL12A1 and COL17A1. 2. Genes with greater than a 50-fold increase in expression: COL1A2, COL15A1 and COL21A1. 3. Gene with a very high level of expression: COL3A1. Expression of collagen (COL) proteins from groups 2 and 3 were also confirmed using immunocytochemistry. Western blot analysis showed very high expression levels of COL3A1 protein, and immunocytochemistry analysis showed the presence of extracellular COL3A1 in the W1TR cell line. The cells mainly responsible for the extracellular COL3A1 production are aldehyde dehydrogenase-1A1 (ALDH1A1) positive cells. All correlations between the types of cytostatic drugs and the expression levels of different COL genes were studied, and our results suggest that the expression of fibrillar collagens may be involved in the TOP and PAC resistance of the ovarian cancer cells. The expression pattern of COL genes provide a preliminary view into the role of these proteins in cytostatic drug resistance of cancer cells. The exact role of these COL genes in drug resistance requires further investigation.
Collapse
Affiliation(s)
- Radosław Januchowski
- 1. Department of Histology and Embryology, Poznań University of Medical Sciences, Poland
| | - Monika Świerczewska
- 1. Department of Histology and Embryology, Poznań University of Medical Sciences, Poland
| | - Karolina Sterzyńska
- 1. Department of Histology and Embryology, Poznań University of Medical Sciences, Poland
| | - Karolina Wojtowicz
- 1. Department of Histology and Embryology, Poznań University of Medical Sciences, Poland
| | - Michał Nowicki
- 1. Department of Histology and Embryology, Poznań University of Medical Sciences, Poland
| | - Maciej Zabel
- 1. Department of Histology and Embryology, Poznań University of Medical Sciences, Poland;; 2. Department of Histology and Embryology, Wroclaw Medical University, Poland
| |
Collapse
|
23
|
Vatandoust S, Price TJ, Karapetis CS. Colorectal cancer: Metastases to a single organ. World J Gastroenterol 2015; 21:11767-11776. [PMID: 26557001 PMCID: PMC4631975 DOI: 10.3748/wjg.v21.i41.11767] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/20/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignancy worldwide. In CRC patients, metastases are the main cause of cancer-related mortality. In a group of metastatic CRC patients, the metastases are limited to a single site (solitary organ); the liver and lungs are the most commonly involved sites. When metastatic disease is limited to the liver and/or lungs, the resectability of the metastatic lesions will dictate the management approach and the outcome. Less commonly, the site of solitary organ CRC metastasis is the peritoneum. In these patients, cytoreduction followed by hyperthermic intraperitoneal chemotherapy may improve the outcome. Rarely, CRC involves other organs, such as the brain, bone, adrenals and spleen, as the only site of metastatic disease. There are limited data to guide clinical practice in these cases. Here, we have reviewed the disease characteristics, management approaches and prognosis based on the metastatic disease site in patients with CRC with metastases to a single organ.
Collapse
|
24
|
Wang Y, Wu Y, Miao X, Zhu X, Miao X, He Y, Zhong F, Ding L, Liu J, Tang J, Huang Y, Xu X, He S. Silencing of DYRK2 increases cell proliferation but reverses CAM-DR in Non-Hodgkin's Lymphoma. Int J Biol Macromol 2015; 81:809-17. [PMID: 26341817 DOI: 10.1016/j.ijbiomac.2015.08.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/24/2015] [Accepted: 08/28/2015] [Indexed: 12/14/2022]
Abstract
DYRK2, a dual-specificity tyrosine-(Y)-phosphorylation regulated kinase gene, is involved in regulating many processes such as cell proliferation, cell differentiation and cytokinesis. DYRK2 also plays an important role in many cancers, such as breast cancer, non-small cell lung cancer and esophageal adenocarcinomas. In this study, we found that DYRK2 is associated with the proliferation of Non-Hodgkin's lymphoma (NHL) and cell adhesion mediated drug resistance (CAM-DR). Clinically, the mRNA and protein expression levels of DYRK2 are decreased in NHL tissues compared with reactive lymphoid hyperplasia tissues. Immunohistochemical analysis revealed that low expression of DYRK2 is associated with poor prognosis of NHL patients. Interestingly, knockdown of DYRK2 can promote cell proliferation via modulating cell cycle progression. Finally, we demonstrated that DYRK2 plays an important role in CAM-DR by regulating p27(Kip1) expression. Importantly, DYRK2 knockdown reverses CAM-DR in NHL. Our research suggested that DYRK2 may be a novel therapeutic target for NHL.
Collapse
MESH Headings
- Adult
- Aged
- Cell Adhesion
- Cell Cycle/genetics
- Cell Line, Tumor
- Cell Proliferation
- Cyclin-Dependent Kinase Inhibitor p27
- Disease Progression
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Gene Silencing
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Non-Hodgkin/diagnosis
- Lymphoma, Non-Hodgkin/genetics
- Lymphoma, Non-Hodgkin/metabolism
- Lymphoma, Non-Hodgkin/mortality
- Male
- Middle Aged
- Phenotype
- Phosphorylation
- Prognosis
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- RNA, Small Interfering/genetics
- Dyrk Kinases
Collapse
Affiliation(s)
- Yuchan Wang
- Department of Pathogen, Medical College, Nantong University, Nantong 226001, Jiangsu, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu, China
| | - Yaxun Wu
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu, China
| | - Xiaobing Miao
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu, China
| | - Xinghua Zhu
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu, China
| | - Xianjing Miao
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu, China
| | - Yunhua He
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu, China
| | - Fei Zhong
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu, China
| | - Linlin Ding
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu, China
| | - Jing Liu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu, China
| | - Jie Tang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu, China
| | - Yuejiao Huang
- Department of Oncology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu, China
| | - Xiaohong Xu
- Department of Oncology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu, China.
| | - Song He
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu, China.
| |
Collapse
|
25
|
JANUCHOWSKI RADOSŁAW, ZAWIERUCHA PIOTR, RUCIŃSKI MARCIN, ZABEL MACIEJ. Microarray-based detection and expression analysis of extracellular matrix proteins in drug-resistant ovarian cancer cell lines. Oncol Rep 2014; 32:1981-90. [DOI: 10.3892/or.2014.3468] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/18/2014] [Indexed: 11/05/2022] Open
|
26
|
Extracellular matrix proteins expression profiling in chemoresistant variants of the A2780 ovarian cancer cell line. BIOMED RESEARCH INTERNATIONAL 2014; 2014:365867. [PMID: 24804215 PMCID: PMC3996316 DOI: 10.1155/2014/365867] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/24/2014] [Indexed: 02/03/2023]
Abstract
Ovarian cancer is the leading cause of death among gynaecological malignancies. Extracellular matrix (ECM) can affect drug resistance by preventing the penetration of the drug into cancer cells and increased resistance to apoptosis. This study demonstrates alterations in the expression levels of ECM components and related genes in cisplatin-, doxorubicin-, topotecan-, and paclitaxel-resistant variants of the A2780 ovarian cancer cell line. Affymetrix Gene Chip Human Genome Array Strips were used for hybridisations. The genes that had altered expression levels in drug-resistant sublines were selected and filtered by scatter plots. The genes that were up- or downregulated more than fivefold were selected and listed. Among the investigated genes, 28 genes were upregulated, 10 genes were downregulated, and two genes were down- or upregulated depending on the cell line. Between upregulated genes 12 were upregulated very significantly—over 20-fold. These genes included COL1A2, COL12A1, COL21A1, LOX, TGFBI, LAMB1, EFEMP1, GPC3, SDC2, MGP, MMP3, and TIMP3. Four genes were very significantly downregulated: COL11A1, LAMA2, GPC6, and LUM. The expression profiles of investigated genes provide a preliminary insight into the relationship between drug resistance and the expression of ECM components. Identifying correlations between investigated genes and drug resistance will require further analysis.
Collapse
|
27
|
Taylor TE, Furnari FB, Cavenee WK. Targeting EGFR for treatment of glioblastoma: molecular basis to overcome resistance. Curr Cancer Drug Targets 2012; 12:197-209. [PMID: 22268382 DOI: 10.2174/156800912799277557] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/30/2011] [Accepted: 06/27/2011] [Indexed: 12/17/2022]
Abstract
Glioblastoma (glioblastoma multiforme; GBM; WHO Grade IV) accounts for the majority of primary malignant brain tumors in adults. Amplification and mutation of the epidermal growth factor receptor (EGFR) gene represent signature genetic abnormalities encountered in GBM. A range of potential therapies that target EGFR or its mutant constitutively active form, ΔEGFR, including tyrosine kinase inhibitors (TKIs), monoclonal antibodies, vaccines, and RNA-based agents, are currently in development or in clinical trials for the treatment of GBM. Data from experimental studies evaluating these therapies have been very promising; however, their efficacy in the clinic has so far been limited by both upfront and acquired drug resistance. This review discusses the current status of anti-EGFR agents and the recurrent problem of resistance to these agents that strongly indicates that a multiple target approach will provide a more favorable future for these types of targeted therapies in GBM.
Collapse
Affiliation(s)
- T E Taylor
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | | | | |
Collapse
|
28
|
Development of a novel preclinical pancreatic cancer research model: bioluminescence image-guided focal irradiation and tumor monitoring of orthotopic xenografts. Transl Oncol 2012; 5:77-84. [PMID: 22496923 DOI: 10.1593/tlo.11316] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/07/2011] [Accepted: 12/07/2011] [Indexed: 02/07/2023] Open
Abstract
PURPOSE We report on a novel preclinical pancreatic cancer research model that uses bioluminescence imaging (BLI)-guided irradiation of orthotopic xenograft tumors, sparing of surrounding normal tissues, and quantitative, noninvasive longitudinal assessment of treatment response. MATERIALS AND METHODS Luciferase-expressing MiaPaCa-2 pancreatic carcinoma cells were orthotopically injected in nude mice. BLI was compared to pathologic tumor volume, and photon emission was assessed over time. BLI was correlated to positron emission tomography (PET)/computed tomography (CT) to estimate tumor dimensions. BLI and cone-beam CT (CBCT) were used to compare tumor centroid location and estimate setup error. BLI and CBCT fusion was performed to guide irradiation of tumors using the small animal radiation research platform (SARRP). DNA damage was assessed by γ-H2Ax staining. BLI was used to longitudinally monitor treatment response. RESULTS Bioluminescence predicted tumor volume (R = 0.8984) and increased linearly as a function of time up to a 10-fold increase in tumor burden. BLI correlated with PET/CT and necropsy specimen in size (P < .05). Two-dimensional BLI centroid accuracy was 3.5 mm relative to CBCT. BLI-guided irradiated pancreatic tumors stained positively for γ-H2Ax, whereas surrounding normal tissues were spared. Longitudinal assessment of irradiated tumors with BLI revealed significant tumor growth delay of 20 days relative to controls. CONCLUSIONS We have successfully applied the SARRP to a bioluminescent, orthotopic preclinical pancreas cancer model to noninvasively: 1) allow the identification of tumor burden before therapy, 2) facilitate image-guided focal radiation therapy, and 3) allow normalization of tumor burden and longitudinal assessment of treatment response.
Collapse
|
29
|
Stromal-epithelial interactions modulate cross-talk between prolactin receptor and HER2/Neu in breast cancer. Breast Cancer Res Treat 2012; 134:157-69. [PMID: 22270933 DOI: 10.1007/s10549-012-1954-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 01/06/2012] [Indexed: 12/14/2022]
Abstract
Prolactin (PRL) promotes the proliferation and survival of breast cancer cells in part via the transactivation of human epidermal growth factor receptor 2 (HER2), also known as Neu in rodents. A PRL receptor (PRLR) antagonist, G129R, has been developed, which indirectly inhibits the tyrosine phosphorylation of HER2 (p-HER2) in human breast cancer cell lines. In this study, we investigate the effects of cancer-associated fibroblasts (CAFs) upon this molecular cross-talk using tumor cells and CAFs derived from spontaneous mammary tumors of female MMTV-neu transgenic mice. Tumors were resected and cultured as small tumor chunks (~3 mm3) or were cultured in monolayer. G129R reduced tyrosine phosphorylation of Neu (p-Neu) in a dose-dependent manner (IC50~10 μg/ml) in tumor chunks, but had no effect on primary tumor epithelial cells grown in monolayer. Direct co-culture of mouse or human tumor epithelial cell lines with CAFs restored the epithelial cells' response to G129R, similar to that observed in mouse tumor chunks. The addition of PRL, as expected, induced p-Neu in both the tumor chunk and co-culture models. The inhibitory effect of G129R was absent when CAFs were physically separated from mouse tumor epithelial cells using a transwell system, or when CAFs were replaced with normal fibroblasts in direct co-culture with human or mouse tumor epithelial cells. In vivo, G129R reduced p-Neu levels in primary mammary tumors of mice in a time- and dose-dependent manner. In conclusion, CAFs play a critical role in bridging the cross-talk between PRL and HER2/Neu in both mouse and human models of breast cancer. The inhibitory effects of G129R on p-Neu and on tumor growth are dependent upon interactions of tumor epithelial cells with CAFs.
Collapse
|
30
|
Elhassan MO, Christie J, Duxbury MS. Homo sapiens systemic RNA interference-defective-1 transmembrane family member 1 (SIDT1) protein mediates contact-dependent small RNA transfer and microRNA-21-driven chemoresistance. J Biol Chem 2011; 287:5267-77. [PMID: 22174421 DOI: 10.1074/jbc.m111.318865] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Locally initiated RNA interference (RNAi) has the potential for spatial propagation, inducing posttranscriptional gene silencing in distant cells. In Caenorhabditis elegans, systemic RNAi requires a phylogenetically conserved transmembrane channel, SID-1. Here, we show that a human SID-1 orthologue, SIDT1, facilitates rapid, contact-dependent, bidirectional small RNA transfer between human cells, resulting in target-specific non-cell-autonomous RNAi. Intercellular small RNA transfer can be both homotypic and heterotypic. We show SIDT1-mediated intercellular transfer of microRNA-21 to be a driver of resistance to the nucleoside analog gemcitabine in human adenocarcinoma cells. Documentation of a SIDT1-dependent small RNA transfer mechanism and the associated phenotypic effects on chemoresistance in human cancer cells raises the possibility that conserved systemic RNAi pathways contribute to the acquisition of drug resistance. Mediators of non-cell-autonomous RNAi may be tractable targets for novel therapies aimed at improving the efficacy of current cytotoxic agents.
Collapse
Affiliation(s)
- Mohamed O Elhassan
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, Scotland, United Kingdom
| | | | | |
Collapse
|
31
|
Tissue slice model of human lung cancer to investigate telomerase inhibition by nanoparticle delivery of antisense 2′-O-methyl-RNA. Int J Pharm 2011; 419:33-42. [DOI: 10.1016/j.ijpharm.2011.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 01/08/2023]
|
32
|
Ghosh S, Elankumaran S, Puri IK. Mathematical model of the role of intercellular signalling in intercellular cooperation during tumorigenesis. Cell Prolif 2011; 44:192-203. [PMID: 21401761 DOI: 10.1111/j.1365-2184.2011.00739.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Intercellular cooperation has been hypothesized to enhance cell proliferation during cancer metastasis through autocrine signalling cascades and mathematical models can provide valuable insights into underlying mechanisms of metastatic tumorigenesis. Here, we present a model that incorporates signal-stimulated cell proliferation, and investigate influences of diffusion-driven heterogeneity in signal concentration on proliferation dynamics. MATERIALS AND METHODS Our model incorporates signal production through both autocrine and paracrine pathways, and signal diffusion and loss for a metastasizing cell population at a host site. We use the signalling pathway of IL-6 for illustration where this signalling species forms an intermediate complex with its receptor IL-6R. This in turn forms a heterodimeric complex with transmembrane protein gp130, ultimately resulting in production of downstream signals. Cell population dynamics are taken to follow a modified logistic equation for which the rate term is dependent on local IL-6 concentration. RESULTS AND CONCLUSIONS Our spatiotemporal model agrees closely with experimental results. The model is also able to predict two phenomena typical of metastatic tumorigenesis - host tissue preference and long periods of proliferation dormancy. It confirms that diffusivity of the signalling species in a host tissue plays a significant role during the process. Our results show that the proliferation-apoptosis balance is tipped in favour of the former for host sites that have relatively smaller signal diffusivities.
Collapse
Affiliation(s)
- S Ghosh
- Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | | |
Collapse
|
33
|
Fallica B, Makin G, Zaman MH. Bioengineering approaches to study multidrug resistance in tumor cells. Integr Biol (Camb) 2011; 3:529-39. [PMID: 21387035 DOI: 10.1039/c0ib00142b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ability of cancer cells to become resistant to chemotherapeutic agents is a major challenge for the treatment of malignant tumors. Several strategies have emerged to attempt to inhibit chemoresistance, but the fact remains that resistance is a problem for every effective anticancer drug. The first part of this review will focus on the mechanisms of chemoresistance. It is important to understand the environmental cues, transport limitations and the cellular signaling pathways associated with chemoresistance before we can hope to effectively combat it. The second part of this review focuses on the work that needs to be done moving forward. Specifically, this section focuses on the necessity of translational research and interdisciplinary directives. It is critical that the expertise of oncologists, biologists, and engineers be brought together to attempt to tackle the problem. This discussion is from an engineering perspective, as the dialogue between engineers and other cancer researchers is the most challenging due to non-overlapping background knowledge. Chemoresistance is a complex and devastating process, meaning that we urgently need sophisticated methods to study the process of how cells become resistant.
Collapse
Affiliation(s)
- Brian Fallica
- Department of Biomedical Engineering, Boston University, USA
| | | | | |
Collapse
|
34
|
In vivo bioluminescent imaging of irradiated orthotopic pancreatic cancer xenografts in nonobese diabetic-severe combined immunodeficient mice: a novel method for targeting and assaying efficacy of ionizing radiation. Transl Oncol 2010; 3:153-9. [PMID: 20563256 DOI: 10.1593/tlo.09184] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 12/17/2009] [Accepted: 12/29/2009] [Indexed: 01/23/2023] Open
Abstract
Adenocarcinoma of the pancreas is a lethal malignancy, and better models to study tumor behavior in vivo are needed for the development ofmore effective therapeutics. Ionizing radiation is a treatment modality that is commonly used in the clinical setting, in particular, for locally confined disease; however, good model systems to study the effect of ionizing radiation in orthotopic tumors have not been established. In an attempt to create clinically relevant models for studying treatments directed against pancreatic cancer, we have defined a methodology to measure the effect of varying doses of radiation in established human pancreatic cancer orthotopic xenografts using two different pancreatic cancer cell lines (Panc-1 and BXPC3) infected with a lentiviral vector expressing CMV promoter-driven luciferase to allow bioluminescence imaging of live animals in real time. Quantifiable photon emission from luciferase signaling in vivo correlated well with actual tumor growth. Bioluminescence imaging of the established pancreatic xenografts was used to direct delivery of radiation to the orthotopic tumors and minimize off-target adverse effects. Growth delay was observed with schedules in the range of 7.5 Gy in five fractions to 10 Gy in four fractions, whereas doses 3 Gy or higher produced toxic adverse effects. In conclusion, we describe a model in which the effects of ionizing radiation, alone or in combination with other therapeutics, in orthotopic xenografts, can be studied.
Collapse
|
35
|
Paduch R, Jakubowicz-Gil J, Kandefer-Szerszen M. Expression of HSP27, HSP72 and MRP proteins in in vitro co-culture of colon tumour cell spheroids with normal cells after incubation with rhTGF- beta1 and/or CPT-11. J Biosci 2010; 34:927-40. [PMID: 20093746 DOI: 10.1007/s12038-009-0107-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We studied the expression of inducible heat shock protein (HSP27, HSP72) and multidrug-resistance protein (MRP) in co-cultures of human colon carcinoma cell spheroids obtained from different grades of tumour with normal human colon epithelium, myofibroblast and endothelial cell monolayers. We also measured the influence of recombinant human transforming growth factor beta1 (rhTGF-beta1) and camptothecin (CPT-11), added as single agents or in combination, on the levels of the HSPs, MRP, interleukin (IL)-6 and nitric oxide (NO). An immunoblotting analysis with densitometry showed that rhTGF-beta1 and/or CPT-11 increased HSP27, HSP72 and MRP expression in tumour cells and myofibroblasts, as well as in co-cultures compared with appropriate controls. By contrast, in colonic epithelium, inhibition of HSPs and MRP was comparable with that of the control. In endothelial cells, HSP72 was undetectable. Direct interaction of colon tumour spheroids with normal myofibroblasts caused a significant, tumour-grade dependent increase in IL-6 production. Production of IL-6 was significantly lowered by rhTGF-beta1 and/or CPT-11. Tumour cell spheroids cultivated alone produced larger amounts of NO than normal cells. In co-culture, the level of the radical decreased compared with the sum of NO produced by the monocultures of the two types of cells. rhTGF-beta1 and/or CPT-11 decreased NO production both in tumour and normal cell monocultures and their co-cultures. In conclusion, direct interactions between tumour and normal cells influence the expression of HSP27, HSP72 and MRP, and alter IL-6 and NO production. rhTGF-beta1 and/or CPT-11 may potentate resistance to chemotherapy by increasing HSP and MRP expression but, on the other hand, they may limit tumour cell spread by decreasing the level of some soluble mediators of inflammation (IL-6 and NO).
Collapse
Affiliation(s)
- Roman Paduch
- Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | | | | |
Collapse
|
36
|
Su C, Su B, Tang L, Zhao Y, Zhou C. Effects of Collagen IV on Cisplatin-Induced Apoptosis of Non-Small Cell Lung Cancer Cells. Cancer Invest 2009; 25:542-9. [DOI: 10.1080/07357900701513272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Westhoff MA, Zhou S, Bachem MG, Debatin KM, Fulda S. Identification of a novel switch in the dominant forms of cell adhesion-mediated drug resistance in glioblastoma cells. Oncogene 2008; 27:5169-81. [PMID: 18469856 DOI: 10.1038/onc.2008.148] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The failure of malignant cells to undergo apoptosis is a major obstacle in cancer therapy, and thus identifying the underlining molecules involved therein is imperative for improving patient survival. An important mechanism of drug resistance is cell adhesion-mediated drug resistance (CAM-DR). In this study we identify a novel switch by which glioblastoma multiforme (GBM) cells alter the mode of CAM-DR. In the absence of a microenvironmental cue provided by components of the extracellular matrix (ECM), GBM cells are able to employ an alternative, but equally effective, mode of CAM-DR by forming spheres via cell-cell interactions. Intriguingly, when inhibiting cell-cell interactions in the absence of ECM components, either by low cell density or by inhibition of gap junctions (intercellular connexin tunnels) through chemical inhibition with carbenoxyolone or co-incubation with the connexin-mimicking Gap 27 Cx37,43 peptide, GBM cells were sensitized to tumor necrosis factor-related apoptosis-inducing ligand- and CD95-induced apoptosis. By demonstrating that GBM cells can alternate from one form of CAM-DR (cell-substrate tethering) to another (homocellular cell-cell adhesion) and that inhibition of both forms is necessary for apoptosis sensitization, our findings not only have important implications for novel approaches to restore defective apoptosis programs, but also reveal a novel role of gap junctions in GBM.
Collapse
Affiliation(s)
- M A Westhoff
- Department of Hematology/Oncology, University Children's Hospital, Ulm, Germany
| | | | | | | | | |
Collapse
|
38
|
Steeg PS, Theodorescu D. Metastasis: a therapeutic target for cancer. NATURE CLINICAL PRACTICE. ONCOLOGY 2008; 5:206-19. [PMID: 18253104 PMCID: PMC2709494 DOI: 10.1038/ncponc1066] [Citation(s) in RCA: 261] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 10/02/2007] [Indexed: 12/12/2022]
Abstract
Metastasis remains the major driver of mortality in patients with cancer. Our growing body of knowledge regarding this process provides the basis for the development of molecularly targeted therapeutics aimed at the tumor cell or its interaction with the host microenvironment. Here we discuss the similarity and differences between primary tumors and metastases, pathways controlling the colonization of a distant organ, and incorporation of antimetastatic therapies into clinical testing.
Collapse
Affiliation(s)
- Patricia S Steeg
- Chief of the Women’s Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Dan Theodorescu
- Professor of Urologic Oncology and Molecular Physiology and Director of the Paul Mellon Urologic Cancer Institute, University of Virginia, Charlottesville, VA , USA
| |
Collapse
|
39
|
Quintieri L, Fantin M, Vizler C. Identification of molecular determinants of tumor sensitivity and resistance to anticancer drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 593:95-104. [PMID: 17265720 DOI: 10.1007/978-0-387-39978-2_10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Resistance to drugs is a major problem in cancer chemotherapy. Various cellular mechanisms of drug resistance have been identified in cultured tumor cell lines selected for growth in the presence of sublethal concentrations of various anticancer drugs. They involve drug transport and detoxification, qualitative or quantitative alterations of the drug target, repair of drug-induced DNA lesions, and alterations in signaling or execution of apoptosis. More recently, the possibility to simultaneously analyze the expression of thousands of genes using DNA microarrays has allowed exploring the relationships between gene expression and sensitivity to several anticancer drugs. A number of studies using microarrays for identifying genes governing tumor chemosensitivity focused on tumor cell lines. Some clinical studies have also been carried out to investigate whether tumor gene expression patterns could predict clinical response to chemotherapy. Results of these studies are encouraging, indicating that individualization of drug treatment based on multigenic response-predictive markers is feasible.
Collapse
Affiliation(s)
- Luigi Quintieri
- Pharmacology Section, Department of Pharmacology and Anesthesiology, University of Padova, Largo Meneghetti, 2, Italy.
| | | | | |
Collapse
|
40
|
Prabhudesai SG, Rekhraj S, Roberts G, Darzi AW, Ziprin P. Apoptosis and chemo-resistance in colorectal cancer. J Surg Oncol 2007; 96:77-88. [PMID: 17443738 DOI: 10.1002/jso.20785] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Systemic chemotherapy plays an integral part in treating advanced colorectal cancer. However 50% of patients respond poorly or have disease progression due to resistance to chemotherapeutic agents. This article reviews the pathways that regulate apoptosis, apoptotic mechanisms through which chemotherapeutic agents mediate their effect and how deregulation of apoptotic proteins may contribute to chemo-resistance. Also discussed are potential therapeutic strategies designed to target these proteins and thereby improve response rates to chemotherapy in colorectal cancer.
Collapse
Affiliation(s)
- S G Prabhudesai
- Department of Biosurgery & Surgical Technology, Faculty of Medicine, Imperial College, London, St. Mary's Hospital Campus, Praed Street, London W2 1NY, United Kingdom
| | | | | | | | | |
Collapse
|
41
|
Broxterman HJ, Georgopapadakou NH. Anticancer therapeutics: A surge of new developments increasingly target tumor and stroma. Drug Resist Updat 2007; 10:182-93. [PMID: 17855157 DOI: 10.1016/j.drup.2007.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 07/10/2007] [Accepted: 07/31/2007] [Indexed: 12/30/2022]
Abstract
The Annual Meeting of the American Association for Cancer Research (AACR) brings together research in fundamental biology, translational science, drug development and clinical testing of emerging anticancer therapies. Among the highlights of the 2007 Annual Meeting were major research themes on drug action, drug resistance and new drug development. Instead of striving for a comprehensive overview, we showcase several trends, concepts and research areas that exemplify the complexity of drug resistance and its reversal as we currently understand it. Many of the studies discussed here deal with the interaction of tumor cells with their stromal microenvironment; structural proteins as well as cellular components, fibroblasts as well as inflammatory cells. Target identification, target validation and dealing with the challenge of resistance are recurring themes. Specific classes of molecules discussed are the taxanes, tyrosine kinase inhibitors, anti-angiogenic, anti-stromal and anti-metastatic agents. In the latter three categories, targets reviewed are delta-like ligand 4 (DLL4), integrins, nodal, galectins, lysyl oxidases and thrombospondins, several of which belong to the p53-tumor suppressor repertoire of secreted proteins. Finally, developments in other inhibitor classes such as PI3K/Akt and Rho GTPase inhibitors and thoughts on possible novel combination therapies are briefly summarized. The report also includes relevant publications to July 2007.
Collapse
Affiliation(s)
- Henk J Broxterman
- Department of Medical Oncology, Vrije Universiteit Medical Center, Cancer Centre Amsterdam (CCA 1-38), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | |
Collapse
|
42
|
Ohashi R, Takahashi F, Cui R, Yoshioka M, Gu T, Sasaki S, Tominaga S, Nishio K, Tanabe KK, Takahashi K. Interaction between CD44 and hyaluronate induces chemoresistance in non-small cell lung cancer cell. Cancer Lett 2007; 252:225-34. [PMID: 17276588 DOI: 10.1016/j.canlet.2006.12.025] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 12/18/2006] [Accepted: 12/20/2006] [Indexed: 11/26/2022]
Abstract
CD44s is a principle hyaluronate (HA) receptor and has been reported to play an important role in cancer cell invasion and metastasis. The aim of our study is to determine if the interaction between HA and CD44s influences in vitro chemosensitivity of non-small cell lung cancer (NSCLC). NSCLC cell line, H322 cells, transfected with the CD44s gene (H322/CD44s) cultured on HA coated plates were more resistant to cisplatin (CDDP) than that on bovine serum albumin. Multidrug resistance protein2 (MRP2) expression was induced in H322/CD44s cells cultured on HA. MRP2 inhibitor, MK571, not only suppressed MRP2 expression but also reversed CDDP resistance. These results suggest that the interaction between CD44s and HA play a pivotal role in acquired resistance to CDDP in NSCLC and MRP2 could be involved in this potential mechanism.
Collapse
Affiliation(s)
- Rina Ohashi
- Department of Respiratory Medicine, Juntendo University, School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hedley BD, Allan AL, Chambers AF. Tumor dormancy and the role of metastasis suppressor genes in regulating ectopic growth. Future Oncol 2007; 2:627-41. [PMID: 17026454 DOI: 10.2217/14796694.2.5.627] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Metastasis, or tumor growth in an ectopic site, may occur several years after apparently successful treatment of the primary malignancy. Clinical dormancy is seen in a large number of cancer patients, but once growth in an ectopic site initiates, current adjuvant therapies are inadequate and the majority of patients with metastatic disease will die. Many genes may regulate ectopic growth in a secondary site, including a small subset, termed the metastasis suppressor genes. Investigation into this class of genes holds promise in terms of gaining a greater understanding of tumor dormancy and how the process of metastasis may be naturally inhibited. This review will focus on the role of metastasis suppressor genes in tumor dormancy. Insights into the metastatic process from studies of metastasis suppressor genes may lead to novel targets for antimetastatic therapy through drug-induced reactivation of one or more of these genes and/or their respective signaling pathways.
Collapse
Affiliation(s)
- Benjamin D Hedley
- University of Western Ontario, Schulich School of Medicine & Dentistry, London Regional Cancer Program, Department of Oncology, London, Ontario, Canada.
| | | | | |
Collapse
|
44
|
Li J, Wood WH, Becker KG, Weeraratna AT, Morin PJ. Gene expression response to cisplatin treatment in drug-sensitive and drug-resistant ovarian cancer cells. Oncogene 2006; 26:2860-72. [PMID: 17072341 DOI: 10.1038/sj.onc.1210086] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The molecular pathways activated in response to acute cisplatin exposure, as well as the mechanisms involved in the long-term development of cisplatin-resistant cancer cells remain unclear. Using whole genome oligonucleotide microarrays, we have examined the kinetics of gene expression changes in a cisplatin-sensitive cell line, A2780, and its cisplatin-resistant derivative, ACRP. Both sensitive and resistant cell lines exhibited a very similar response of p53-inducible genes as early as 16 h after treatment. This p53 response was further increased at the 24-h time point. These experiments identify p53 as the main pathway producing a large-scale transcriptional response after cisplatin treatment in these cells containing wild-type p53. Consistent with a role for the p53 response in cisplatin sensitivity, knockdown of the p53 protein with small interfering RNA led to a twofold decrease in cell survival in the resistant cells. In addition, our analysis also allowed the identification of several genes that are differentially expressed between sensitive and resistant cells. These genes include GJA1 (encoding connexin 43 (Cx43)) and TWIST1, which are highly upregulated in cisplatin-resistant cells. The importance of Cx43 in drug resistance was demonstrated through functional analyses, although paradoxically, inhibition of Cx43 function in high expressing cells led to an increase in drug resistance. The pathways important in cisplatin response, as well as the genes found differentially expressed between cisplatin-resistant and -sensitive cells, may represent targets for therapy aimed at reversing drug resistance.
Collapse
Affiliation(s)
- J Li
- Laboratory of Cellular and Molecular Biology, Gerontology Research Center, National Institute on Aging, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Patricia S Steeg
- Women's Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute Building 37, Room 1122, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
46
|
Nguyen AN, Stebbins EG, Henson M, O'Young G, Choi SJ, Quon D, Damm D, Reddy M, Ma JY, Haghnazari E, Kapoun AM, Medicherla S, Protter A, Schreiner GF, Kurihara N, Anderson J, Roodman GD, Navas TA, Higgins LS. Normalizing the bone marrow microenvironment with p38 inhibitor reduces multiple myeloma cell proliferation and adhesion and suppresses osteoclast formation. Exp Cell Res 2006; 312:1909-23. [PMID: 16600214 DOI: 10.1016/j.yexcr.2006.02.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 02/14/2006] [Accepted: 02/22/2006] [Indexed: 02/06/2023]
Abstract
The multiple myeloma (MM) bone marrow (BM) microenvironment plays a critical role in supporting tumor growth and survival as well as in promoting formation of osteolytic lesions. Recent results suggest that the p38 mitogen-activated protein kinase (MAPK) is an important factor in maintaining this activated environment. In this report, we demonstrate that the p38alpha MAPK inhibitor, SCIO-469, suppresses secretion of the tumor-supportive factors IL-6 and VEGF from BM stromal cells (BMSCs) as well as cocultures of BMSCs with MM cells, resulting in reduction in MM cell proliferation. Additionally, we show that SCIO-469 prevents TNFalpha-induced adhesion of MM cells to BMSCs through an ICAM-1- and VCAM-1-independent mechanism. Microarray analysis revealed a novel set of TNFalpha-induced chemokines in BMSCs that is strongly inhibited by SCIO-469. Furthermore, reintroduction of chemokines CXCL10 and CCL8 to BMSCs overcomes the inhibitory effect of SCIO-469 on TNFalpha-induced MM adhesion. Lastly, we show that SCIO-469 inhibits secretion and expression of the osteoclast-activating factors IL-11, RANKL, and MIP-1alpha as well as prevents human osteoclast formation in vitro. Collectively, these results suggest that SCIO-469 treatment can suppress factors in the bone marrow microenvironment to inhibit MM cell proliferation and adhesion and also to alleviate osteolytic activation in MM.
Collapse
Affiliation(s)
- Aaron N Nguyen
- Scios Inc., 6500 Paseo Padre Parkway, Fremont, CA 94555, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
In the absence of their cognate ligand, dependence receptors trigger programmed cell death. This function is the defining feature of dependence receptors, which include members of several different protein families. The integrins are a family of heterodimeric receptors for extracellular matrix (ECM) proteins, mediating cell anchorage and migration. Integrins share characteristics with dependence receptors, and integrin binding to substrate ECM ligands is essential for cell survival. Although integrins do not conform in all characteristics to the established definitions of dependence receptors, alterations in the expression of integrins and their ligands during physiological and pathological events, such as wound healing, angiogenesis and tumorigenesis, do regulate cell fate in a ligand-dependent manner. This biosensory function of integrins fits well with our current concept of dependence receptor action, and thus integrins may rightly be considered to comprise a distinct subclass of dependence receptor.
Collapse
Affiliation(s)
- D G Stupack
- Department of Pathology, UCSD School of Medicine & Moore's UCSD Comprehensive Cancer Center 3855 Health Sciences Drive MC 0803 La Jolla, CA 92093-0803, USA.
| |
Collapse
|
48
|
Hedley BD, Winquist E, Chambers AF. Therapeutic targets for antimetastatic therapy. Expert Opin Ther Targets 2005; 8:527-36. [PMID: 15584860 DOI: 10.1517/14728222.8.6.527] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metastases are responsible for most cancer deaths. Despite dramatic advances in cancer therapy, the presence of metastases implies a significantly shortened survival and reduced quality of remaining life. Aside from prevention of cancer altogether, or significant improvements in early detection for most cancers, effective novel therapeutic strategies targeting metastasis should provide the greatest clinical benefit. Metastasis research has shown that many of the initial steps in metastasis are completed with a high degree of efficiency and may have occurred by the time of clinical diagnosis. Therefore, targeting the later stages of metastasis may offer a more promising therapeutic approach for the development of antimetastatic therapies. Appropriate clinical strategies include targeting dormant solitary cells, active preangiogenic metastases, or vascularised metastases. Dormancy of solitary single cells, seen clinically and experimentally, may be an explanation for cancer recurrence. Eradication or inactivation of these dormant cells could provide large benefit for patients. However, little is known about what makes cancer cells dormant and, therefore, a greater knowledge of the mechanisms of dormancy is needed. This review discusses potential biological targets, as defined by the steps in the metastatic process, for antimetastatic therapies and provides examples of clinical strategies for preventing or treating successful metastasis.
Collapse
Affiliation(s)
- Benjamin D Hedley
- Department of Medical Biophysics, University of Western Ontario, London Regional Cancer Program, London Health Sciences Centre, Ontario, N6A 4L6, Canada.
| | | | | |
Collapse
|
49
|
Dalton WS, Hazlehurst L, Shain K, Landowski T, Alsina M. Targeting the bone marrow microenvironment in hematologic malignancies. Semin Hematol 2004; 41:1-5. [PMID: 15190509 DOI: 10.1053/j.seminhematol.2004.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Unicellular drug-resistant models have been critical in elucidating intrinsic drug-resistant mechanisms; however, these models do not consider resistance mechanisms that may be elicited by extrinsic influences such as the tumor microenvironment. We propose that specific niches within the tumor microenvironment may provide a sanctuary for subpopulations of tumor cells to evade or circumvent drug-induced death and that this may represent a form of de novo drug resistance. We have found that elements of the bone marrow microenvironment, including extracellular matrices and normal stromal elements, protect malignant cells, including leukemia and myeloma cells, from drug-induced cell death. This extrinsic form of drug resistance may allow cells to survive initial drug treatment and thereby acquire a more complex, intrinsic drug-resistant phenotype. Focusing on this form of de novo drug resistance may ultimately prevent the emergence of acquired drug resistance and enhance drug therapy for hematologic malignancies.
Collapse
Affiliation(s)
- William S Dalton
- H Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL 33612, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
Drug resistance remains a major obstacle to the successful use of chemotherapeutic drugs for cancer therapy. It is well documented that cancer cells can adapt to the presence of chemotherapeutic agents through mutations or expression changes of key genes that control drug metabolism or response to damage. In addition, it is becoming increasingly apparent that the tumor microenvironment can have an important impact on the success of chemotherapy. Indeed, cell-cell and cell-matrix interactions can influence the cancer cells sensitivity to apoptosis and affect drug resistance. A model is proposed in which the tumor cells may actively reorganize their environment to maximize their survival in the presence of anticancer agents.
Collapse
Affiliation(s)
- Patrice J Morin
- National Institute on Aging and Department of Pathology, The Johns Hopkins Medical Institutions, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| |
Collapse
|