1
|
Sá Filho AS, Albernaz-Silva T, Inacio PA, Aprigliano V, Oliveira-Silva I, Chiappa GR, Vieira RP, de Aguiar ASN, Cunha RM, Fajemiroye JO, Sales MM. Caffeine Combined with Excitatory Neuromodulation Based on Transcranial Direct Current Stimulation (tDCS) Enhances Performance in a Time-Trial CrossFit ® Workout: A Randomized, Placebo-Controlled, Double-Blind Study. Nutrients 2025; 17:1261. [PMID: 40219021 PMCID: PMC11990892 DOI: 10.3390/nu17071261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Caffeine (CAF) and transcranial direct current stimulation (tDCS) are ergogenic strategies with potential benefits for performance, yet their combined effects remain underexplored, particularly in high-intensity functional training contexts such as CrossFit®. This randomized, double-blind, placebo-controlled crossover study aimed to investigate the impact of tDCS, with and without CAF, on performance time in the Clean & Jerk (C&J) during the benchmark WOD GRACE among competitive CrossFit® athletes. Secondarily, we aimed to compare the RPE across the different experimental conditions, as well as to establish the relationship between personal record (PR) values adjusted for body mass and the execution time of the WOD GRACE, considering different athletes' classification levels (RX Elite and RX Intermediate). METHODS Twenty participants completed four experimental conditions: CAF ingestion (400 mg) combined with anodal tDCS (CAF + a-tDCS), CAF with Sham tDCS (CAF + Sham-tDCS), placebo (PLA) with a-tDCS (PLA + a-tDCS), and PLA with Sham tDCS (PLA + Sham-tDCS). RESULTS The results indicated that the combination of CAF + a-tDCS significantly improved performance, reducing execution time (205.5 ± 58.0 s) compared to CAF + Sham-tDCS (218.3 ± 61.2 s; p = 0.034), PLA + a-tDCS (231.7 ± 64.1 s; p = 0.012), and PLA + Sham-tDCS (240.9 ± 66.4 s; p = 0.002). However, no significant differences were observed between CAF + Sham-tDCS and PLA + a-tDCS (p = 0.690), CAF + Sham-tDCS and PLA + Sham-tDCS (p = 0.352), or PLA + a-tDCS and PLA + Sham-tDCS (p = 0.595). CONCLUSIONS The responder analysis revealed that 45% of participants improved performance with isolated tDCS, while 60% responded positively to CAF. No significant differences were found in RPE scores among conditions (p = 0.145). Additionally, no correlations were identified between PR values adjusted for body mass and execution time in both RX Elite (r = 0.265; p = 0.526) and RX Intermediate (r = 0.049; p = 0.901) groups, nor between training experience and performance across interventions. These findings suggest that tDCS, when combined with CAF, may serve as an effective ergogenic aid for improving performance in high-intensity functional training, whereas its isolated use does not yield meaningful benefits.
Collapse
Affiliation(s)
- Alberto Souza Sá Filho
- Department of Human Movement and Rehabilitation (PPGMHR) and Pharmaceutical Sciences, Pharmacology and Therapeutics (PPGCFFT), Graduate Program at the Evangelical University of Goiás (UniEVANGÉLICA), Anápolis 75083-515, GO, Brazil; (A.S.S.F.); (T.A.-S.); (P.A.I.); (I.O.-S.); (G.R.C.); (R.P.V.); (A.S.N.d.A.); (R.M.C.); (J.O.F.)
| | - Thiago Albernaz-Silva
- Department of Human Movement and Rehabilitation (PPGMHR) and Pharmaceutical Sciences, Pharmacology and Therapeutics (PPGCFFT), Graduate Program at the Evangelical University of Goiás (UniEVANGÉLICA), Anápolis 75083-515, GO, Brazil; (A.S.S.F.); (T.A.-S.); (P.A.I.); (I.O.-S.); (G.R.C.); (R.P.V.); (A.S.N.d.A.); (R.M.C.); (J.O.F.)
| | - Pedro Augusto Inacio
- Department of Human Movement and Rehabilitation (PPGMHR) and Pharmaceutical Sciences, Pharmacology and Therapeutics (PPGCFFT), Graduate Program at the Evangelical University of Goiás (UniEVANGÉLICA), Anápolis 75083-515, GO, Brazil; (A.S.S.F.); (T.A.-S.); (P.A.I.); (I.O.-S.); (G.R.C.); (R.P.V.); (A.S.N.d.A.); (R.M.C.); (J.O.F.)
| | - Vicente Aprigliano
- Escuela de Ingeniería de Construcción y Transporte, Pontificia Universidad Católica de Valparaíso, Avda Brasil 2147, Valparaíso 2362804, Chile
| | - Iransé Oliveira-Silva
- Department of Human Movement and Rehabilitation (PPGMHR) and Pharmaceutical Sciences, Pharmacology and Therapeutics (PPGCFFT), Graduate Program at the Evangelical University of Goiás (UniEVANGÉLICA), Anápolis 75083-515, GO, Brazil; (A.S.S.F.); (T.A.-S.); (P.A.I.); (I.O.-S.); (G.R.C.); (R.P.V.); (A.S.N.d.A.); (R.M.C.); (J.O.F.)
| | - Gaspar R. Chiappa
- Department of Human Movement and Rehabilitation (PPGMHR) and Pharmaceutical Sciences, Pharmacology and Therapeutics (PPGCFFT), Graduate Program at the Evangelical University of Goiás (UniEVANGÉLICA), Anápolis 75083-515, GO, Brazil; (A.S.S.F.); (T.A.-S.); (P.A.I.); (I.O.-S.); (G.R.C.); (R.P.V.); (A.S.N.d.A.); (R.M.C.); (J.O.F.)
- Faculty of Health Sciences, Universidad Autónoma de Chile, Providencia, Santiago 7500912, Chile
| | - Rodolfo P. Vieira
- Department of Human Movement and Rehabilitation (PPGMHR) and Pharmaceutical Sciences, Pharmacology and Therapeutics (PPGCFFT), Graduate Program at the Evangelical University of Goiás (UniEVANGÉLICA), Anápolis 75083-515, GO, Brazil; (A.S.S.F.); (T.A.-S.); (P.A.I.); (I.O.-S.); (G.R.C.); (R.P.V.); (A.S.N.d.A.); (R.M.C.); (J.O.F.)
| | - Antônio Sérgio Nakao de Aguiar
- Department of Human Movement and Rehabilitation (PPGMHR) and Pharmaceutical Sciences, Pharmacology and Therapeutics (PPGCFFT), Graduate Program at the Evangelical University of Goiás (UniEVANGÉLICA), Anápolis 75083-515, GO, Brazil; (A.S.S.F.); (T.A.-S.); (P.A.I.); (I.O.-S.); (G.R.C.); (R.P.V.); (A.S.N.d.A.); (R.M.C.); (J.O.F.)
| | - Raphael Martins Cunha
- Department of Human Movement and Rehabilitation (PPGMHR) and Pharmaceutical Sciences, Pharmacology and Therapeutics (PPGCFFT), Graduate Program at the Evangelical University of Goiás (UniEVANGÉLICA), Anápolis 75083-515, GO, Brazil; (A.S.S.F.); (T.A.-S.); (P.A.I.); (I.O.-S.); (G.R.C.); (R.P.V.); (A.S.N.d.A.); (R.M.C.); (J.O.F.)
| | - James Oluwagbamigbe Fajemiroye
- Department of Human Movement and Rehabilitation (PPGMHR) and Pharmaceutical Sciences, Pharmacology and Therapeutics (PPGCFFT), Graduate Program at the Evangelical University of Goiás (UniEVANGÉLICA), Anápolis 75083-515, GO, Brazil; (A.S.S.F.); (T.A.-S.); (P.A.I.); (I.O.-S.); (G.R.C.); (R.P.V.); (A.S.N.d.A.); (R.M.C.); (J.O.F.)
- Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil
| | - Marcelo Magalhães Sales
- Graduate Program in Environmental and Society, Academic Institute of Health and Biological Sciences, State University of Goiás, Southwest Campus, Quirinópolis 75862-196, GO, Brazil;
| |
Collapse
|
2
|
Zhou Y, Zhai H, Wei H. Acute Effects of Transcranial Direct Current Stimulation Combined with High-Load Resistance Exercises on Repetitive Vertical Jump Performance and EEG Characteristics in Healthy Men. Life (Basel) 2024; 14:1106. [PMID: 39337890 PMCID: PMC11433315 DOI: 10.3390/life14091106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/06/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a non-invasive technique known to enhance athletic performance metrics such as vertical jump and lower limb strength. However, it remains unclear whether combining tDCS with the post-activation effects of high-load resistance training can further improve lower limb performance. OBJECTIVE This study investigated the synergistic effects of tDCS and high-load resistance training, using electroencephalography to explore changes in the motor cortex and vertical jump dynamics. METHODS Four experiments were conducted involving 29 participants. Each experiment included tDCS, high-load resistance training, tDCS combined with high-load resistance training, and a control condition. During the tDCS session, participants received 20 min of central stimulation using a Halo Sport 2 headset, while the high-load resistance training session comprised five repetitions of a 90% one-repetition maximum weighted half squat. No intervention was administered in the control group. Electroencephalography tests were conducted before and after each intervention, along with the vertical jump test. RESULTS The combination of tDCS and high-load resistance training significantly increased jump height (p < 0.05) compared to tDCS or high-load resistance training alone. As for electroencephalography power, tDCS combined with high-load resistance training significantly impacted the percentage of α-wave power in the frontal lobe area (F3) of the left hemisphere (F = 6.33, p < 0.05). In the temporal lobe area (T3) of the left hemisphere, tDCS combined with high-load resistance training showed a significant interaction effect (F = 6.33, p < 0.05). For β-wave power, tDCS showed a significant main effect in the frontal pole area (Fp1) of the left hemisphere (F = 17.65, p < 0.01). In the frontal lobe area (F3) of the left hemisphere, tDCS combined with high-load resistance training showed a significant interaction effect (F = 7.53, p < 0.05). The tDCS combined with high-load resistance training intervention also resulted in higher β-wave power in the parietal lobe area (P4) and the temporal lobe area (T4) (p < 0.05). CONCLUSIONS The findings suggest that combining transcranial direct current stimulation (tDCS) and high-load resistance training significantly enhances vertical jump performance compared to either intervention alone. This improvement is associated with changes in the α-wave and β-wave power in specific brain regions, such as the frontal and temporal lobes. Further research is needed to explore the mechanisms and long-term effects of this combined intervention.
Collapse
Affiliation(s)
- Yuping Zhou
- School of Strength and Conditioning Training, Beijing Sport University, Beijing 100084, China
- Department of Public Education, Zhejiang College of Construction, Hangzhou 311231, China
| | - Haiting Zhai
- School of Basic Sciences for Aviation, Naval Aviation University, Yantai 264001, China
- School of Sports Coaching, Beijing Sport University, Beijing 100084, China
| | - Hongwen Wei
- School of Strength and Conditioning Training, Beijing Sport University, Beijing 100084, China
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
3
|
Winker M, Hoffmann S, Laborde S, Javelle F. The acute effects of motor cortex transcranial direct current stimulation on athletic performance in healthy adults: A systematic review and meta-analysis. Eur J Neurosci 2024; 60:5086-5110. [PMID: 39120435 DOI: 10.1111/ejn.16488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/02/2024] [Accepted: 07/13/2024] [Indexed: 08/10/2024]
Abstract
This systematic review and meta-analysis assesses independently the acute effects of anodal and cathodal motor cortex transcranial direct current stimulation (tDCS) on athletic performance in healthy adults. Besides, it evaluates the unique and conjoint effects of potential moderators (i.e., stimulation parameters, exercise type, subjects' training status and risk of bias). Online database search was performed from inception until March 18th 2024 (PROSPERO: CRD42023355461). Forty-three controlled trials were included in the systematic review, 40 in the anodal tDCS meta-analysis (68 effects), and 9 (11 effects) in the cathodal tDCS meta-analysis. Performance enhancement between pre- and post-stimulation was the main outcome measure considered. The anodal tDCS effects on physical performance were small to moderate (g = .29, 95%CI [.18, .40], PI = -.64 to 1.23, I2 = 64.0%). Exercise type, training status and use of commercial tDCS were significant moderators of the results. The cathodal tDCS effects were null (g = .04, 95%CI [-.05, .12], PI = -.14 to .23, I2 = 0%), with a small to moderate heterogeneity entirely due to sampling error, thus impairing further moderator analysis. These findings hold significant implications for the field of brain stimulation and physical performance, as they not only demonstrate a small to moderate effect of acute tDCS but also identify specific categories of individuals, devices and activities that are more susceptible to improvements. By addressing the multidimensional factors influencing the mechanisms of tDCS, we also provide suggestions for future research.
Collapse
Affiliation(s)
- Matteo Winker
- University of Cologne, Cologne, Germany
- Institute for Sport and Sport Science, Performance and Health (Sports Medicine), TU Dortmund University, Dortmund, Germany
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Sven Hoffmann
- Psychological Methods and Evaluation, Institute of Psychology, University of Hagen, Hagen, Germany
| | - Sylvain Laborde
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany
| | - Florian Javelle
- NeuroPsychoImmunology research unit, Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
4
|
Kenville R, Clauß M, Berkow S, Ragert P, Maudrich T. The impact of cerebellar transcranial direct current stimulation on isometric bench press performance in trained athletes. Heliyon 2024; 10:e29951. [PMID: 38694076 PMCID: PMC11058892 DOI: 10.1016/j.heliyon.2024.e29951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Athletic development centers on optimizing performance, including technical skills and fundamental motor abilities such as strength and speed. Parameters such as maximum contraction force and rate of force development, influence athletic success, although performance gains become harder to achieve as athletic abilities increase. Non-invasive transcranial direct current stimulation of the cerebellum (CB-tDCS) has been used successfully to increase force production in novices, although the potential effects in athletes remain unexplored. The present study examined the effects of CB-tDCS on maximum isometric voluntary contraction force (MVCiso) and isometric rate of force development (RFDiso) during a bench press task in well-trained athletes. 21 healthy, male, strength-trained athletes participated in a randomized, sham-controlled, double-blinded crossover design. Each participant completed the isometric bench press (iBP) task on two separate days, with at least 5 days between sessions, while receiving either CB-tDCS or sham stimulation. Electromyography (EMG) recordings of three muscles involved in iBP were acquired bilaterally to uncover differences in neuromuscular activation and agonist-antagonist co-contraction between conditions. Contrary to our hypothesis, no significant differences in MVCiso and RFDiso were observed between CB-tDCS and sham conditions. Furthermore, no tDCS-induced differences in neuromuscular activation or agonist-antagonist co-contraction were revealed. Here, we argue that the effects of CB-tDCS on force production appear to depend on the individual's training status. Future research should study individual differences in tDCS responses between athletes and novices, as well as the potential of high-definition tDCS for precise brain region targeting to potentially enhance motor performance in athletic populations.
Collapse
Affiliation(s)
- Rouven Kenville
- Department of Movement Neuroscience, Faculty of Sports Science, Leipzig University, Leipzig, 04109, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany
| | - Martina Clauß
- Department of Movement Neuroscience, Faculty of Sports Science, Leipzig University, Leipzig, 04109, Germany
| | - Stefan Berkow
- Department of Movement Neuroscience, Faculty of Sports Science, Leipzig University, Leipzig, 04109, Germany
| | - Patrick Ragert
- Department of Movement Neuroscience, Faculty of Sports Science, Leipzig University, Leipzig, 04109, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany
| | - Tom Maudrich
- Department of Movement Neuroscience, Faculty of Sports Science, Leipzig University, Leipzig, 04109, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany
| |
Collapse
|
5
|
Maudrich T, Ragert P, Perrey S, Kenville R. Letter to the Editor: Response regarding "Single-session anodal transcranial direct current stimulation to enhance sport-specific performance in athletes: A systematic review and meta-analysis". Brain Stimul 2023; 16:1551-1552. [PMID: 37909111 DOI: 10.1016/j.brs.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 11/02/2023] Open
Affiliation(s)
- Tom Maudrich
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Patrick Ragert
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Stéphane Perrey
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - Rouven Kenville
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
6
|
Maudrich T, Ragert P, Perrey S, Kenville R. Single-session anodal transcranial direct current stimulation to enhance sport-specific performance in athletes: A systematic review and meta-analysis. Brain Stimul 2022; 15:1517-1529. [PMID: 36442774 DOI: 10.1016/j.brs.2022.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/13/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has emerged as a promising and feasible method to improve motor performance in healthy and clinical populations. However, the potential of tDCS to enhance sport-specific motor performance in athletes remains elusive. OBJECTIVE We aimed at analyzing the acute effects of a single anodal tDCS session on sport-specific motor performance changes in athletes compared to sham. METHODS A systematic review and meta-analysis was conducted in the electronic databases PubMed, Web of Science, and SPORTDiscus. The meta-analysis was performed using an inverse variance method and a random-effects model. Additionally, two subgroup analyses were conducted (1) depending on the stimulated brain areas (primary motor cortex (M1), temporal cortex (TC), prefrontal cortex (PFC), cerebellum (CB)), and (2) studies clustered in subgroups according to different sports performance domains (endurance, strength, visuomotor skill). RESULTS A total number of 19 studies enrolling a sample size of 258 athletes were deemed eligible for inclusion. Across all included studies, a significant moderate standardized mean difference (SMD) favoring anodal tDCS to enhance sport-specific motor performance could be observed. Subgroup analysis depending on cortical target areas of tDCS indicated a significant moderate SMD in favor of anodal tDCS compared to sham for M1 stimulation. CONCLUSION A single anodal tDCS session can lead to performance enhancement in athletes in sport-specific motor tasks. Although no definitive conclusions can be drawn regarding the modes of action as a function of performance domain or stimulation site, these results imply intriguing possibilities concerning sports performance enhancement through anodal M1 stimulation.
Collapse
Affiliation(s)
- Tom Maudrich
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Patrick Ragert
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Stéphane Perrey
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - Rouven Kenville
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
7
|
Rodrigues GM, de Oliveira BRR, Jesus Abreu MA, Gomes F, Machado S, Monteiro W, Lattari E. Anodal Transcranial Direct Current Stimulation Does Not Affect Velocity Loss During a Typical Resistance Exercise Session. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2022:1-10. [PMID: 35412452 DOI: 10.1080/02701367.2021.2005235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
Purpose: This study investigated the effects of transcranial direct current stimulation (tDCS) on velocity loss in a typical resistance exercise session. Methods: Twelve recreationally resistance-trained males (age = 24.8 ± 3.0 years, body mass = 78.9 ± 13.6 kg, and height = 174.3 ± 7.3 cm) completed two experimental trials in a counterbalanced crossover design: anodal tDCS and sham conditions. The stimuli were applied over the left dorsolateral prefrontal cortex for 20 minutes, using a 2 mA current intensity in anodal tDCS and a 1-minute active stimulus in the sham condition. After stimulation, subjects performed three sets of the bench press at a 70% of 1 maximum repetition intensity and 1 min of inter-set rest. The velocity loss was calculated as the relative difference between the fastest repetition velocity (usually first) and the velocity of the last repetition of each set and averaged over all three sets. Results: The results found no interaction between conditions and sets (P = .122), and no effect for conditions (P = .323) or sets (P = .364) for the velocity loss in each set. Also, no differences were found between the average velocity loss of the three sets in the anodal tDCS (-25.0 ± 4.7%) and sham condition (-23.3 ± 6.4%; P = .323). Conclusion: Anodal tDCS does not affect movement velocity in a typical strength training protocol in recreationally trained subjects.
Collapse
Affiliation(s)
| | | | | | | | - Sérgio Machado
- Federal University of Santa Maria
- Neurodiversity Institute
| | - Walace Monteiro
- Salgado de Oliveira University (UNIVERSO)
- University of Rio de Janeiro State
| | | |
Collapse
|