1
|
Micuda A, Li H, Rask-Andersen H, Ladak HM, Agrawal SK. Morphologic Analysis of the Scala Tympani Using Synchrotron: Implications for Cochlear Implantation. Laryngoscope 2024; 134:2889-2897. [PMID: 38189807 DOI: 10.1002/lary.31263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVES To use synchrotron radiation phase-contrast imaging (SR-PCI) to visualize and measure the morphology of the entire cochlear scala tympani (ST) and assess cochlear implant (CI) electrode trajectories. METHODS SR-PCI images were used to obtain geometric measurements of the cochlear scalar diameter and area at 5-degree increments in 35 unimplanted and three implanted fixed human cadaveric cochleae. RESULTS The cross-sectional diameter and area of the cochlea were found to decrease from the base to the apex. This study represents a wide variability in cochlear morphology and suggests that even in the smallest cochlea, the ST can accommodate a 0.4 mm diameter electrode up to 720°. Additionally, all lateral wall array trajectories were within the anatomically accommodating insertion zone. CONCLUSION This is the first study to use SR-PCI to visualize and quantify the entire ST morphology, from the round window to the apical tip, and assess the post-operative trajectory of electrodes. These high-resolution anatomical measurements can be used to inform the angular insertion depth that can be accommodated in CI patients, accounting for anatomical variability. LEVEL OF EVIDENCE N/A. Laryngoscope, 134:2889-2897, 2024.
Collapse
Affiliation(s)
- Ashley Micuda
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Hao Li
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Hanif M Ladak
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- School of Biomedical Engineering, Western University, London, Ontario, Canada
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada
- Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada
| | - Sumit K Agrawal
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- School of Biomedical Engineering, Western University, London, Ontario, Canada
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada
- Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Margeta J, Hussain R, López Diez P, Morgenstern A, Demarcy T, Wang Z, Gnansia D, Martinez Manzanera O, Vandersteen C, Delingette H, Buechner A, Lenarz T, Patou F, Guevara N. A Web-Based Automated Image Processing Research Platform for Cochlear Implantation-Related Studies. J Clin Med 2022; 11:6640. [PMID: 36431117 PMCID: PMC9699139 DOI: 10.3390/jcm11226640] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
The robust delineation of the cochlea and its inner structures combined with the detection of the electrode of a cochlear implant within these structures is essential for envisaging a safer, more individualized, routine image-guided cochlear implant therapy. We present Nautilus-a web-based research platform for automated pre- and post-implantation cochlear analysis. Nautilus delineates cochlear structures from pre-operative clinical CT images by combining deep learning and Bayesian inference approaches. It enables the extraction of electrode locations from a post-operative CT image using convolutional neural networks and geometrical inference. By fusing pre- and post-operative images, Nautilus is able to provide a set of personalized pre- and post-operative metrics that can serve the exploration of clinically relevant questions in cochlear implantation therapy. In addition, Nautilus embeds a self-assessment module providing a confidence rating on the outputs of its pipeline. We present a detailed accuracy and robustness analyses of the tool on a carefully designed dataset. The results of these analyses provide legitimate grounds for envisaging the implementation of image-guided cochlear implant practices into routine clinical workflows.
Collapse
Affiliation(s)
- Jan Margeta
- Research and Development, KardioMe, 01851 Nova Dubnica, Slovakia
| | - Raabid Hussain
- Research and Technology Group, Oticon Medical, 2765 Smørum, Denmark
| | - Paula López Diez
- Department for Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Anika Morgenstern
- Department of Otolaryngology, Medical University of Hannover, 30625 Hannover, Germany
| | - Thomas Demarcy
- Research and Technology Group, Oticon Medical, 2765 Smørum, Denmark
| | - Zihao Wang
- Epione Team, Inria, Université Côte d’Azur, 06902 Sophia Antipolis, France
| | - Dan Gnansia
- Research and Technology Group, Oticon Medical, 2765 Smørum, Denmark
| | | | - Clair Vandersteen
- Institut Universitaire de la Face et du Cou, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06100 Nice, France
| | - Hervé Delingette
- Epione Team, Inria, Université Côte d’Azur, 06902 Sophia Antipolis, France
| | - Andreas Buechner
- Department of Otolaryngology, Medical University of Hannover, 30625 Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Medical University of Hannover, 30625 Hannover, Germany
| | - François Patou
- Research and Technology Group, Oticon Medical, 2765 Smørum, Denmark
| | - Nicolas Guevara
- Institut Universitaire de la Face et du Cou, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06100 Nice, France
| |
Collapse
|
3
|
One Year Assessment of the Hearing Preservation Potential of the EVO Electrode Array. J Clin Med 2021; 10:jcm10235604. [PMID: 34884306 PMCID: PMC8658238 DOI: 10.3390/jcm10235604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 12/01/2022] Open
Abstract
Background: A prospective longitudinal multicentre study was conducted to assess the one-year postsurgical hearing preservation profile of the EVOTM electrode array. Methods: Fifteen adults presenting indications of electro-acoustic stimulation (pure-tone audiometry (PTA) thresholds ≤70 dB below 750 Hz) were implanted with the EVO™ electrode array. Hearing thresholds were collected at five time-points from CI activation to twelve months (12M) after activation. Hearing thresholds and hearing preservation profiles (HEARRING group classification) were assessed. Results: All subjects had measurable hearing thresholds at follow-up. No case of complete loss of hearing or minimal hearing preservation was reported at any time point. At activation (Nact = 15), five participants had complete hearing preservation, and ten participants had partial hearing preservation. At the 12M time point (N12m = 6), three participants had complete hearing preservation, and three participants had partial hearing preservation. Mean hearing loss at activation was 11 dB for full range PTA and 25 dB for PTAs low-frequency (125–500 Hz). Conclusions: This study provides the first longitudinal follow-up on associated hearing profiles to the EVO™ electrode array, which are comparable to the literature. However, other studies on larger populations should be performed.
Collapse
|
4
|
Nanocarriers for drug delivery to the inner ear: Physicochemical key parameters, biodistribution, safety and efficacy. Int J Pharm 2020; 592:120038. [PMID: 33159985 DOI: 10.1016/j.ijpharm.2020.120038] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022]
Abstract
Despite the high incidence of inner ear disorders, there are still no dedicated medications on the market. Drugs are currently administered by the intratympanic route, the safest way to maximize drug concentration in the inner ear. Nevertheless, therapeutic doses are ensured for only a few minutes/hours using drug solutions or suspensions. The passage through the middle ear barrier strongly depends on drug physicochemical characteristics. For the past 15 years, drug encapsulation into nanocarriers has been developed to overcome this drawback. Nanocarriers are well known to sustain drug release and protect it from degradation. In this review, in vivo studies are detailed concerning nanocarrier biodistribution, their pathway mechanisms in the inner ear and the resulting drug pharmacokinetics. Key parameters influencing nanocarrier biodistribution are identified and discussed: nanocarrier size, concentration, surface composition and shape. Recent advanced strategies that combine nanocarriers with hydrogels, specific tissue targeting or modification of the round window permeability (cell-penetrating peptide, magnetic delivery) are explored. Most of the nanocarriers appear to be safe for the inner ear and provide a significant efficacy over classic formulations in animal models. However, many challenges remain to be overcome for future clinical applications.
Collapse
|
5
|
Schramm D, Chen J, Morris DP, Shoman N, Philippon D, Cayé-Thomasen P, Hoen M, Karoui C, Laplante-Lévesque A, Gnansia D. Clinical efficiency and safety of the oticon medical neuro cochlear implant system: a multicenter prospective longitudinal study. Expert Rev Med Devices 2020; 17:959-967. [PMID: 32885711 DOI: 10.1080/17434440.2020.1814741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE This prospective longitudinal cohort study at six tertiary referral centers in Canada and Denmark describes the clinical efficiency and surgical safety of cochlear implantation with the Oticon Medical Neuro cochlear implant system, including the Neuro Zti implant, the EVO electrode array, and the Neuro One sound processor. METHODS Patients were adult cochlear implant candidates with bilateral sensorineural hearing loss. RESULTS The mean HINT scores in quiet pre-operatively and at 3, 6, and 12 months post-activation were 13%, 58%, 67%, and 72%, respectively, and in noise (+10 dB SNR) 13%, 46%, 53%, and 59%, respectively. The mean improvement from baseline to 6 months post-activation was 54% in quiet and 40% in noise. The surgical major complication incidence rate was 0% and the post-surgical major complication incidence rate (until 12 months post-activation) was 4%. There was no adverse event that was fatal, that required explantation, or that resulted in sound processor nonuse, and no implant failure. CONCLUSION Cochlear implantation with the Oticon Medical Neuro system enables speech identification both in quiet and in noise and audiologic outcomes continue to improve in the year following activation. No substantial adverse events occurred during the surgical implantation procedure and during the 12 months post-activation.
Collapse
Affiliation(s)
- David Schramm
- Department of Otolaryngology - Head and Neck Surgery, University of Ottawa , Ottawa, Canada
| | - Joseph Chen
- Department ofOtolaryngology- Head & Neck Surgery, Sunnybrook Hospital , Toronto, Canada
| | - David P Morris
- Division of Otolaryngology -Head & Neck Surgery, Continuing Professional Development, Dalhousie University , Halifax, Canada
| | - Nael Shoman
- Division of ENT, Head and Neck Surgery, Royal University Hospital , Saskatoon, Canada
| | - Daniel Philippon
- Département d'ophtalmologie et d'oto-rhino-laryngologie - chirurgie cervico-faciale, Quebec University Hospital , Quebec, Canada
| | - Per Cayé-Thomasen
- Afdeling for Øre-Næse-Halskirurgi og Audiologi, Copenhagen University Hospital Rigshospitalet , Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen, Denmark
| | - Michel Hoen
- Clinical Evidence, Oticon Medical , Smørum, Denmark
| | | | - Ariane Laplante-Lévesque
- Clinical Evidence, Oticon Medical , Smørum, Denmark.,Department of Behavioural Sciences and Learning, Linköping University , Linköping, Sweden
| | - Dan Gnansia
- Research & Technology, Oticon Medical , Smørum, Denmark
| |
Collapse
|
6
|
Lee S, Dondzillo A, Gubbels SP, Raphael Y. Practical aspects of inner ear gene delivery for research and clinical applications. Hear Res 2020; 394:107934. [PMID: 32204962 DOI: 10.1016/j.heares.2020.107934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022]
Abstract
The application of gene therapy is widely expanding in research and continuously improving in preparation for clinical applications. The inner ear is an attractive target for gene therapy for treating environmental and genetic diseases in both the auditory and vestibular systems. With the lack of spontaneous cochlear hair cell replacement, hair cell regeneration in adult mammals is among the most important goals of gene therapy. In addition, correcting gene defects can open up a new era for treating inner ear diseases. The relative isolation and small size of the inner ear dictate local administration routes and carefully calculated small volumes of reagents. In the current review, we will cover effective timing, injection routes and types of vectors for successful gene delivery to specific target cells within the inner ear. Differences between research purposes and clinical applications are also discussed.
Collapse
Affiliation(s)
- Sungsu Lee
- Kresge Hearing Research Institute, Department of Otolaryngology, Head and Neck Surgery, Michigan Medicine, Ann Arbor, MI, USA
| | - Anna Dondzillo
- Department of Otolaryngology, Head and Neck Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Samuel P Gubbels
- Department of Otolaryngology, Head and Neck Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology, Head and Neck Surgery, Michigan Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Cochlear Implantation With a Novel Long Straight Electrode: the Insertion Results Evaluated by Imaging and Histology in Human Temporal Bones. Otol Neurotol 2019; 39:e784-e793. [PMID: 30199496 DOI: 10.1097/mao.0000000000001953] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS To evaluate the insertion results of a novel straight array (EVO) by detailed imaging and subsequent histology in human temporal bones (TB). BACKGROUND The main focuses of modern cochlear implant surgery are to prevent damage to the intracochlear structures and to preserve residual hearing. This is often achievable with new atraumatic electrode arrays in combination with meticulous surgical techniques. METHODS Twenty fresh-frozen TBs were implanted with the EVO. Pre- and postoperative cone beam computed tomography scans were reconstructed and fused for an artifact-free representation of the electrode. The array's vertical position was quantified in relation to the basilar membrane on basis of which trauma was classified (Grades 0-4). The basilar membrane location was modeled from previous histologic data. The TBs underwent subsequent histologic examination. RESULTS The EVOs were successfully inserted in all TBs. Atraumatic insertion (Grades 0-1) were accomplished in 14 of 20 TBs (70%). There were three apical translocations, and two basal translocations due to electrode bulging. One TB had multiple translocations. The sensitivity and specificity of imaging for detecting insertion trauma (Grades 2-4) was 87.5% and 97.3.0%, respectively. CONCLUSION Comparable insertion results as reported for other arrays were also found for the EVO. Insertion trauma can be mostly avoided with meticulous insertion techniques to prevent bulging and by limiting the insertion depth angle to 360 degrees. The image fusion technique is a reliable tool for evaluating electrode placement and is feasible for trauma grading.
Collapse
|
8
|
Badr A, Shabana Y, Mokbel K, Elsharabasy A, Ghonim M, Sanna M. Atraumatic Scala Tympani Cochleostomy; Resolution of the Dilemma. J Int Adv Otol 2019; 14:190-196. [PMID: 30100542 DOI: 10.5152/iao.2018.4974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES While an accurate placement in cochleostomy is critical to ensure appropriate insertion of the cochlear implant (CI) electrode into the scala tympani (ST), the choice of preferred cochleostomy sites widely varied among experienced surgeons. We present a novel technique for precise yet readily applicable localization of the optimum site for performing ST cochleostomy. MATERIAL AND METHODS Twenty fresh frozen temporal bones were dissected using the mastoidectomy-posterior tympanotomy approach. Based on the facial nerve and the margins of the round window membrane (RWM), the cochleostomy site was chosen to insert the electrode into the ST while preserving the surrounding intracochlear structures. RESULTS There is a limited safe area suitable for the ST implantation in the area inferior and anterior to the RWM. There is a higher risk of scala vestibuli (SV) insertion anterior to that area. Posterior to that area, the cochlear aqueduct (CA) and inferior cochlear vein (ICV) are liable for the injury. CONCLUSION For atraumatic CI, precise and easy localization of the site of cochleostomy play a pivotal role in preserving intracochlear structures. Accurate setting of the vertical and horizontal orientations is mandatory before choosing the site of cochleostomy. The facial nerve and the margins of the RWM offer a very helpful clue for such localization; meanwhile, it is readily identifiable in the surgical field.
Collapse
Affiliation(s)
- Ahmad Badr
- Department of ENT, Head and Neck Surgery, Mansoura University School of Medicine, Mansoura City, Egypt
| | - Yousef Shabana
- Department of ENT, Head and Neck Surgery, Mansoura University School of Medicine, Mansoura City, Egypt
| | - Khaled Mokbel
- Department of ENT, Head and Neck Surgery, Mansoura University School of Medicine, Mansoura City, Egypt
| | - Ayman Elsharabasy
- Department of ENT, Head and Neck Surgery, Mansoura University School of Medicine, Mansoura City, Egypt
| | - Mohamed Ghonim
- Department of ENT, Head and Neck Surgery, Mansoura University School of Medicine, Mansoura City, Egypt
| | - Mario Sanna
- Department of Otology and Skull Base Surgery, Gruppo Otologico, Piacenza, Rome, Italy
| |
Collapse
|
9
|
Perenyi A, Toth F, Dimak B, Nagy R, Schoerg P, Jori J, Kiss JG, Sprinzl G, Csanady M, Rovo L. Electrophysiological measurements with electrode types of different perimodiolar properties and the same cochlear implant electronics - a retrospective comparison study. J Otolaryngol Head Neck Surg 2019; 48:46. [PMID: 31492190 PMCID: PMC6731597 DOI: 10.1186/s40463-019-0361-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/20/2019] [Indexed: 11/23/2022] Open
Affiliation(s)
- A Perenyi
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Szeged, Tisza Lajos krt. 111, Szeged, H-6725, Hungary.
| | - F Toth
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Szeged, Tisza Lajos krt. 111, Szeged, H-6725, Hungary
| | - B Dimak
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Szeged, Tisza Lajos krt. 111, Szeged, H-6725, Hungary
| | - R Nagy
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Szeged, Tisza Lajos krt. 111, Szeged, H-6725, Hungary
| | - P Schoerg
- Karl Landsteiner University Hospital of StPölten, Propst-Führer-Straße 4, 3100, St. Pölten, Austria
| | - J Jori
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Szeged, Tisza Lajos krt. 111, Szeged, H-6725, Hungary
| | - J G Kiss
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Szeged, Tisza Lajos krt. 111, Szeged, H-6725, Hungary
| | - G Sprinzl
- Karl Landsteiner University Hospital of StPölten, Propst-Führer-Straße 4, 3100, St. Pölten, Austria
| | - M Csanady
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Szeged, Tisza Lajos krt. 111, Szeged, H-6725, Hungary
| | - L Rovo
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Szeged, Tisza Lajos krt. 111, Szeged, H-6725, Hungary
| |
Collapse
|
10
|
|
11
|
Abstract
Drug delivery to the inner ear is an ideal method to treat a wide variety of otologic conditions. A broad range of potential applications is just beginning to be explored. New approaches combine principles of inner ear pharmacokinetics with emerging technologies of drug delivery including novel delivery systems, drug-device combinations, and new categories of drugs. Strategies include cell-specific targeting, manipulation of gene expression, local activation following systemic delivery, and use of stem cells, viral vectors, and gene editing systems. Translation of these therapies to the clinic remains challenging given the potential risks of intracochlear and intralabyrinthine trauma, our limited understanding of the etiologies of particular inner ear disorders, and paucity of accurate diagnostic tools at the cellular level. This review provides an overview of future methods, delivery systems, disease targets, and clinical considerations required for translation to clinical medicine.
Collapse
|
12
|
Abstract
Twenty years ago, cochlear implants (CI) were indicated only in cases of profound hearing loss or complete deafness. While from today's perspective the technology was clumsy and provided patients with only limited speech comprehension in quiet scenarios, successive advances in CI technology and the consequent substantial hearing improvements over time have since then resulted in continuous relaxation of indication criteria toward residual hearing. While achievements in implant and processor electronics have been one key factor for the ever-improving hearing performance, development of electro-acoustic CI systems-together with atraumatic implantation concepts-has led to enormous improvements in patients with low-frequency residual hearing. Manufactures have designed special processors with integrated hearing aid components for this patient group, which are capable of conveying acoustic and electric stimulation. A further milestone in improvement of hearing in challenging listening environments was the adoption of signal enhancement algorithms and assistive listening devices from the hearing aid industry. This article gives an overview of the current state of the art in the abovementioned areas of CI technology.
Collapse
Affiliation(s)
- A Büchner
- Hörzentrum der Medizinischen Hochschule Hannover, Karl-Wiechert-Allee 3, 30625, Hannover, Deutschland.
| | - L Gärtner
- Hörzentrum der Medizinischen Hochschule Hannover, Karl-Wiechert-Allee 3, 30625, Hannover, Deutschland
| |
Collapse
|
13
|
The utilization of round window membrane surface tension in facilitating slim electrodes insertion during cochlear implantation. Eur Arch Otorhinolaryngol 2017. [DOI: 10.1007/s00405-017-4652-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|