1
|
Gu B, Hou J, Filla N, Li H, Wang X. Rupture mechanics of blood clot fibrin fibers: A coarse-grained model study. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 2025; 196:105998. [PMID: 39734807 PMCID: PMC11674026 DOI: 10.1016/j.jmps.2024.105998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
Thrombosis, when occurring undesirably, disrupts normal blood flow and poses significant medical challenges. As the skeleton of blood clots, fibrin fibers play a vital role in the formation and fragmentation of blood clots. Thus, studying the deformation and fracture characteristics of fibrin fiber networks is the key factor to solve a series of health problems caused by thrombosis. This study employs a coarse-grained model of fibrin fibers to investigate the rupture dynamics of fibrin fiber networks. We propose a new method for generating biomimetic fibrin fiber networks to simulate their spatial geometry in blood clots. We examine the mechanical characteristics and rupture behaviors of fibrin fiber networks under various conditions, including fiber junction density, fiber tortuosity, fiber strength, and the strain limit of single fiber rupture in both tension and simple shear cases. Our findings indicate that the stress-strain relationship of the fibrin fiber network follows a similar pattern to that of individual fibers, characterized by a shortened entropy stretching phase and an extended transition phase. Fiber junction density, fiber strength, and single fiber rupture limit predominantly influence the stress of the network, while fiber tortuosity governs the strain behavior. The availability of more fibers in shear cases to bear the load results in delayed rupture compared to tension cases. With consideration of different factors of fibrin fibers in networks, this work provides a more realistic description of the mechanical deformation process in fibrin fiber networks, offering new insights into their rupture and failure mechanisms. These findings could inspire novel approaches and methodologies for understanding the fracture of fibrin networks during a surgical thrombectomy.
Collapse
Affiliation(s)
- Beikang Gu
- School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Jixin Hou
- School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Nicholas Filla
- School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - He Li
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Xianqiao Wang
- School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
2
|
Zaldua JC, Watson O, Gregoire DJ, Pillai S, Hellsten Y, Hawkins K, Evans PA. The impact of physical activity and intensity on clot mechanical microstructure and contraction in middle-aged/older habitual runners. BMC Neurol 2025; 25:81. [PMID: 40025415 PMCID: PMC11871672 DOI: 10.1186/s12883-025-04074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Exercise in healthy individuals is associated with a hypercoagulable phase, leading to a temporary increase in clot mass and strength, which are controlled by an effective fibrinolytic system. Conversely, people with cardiovascular diseases often have a reduced fibrinolytic pathway, increased clot mass and abnormal clot contraction, resulting in poorer outcomes. We assessed clot microstructure, particularly the contractile forces of clot formation, in response to two exercise intensities in middle-aged/older runners. METHODS Twenty-eight habitual male and female runners aged over 40 years completed a 10 km moderate-intensity run; 14 of them performed a 3 km high-intensity run. Blood samples were collected at baseline, immediately postexercise and after 1 h of rest. Clot structural biomarkers df, gel time, and measurements of mature clot mechanical properties (gel time, G'Max and CFmax) were analysed alongside conventional plasma markers. RESULTS Both exercise intensities altered markers of coagulant activity (PT, APTT and FVIII) and fibrinolysis (D-dimer), indicating hypercoagulability. Compared with longer-duration lower-intensity exercise, df was greater after short-duration intensified exercise bouts. Following an hour of rest, df dropped to baseline levels. Additionally, CFmax decreased across timepoints at both exercise intensities. This effect was noted after one hour of rest compared with baseline, suggesting continuous fibrinolytic activity postexercise. CONCLUSION Exercise transiently induces an intensity-dependent hypercoagulable state, resulting in denser clot formation and a reduced clot contractile force due to fibrinolysis. These findings can help guide the safe commencement of rehabilitation exercise programs for cerebrovascular patients.
Collapse
Affiliation(s)
- J C Zaldua
- The Welsh Centre for Emergency Medicine Research, Emergency Department Morriston Hospital, Swansea Bay University Health Board, Swansea, Wales, SA6 6NL, UK
- Faculty of Medicine and Life Health Sciences, Medical School, Swansea University, Swansea, SA6 6NL, UK
| | - O Watson
- The Welsh Centre for Emergency Medicine Research, Emergency Department Morriston Hospital, Swansea Bay University Health Board, Swansea, Wales, SA6 6NL, UK
| | - D J Gregoire
- The Welsh Centre for Emergency Medicine Research, Emergency Department Morriston Hospital, Swansea Bay University Health Board, Swansea, Wales, SA6 6NL, UK
| | - S Pillai
- The Welsh Centre for Emergency Medicine Research, Emergency Department Morriston Hospital, Swansea Bay University Health Board, Swansea, Wales, SA6 6NL, UK
- Faculty of Medicine and Life Health Sciences, Medical School, Swansea University, Swansea, SA6 6NL, UK
| | - Y Hellsten
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - K Hawkins
- Faculty of Medicine and Life Health Sciences, Medical School, Swansea University, Swansea, SA6 6NL, UK
| | - P A Evans
- The Welsh Centre for Emergency Medicine Research, Emergency Department Morriston Hospital, Swansea Bay University Health Board, Swansea, Wales, SA6 6NL, UK.
- Faculty of Medicine and Life Health Sciences, Medical School, Swansea University, Swansea, SA6 6NL, UK.
| |
Collapse
|
3
|
Pym D, Davies AJ, Williams JO, Saunders C, George CE, James PE. Small volume platelet concentrates for neonatal use are more susceptible to shear-induced storage lesion. Platelets 2024; 35:2389967. [PMID: 39169763 DOI: 10.1080/09537104.2024.2389967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024]
Abstract
The impact of the biophysical environment on the platelet storage lesion (PSL) has mainly focused on reduced temperature storage, overlooking the significance of storage-induced shear stress. Shear stress in platelet storage refers to the frictional force acting parallel to the bag surface and exists solely through the implementation of agitation. This study investigates whether minimizing exposure to agitation-induced shear stress can alleviate the unexplained loss of function in stored platelet concentrates for neonatal transfusion (neonatal PCs). Using particle tracking analysis, fluid motion was measured in neonatal and adult platelet storage bags under agitation frequencies ranging from 20-60 rpm. Platelets stored at 20-60 rpm agitation over 8 days were examined by biochemical analysis, aggregation, and expression of activation markers. Results indicate that neonatal PCs experience significantly higher storage-induced shear stress compared to adult doses, leading to reduced functionality and increased activation from day 2 of storage. Adjusting the neonatal PC agitation frequency to 20 rpm improved functionality in early storage, while 40 rpm maintains this improvement throughout storage with reduced activation, compared to 60 rpm storage. This study confirms that small volume PC storage for neonatal use contributes to the PSL through the induction of shear stress, suggesting further evaluation of the recommended agitation frequency for neonatal PCs or postponement of the production of neonatal PCs until requested for neonatal transfusion.
Collapse
Affiliation(s)
- Dean Pym
- Centre of Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, Wales, UK
- Welsh Blood Service, Component Development and Research Laboratory, Pontyclun, Wales, UK
| | - Amanda J Davies
- Centre of Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, Wales, UK
| | - Jessica O Williams
- Centre of Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, Wales, UK
| | - Christine Saunders
- Welsh Blood Service, Component Development and Research Laboratory, Pontyclun, Wales, UK
| | - Chloë E George
- Welsh Blood Service, Component Development and Research Laboratory, Pontyclun, Wales, UK
| | - Philip E James
- Centre of Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, Wales, UK
| |
Collapse
|
4
|
Peshkova AD, Weisel JW, Litvinov RI. A novel technique to quantify the kinetics of blood clot contraction based on the expulsion of fluorescently labeled albumin into serum. J Thromb Haemost 2024; 22:1742-1748. [PMID: 38401713 PMCID: PMC11139561 DOI: 10.1016/j.jtha.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND The platelet-driven contraction or retraction of blood clots has been utilized to obtain blood serum for laboratory studies, but now, in vitro clot contraction assays are used in research laboratories and clinics to assess platelet functionality. The static final extent of clot contraction measured using a clot size or expelled serum volume can be supplemented substantially with a dynamic analysis. OBJECTIVES To provide a step-by-step protocol for a relatively simple and affordable new automated methodology to follow the kinetics of blood clot contraction, which allows for simultaneous measurements of various samples at a time and requires only a fluorescence plate reader. METHODS The kinetics of clot contraction in whole blood was assessed by continuously detecting the fluorescence intensity of fluorescein isothiocyanate-albumin added to a blood sample before clotting and expelled into the serum during clot shrinkage. RESULTS The clots are formed and fluorescence is measured in the wells of a black multiwell plate using a standard plate fluorescent reader. The specificity of this technique for clot contraction has been demonstrated by the strong inhibitory effects of blebbistatin, latrunculin A, and abciximab. To validate the new technique, increased fluorescence intensity in the contracting clots was measured in parallel with a visual decrease in clot size performed with the same blood samples. CONCLUSION The resulting clot contraction dynamics based on the expulsion of fluorescein isothiocyanate-albumin can be quantified using a number of kinetic parameters as well as a phase kinetics analysis. The advantages and drawbacks of the new technique are discussed.
Collapse
Affiliation(s)
- Alina D Peshkova
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
5
|
Mehl J, Farahani SK, Brauer E, Klaus‐Bergmann A, Thiele T, Ellinghaus A, Bartels‐Klein E, Koch K, Schmidt‐Bleek K, Petersen A, Gerhardt H, Vogel V, Duda GN. External Mechanical Stability Regulates Hematoma Vascularization in Bone Healing Rather than Endothelial YAP/TAZ Mechanotransduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307050. [PMID: 38273642 PMCID: PMC10987120 DOI: 10.1002/advs.202307050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Indexed: 01/27/2024]
Abstract
Bone fracture healing is regulated by mechanobiological cues. Both, extracellular matrix (ECM) deposition and microvascular assembly determine the dynamics of the regenerative processes. Mechanical instability as by inter-fragmentary shear or compression is known to influence early ECM formation and wound healing. However, it remains unclear how these external cues shape subsequent ECM and microvascular network assembly. As transcriptional coactivators, the mechanotransducers yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) translate physical cues into downstream signaling events, yet their role in sprouting angiogenesis into the hematoma after injury is unknown. Using bone healing as model system for scar-free regeneration, the role of endothelial YAP/TAZ in combination with tuning the extrinsic mechanical stability via fracture fixation is investigated. Extrinsically imposed shear across the gap delayed hematoma remodeling and shaped the morphology of early collagen fiber orientations and microvascular networks, suggesting that enhanced shear increased the nutrient exchange in the hematoma. In contrast, endothelial YAP/TAZ deletion has little impact on the overall vascularization of the fracture gap, yet slightly increases the collagen fiber deposition under semi-rigid fixation. Together, these data provide novel insights into the respective roles of endothelial YAP/TAZ and extrinsic mechanical cues in orchestrating the process of bone regeneration.
Collapse
Affiliation(s)
- Julia Mehl
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Laboratory of Applied MechanobiologyDepartment of Health Sciences and TechnologyETH ZurichZurich8092Switzerland
| | - Saeed Khomeijani Farahani
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Erik Brauer
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Alexandra Klaus‐Bergmann
- Integrative Vascular Biology LaboratoryMax‐Delbrück‐Center for Molecular Medicine (MDC) in the Helmholtz Association13125BerlinGermany
- German Center for Cardiovascular Research (DZHK)Partnersite Berlin10785BerlinGermany
| | - Tobias Thiele
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Agnes Ellinghaus
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Eireen Bartels‐Klein
- Integrative Vascular Biology LaboratoryMax‐Delbrück‐Center for Molecular Medicine (MDC) in the Helmholtz Association13125BerlinGermany
- German Center for Cardiovascular Research (DZHK)Partnersite Berlin10785BerlinGermany
| | - Katharina Koch
- Integrative Vascular Biology LaboratoryMax‐Delbrück‐Center for Molecular Medicine (MDC) in the Helmholtz Association13125BerlinGermany
- German Center for Cardiovascular Research (DZHK)Partnersite Berlin10785BerlinGermany
| | - Katharina Schmidt‐Bleek
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Ansgar Petersen
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Holger Gerhardt
- Integrative Vascular Biology LaboratoryMax‐Delbrück‐Center for Molecular Medicine (MDC) in the Helmholtz Association13125BerlinGermany
- German Center for Cardiovascular Research (DZHK)Partnersite Berlin10785BerlinGermany
| | - Viola Vogel
- Laboratory of Applied MechanobiologyDepartment of Health Sciences and TechnologyETH ZurichZurich8092Switzerland
| | - Georg N. Duda
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| |
Collapse
|
6
|
Kim OV, Litvinov RI, Gagne AL, French DL, Brass LF, Weisel JW. Megakaryocyte-induced contraction of plasma clots: cellular mechanisms and structural mechanobiology. Blood 2024; 143:548-560. [PMID: 37944157 PMCID: PMC11033616 DOI: 10.1182/blood.2023021545] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
ABSTRACT Nonmuscle cell contractility is an essential feature underlying diverse cellular processes such as motility, morphogenesis, division and genome replication, intracellular transport, and secretion. Blood clot contraction is a well-studied process driven by contracting platelets. Megakaryocytes (MKs), which are the precursors to platelets, can be found in bone marrow and lungs. Although they express many of the same proteins and structures found in platelets, little is known about their ability to engage with extracellular proteins such as fibrin and contract. Here, we have measured the ability of MKs to compress plasma clots. Megakaryocytes derived from human induced pluripotent stem cells (iPSCs) were suspended in human platelet-free blood plasma and stimulated with thrombin. Using real-time macroscale optical tracking, confocal microscopy, and biomechanical measurements, we found that activated iPSC-derived MKs (iMKs) caused macroscopic volumetric clot shrinkage, as well as densification and stiffening of the fibrin network via fibrin-attached plasma membrane protrusions undergoing extension-retraction cycles that cause shortening and bending of fibrin fibers. Contraction induced by iMKs involved 2 kinetic phases with distinct rates and durations. It was suppressed by inhibitors of nonmuscle myosin IIA, actin polymerization, and integrin αIIbβ3-fibrin interactions, indicating that the molecular mechanisms of iMK contractility were similar or identical to those in activated platelets. Our findings provide new insights into MK biomechanics and suggest that iMKs can be used as a model system to study platelet contractility. Physiologically, the ability of MKs to contract plasma clots may play a role in the mechanical remodeling of intravascular blood clots and thrombi.
Collapse
Affiliation(s)
- Oleg V. Kim
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Biomedical Engineering and Mechanics, Fralin Biomedical Research Institute, Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA
| | - Rustem I. Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alyssa L. Gagne
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Deborah L. French
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Lawrence F. Brass
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John W. Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
7
|
Teeraratkul C, Tomaiuolo M, Stalker TJ, Mukherjee D. Investigating clot-flow interactions by integrating intravital imaging with in silico modeling for analysis of flow, transport, and hemodynamic forces. Sci Rep 2024; 14:696. [PMID: 38184693 PMCID: PMC10771506 DOI: 10.1038/s41598-023-49945-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 12/13/2023] [Indexed: 01/08/2024] Open
Abstract
As a blood clot forms, grows, deforms, and embolizes following a vascular injury, local clot-flow interactions lead to a highly dynamic flow environment. The local flow influences transport of biochemical species relevant for clotting, and determines the forces on the clot that in turn lead to clot deformation and embolization. Despite this central role, quantitative characterization of this dynamic clot-flow interaction and flow environment in the clot neighborhood remains a major challenge. Here, we propose an approach that integrates dynamic intravital imaging with computer geometric modeling and computational flow and transport modeling to develop a unified in silico framework to quantify the dynamic clot-flow interactions. We outline the development of the methodology referred to as Intravital Integrated In Silico Modeling or IVISim, and then demonstrate the method on a sample set of simulations comprising clot formation following laser injury in two mouse cremaster arteriole injury model data: one wild-type mouse case, and one diYF knockout mouse case. Simulation predictions are verified against experimental observations of transport of caged fluorescent Albumin (cAlb) in both models. Through these simulations, we illustrate how the IVISim methodology can provide insights into hemostatic processes, the role of flow and clot-flow interactions, and enable further investigations comparing and contrasting different biological model scenarios and parameter variations.
Collapse
Affiliation(s)
- Chayut Teeraratkul
- Paul M Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, USA
| | - Maurizio Tomaiuolo
- Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, USA
| | | | - Debanjan Mukherjee
- Paul M Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, USA.
| |
Collapse
|
8
|
Lassila R, Weisel JW. Role of red blood cells in clinically relevant bleeding tendencies and complications. J Thromb Haemost 2023; 21:3024-3032. [PMID: 37210074 PMCID: PMC10949759 DOI: 10.1016/j.jtha.2023.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/20/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
The multiple roles of red blood cells (RBCs) are often neglected as contributors in hemostasis and thrombosis. Proactive opportunities to increase RBC numbers, either acutely or subacutely in the case of iron deficiency, are critical as RBCs are the cellular elements that initiate hemostasis together with platelets and stabilize fibrin and clot structure. RBCs also possess several functional properties to assist hemostasis: releasing platelet agonists, promoting shear force-induced von Willebrand factor unfolding, procoagulant capacity, and binding to fibrin. Additionally, blood clot contraction is important to compress RBCs to form a tightly packed array of polyhedrocytes, making an impermeable seal for hemostasis. All these functions are important for patients having intrinsically poor capacity to cease bleeds (ie, hemostatic disorders) but, conversely, can also play a role in thrombosis if these RBC-mediated reactions overshoot. One acquired example of bleeding with anemia is in patients treated with anticoagulants and/or antithrombotic medication because upon initiation of these drugs, baseline anemia doubles the risk of bleeding complications and mortality. Also, anemia is a risk factor for reoccurring gastrointestinal and urogenital bleeds, pregnancy, and delivery complications. This review summarizes the clinically relevant properties and profiles of RBCs at various steps of platelet adhesion, aggregation, thrombin generation, and fibrin formation, including both structural and functional elements. Regarding patient blood management guidelines, they support minimizing transfusions, but this approach does not deal with severe inherited and acquired bleeding disorders where a poor hemostatic propensity is exacerbated by limited RBC availability, for which future guidance will be needed.
Collapse
Affiliation(s)
- Riitta Lassila
- Research Program Unit in Systems Oncology, Oncosys, Medical Faculty, University of Helsinki, Helsinki, Finland; Coagulation Disorders Unit, Department of Hematology, Helsinki University Hospital, Helsinki, Finland.
| | - John W Weisel
- Department of Cell and Developmental Biology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Mollica MY, Beussman KM, Kandasamy A, Rodríguez LM, Morales FR, Chen J, Manohar K, Del Álamo JC, López JA, Thomas WE, Sniadecki NJ. Distinct platelet F-actin patterns and traction forces on von Willebrand factor versus fibrinogen. Biophys J 2023; 122:3738-3748. [PMID: 37434354 PMCID: PMC10541491 DOI: 10.1016/j.bpj.2023.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/27/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023] Open
Abstract
Upon vascular injury, platelets form a hemostatic plug by binding to the subendothelium and to each other. Platelet-to-matrix binding is initially mediated by von Willebrand factor (VWF) and platelet-to-platelet binding is mediated mainly by fibrinogen and VWF. After binding, the actin cytoskeleton of a platelet drives its contraction, generating traction forces that are important to the cessation of bleeding. Our understanding of the relationship between adhesive environment, F-actin morphology, and traction forces is limited. Here, we examined F-actin morphology of platelets attached to surfaces coated with fibrinogen and VWF. We identified distinct F-actin patterns induced by these protein coatings and found that these patterns were identifiable into three classifications via machine learning: solid, nodular, and hollow. We observed that traction forces for platelets were significantly higher on VWF than on fibrinogen coatings and these forces varied by F-actin pattern. In addition, we analyzed the F-actin orientation in platelets and noted that their filaments were more circumferential when on fibrinogen coatings and having a hollow F-actin pattern, while they were more radial on VWF and having a solid F-actin pattern. Finally, we noted that subcellular localization of traction forces corresponded to protein coating and F-actin pattern: VWF-bound, solid platelets had higher forces at their central region while fibrinogen-bound, hollow platelets had higher forces at their periphery. These distinct F-actin patterns on fibrinogen and VWF and their differences in F-actin orientation, force magnitude, and force localization could have implications in hemostasis, thrombus architecture, and venous versus arterial thrombosis.
Collapse
Affiliation(s)
- Molly Y Mollica
- Department of Bioengineering, University of Washington, Seattle, Washington; Division of Hematology, School of Medicine, University of Washington, Seattle, Washington; Bloodworks Research Institute, Seattle, Washington; Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland.
| | - Kevin M Beussman
- Department of Mechanical Engineering, University of Washington, Seattle, Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Adithan Kandasamy
- Department of Mechanical Engineering, University of Washington, Seattle, Washington; Center for Cardiovascular Biology, University of Washington, Seattle, Washington
| | | | | | - Junmei Chen
- Bloodworks Research Institute, Seattle, Washington
| | - Krithika Manohar
- Department of Mechanical Engineering, University of Washington, Seattle, Washington
| | - Juan C Del Álamo
- Department of Mechanical Engineering, University of Washington, Seattle, Washington; Center for Cardiovascular Biology, University of Washington, Seattle, Washington
| | - José A López
- Division of Hematology, School of Medicine, University of Washington, Seattle, Washington; Bloodworks Research Institute, Seattle, Washington
| | - Wendy E Thomas
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Nathan J Sniadecki
- Department of Bioengineering, University of Washington, Seattle, Washington; Department of Mechanical Engineering, University of Washington, Seattle, Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington; Center for Cardiovascular Biology, University of Washington, Seattle, Washington; Resuscitation Engineering Science Unit, University of Washington, Seattle, Washington; Molecular Engineering and Science Institute, University of Washington, Seattle, Washington; Department of Lab Medicine and Pathology, University of Washington, Seattle, Washington.
| |
Collapse
|
10
|
Michael C, Pancaldi F, Britton S, Kim OV, Peshkova AD, Vo K, Xu Z, Litvinov RI, Weisel JW, Alber M. Combined computational modeling and experimental study of the biomechanical mechanisms of platelet-driven contraction of fibrin clots. Commun Biol 2023; 6:869. [PMID: 37620422 PMCID: PMC10449797 DOI: 10.1038/s42003-023-05240-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
While blood clot formation has been relatively well studied, little is known about the mechanisms underlying the subsequent structural and mechanical clot remodeling called contraction or retraction. Impairment of the clot contraction process is associated with both life-threatening bleeding and thrombotic conditions, such as ischemic stroke, venous thromboembolism, and others. Recently, blood clot contraction was observed to be hindered in patients with COVID-19. A three-dimensional multiscale computational model is developed and used to quantify biomechanical mechanisms of the kinetics of clot contraction driven by platelet-fibrin pulling interactions. These results provide important biological insights into contraction of platelet filopodia, the mechanically active thin protrusions of the plasma membrane, described previously as performing mostly a sensory function. The biomechanical mechanisms and modeling approach described can potentially apply to studying other systems in which cells are embedded in a filamentous network and exert forces on the extracellular matrix modulated by the substrate stiffness.
Collapse
Affiliation(s)
- Christian Michael
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Francesco Pancaldi
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Samuel Britton
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Oleg V Kim
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
- Department of Biomedical Engineering and Mechanics, Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Alina D Peshkova
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Khoi Vo
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Zhiliang Xu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA.
| | - Mark Alber
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA.
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA.
- Department of Bioengineering, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
11
|
Litvinov RI, Weisel JW. Blood clot contraction: Mechanisms, pathophysiology, and disease. Res Pract Thromb Haemost 2023; 7:100023. [PMID: 36760777 PMCID: PMC9903854 DOI: 10.1016/j.rpth.2022.100023] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 01/18/2023] Open
Abstract
A State of the Art lecture titled "Blood Clot Contraction: Mechanisms, Pathophysiology, and Disease" was presented at the International Society on Thrombosis and Haemostasis (ISTH) Congress in 2022. This was a systematic description of blood clot contraction or retraction, driven by activated platelets and causing compaction of the fibrin network along with compression of the embedded erythrocytes. The consequences of clot contraction include redistribution of the fibrin-platelet meshwork toward the periphery of the clot and condensation of erythrocytes in the core, followed by their deformation from the biconcave shape into polyhedral cells (polyhedrocytes). These structural signatures of contraction have been found in ex vivo thrombi derived from various locations, which indicated that clots undergo intravital contraction within the blood vessels. In hemostatic clots, tightly packed polyhedrocytes make a nearly impermeable seal that stems bleeding and is impaired in hemorrhagic disorders. In thrombosis, contraction facilitates the local blood flow by decreasing thrombus obstructiveness, reducing permeability, and changing susceptibility to fibrinolytic enzymes. However, in (pro)thrombotic conditions, continuous background platelet activation is followed by platelet exhaustion, refractoriness, and impaired intravital clot contraction, which is associated with weaker thrombi predisposed to embolization. Therefore, assays that detect imperfect in vitro clot contraction have potential diagnostic and prognostic values for imminent or ongoing thrombosis and thrombotic embolism. Collectively, the contraction of blood clots and thrombi is an underappreciated and understudied process that has a pathogenic and clinical significance in bleeding and thrombosis of various etiologies. Finally, we have summarized relevant new data on this topic presented during the 2022 ISTH Congress.
Collapse
Affiliation(s)
- Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Prakhya KS, Luo Y, Adkins J, Hu X, Wang QJ, Whiteheart SW. A sensitive and adaptable method to measure platelet-fibrin clot contraction kinetics. Res Pract Thromb Haemost 2022; 6:e12755. [PMID: 35873218 PMCID: PMC9301529 DOI: 10.1002/rth2.12755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/29/2022] [Accepted: 06/05/2022] [Indexed: 11/09/2022] Open
Abstract
Background Platelet-fibrin clot contraction is critical for wound closure and maintenance of vessel patency, yet a molecular understanding of the process has lagged because of a lack of flexible quantitative assay systems capable of assaying multiple samples simultaneously. Objectives We devised a sensitive and inexpensive method to assess clot contraction kinetics under multiple conditions. Methods Clot contraction was measured using time-lapse digital photography, automated image processing with customized software, and detailed kinetic analysis using available commercial programs. Results Our system was responsive to alterations in platelet counts and calcium, fibrinogen, and thrombin concentrations, and our analysis detected and defined three phases of platelet-fibrin clot formation: initiation, contraction, and stabilization. Lag time, average contraction velocity, contraction extent, and area under the curve were readily calculated from the data. Using pharmacological agents (blebbistatin and eptifibatide), we confirmed the importance of myosin IIA and the interactions of integrin αIIbβ3-fibrinogen/fibrin in clot contraction. As further proof of our system's utility, we showed how 2-deoxyglucose affects contraction, demonstrating the importance of platelet bioenergetics, specifically glycolysis. Conclusions Our system is an adaptable platform for assessing the effects of multiple conditions and interventions on clot contraction kinetics in a regular laboratory setting, using readily available materials. The automated image processing software we developed will be made freely available for noncommercial uses. This assay system can be used to directly compare and define the effects of different treatments or genetic manipulations on platelet function and should provide a robust tool for future hemostasis/thrombosis research and therapeutic development.
Collapse
Affiliation(s)
| | - Ya Luo
- GliasoftMilpitasCaliforniaUSA
| | - John Adkins
- Department of Molecular and Cellular Biochemistry, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | | | - Qing Jun Wang
- Department of Ophthalmology and Visual Sciences, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Sidney W. Whiteheart
- Department of Molecular and Cellular Biochemistry, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
13
|
Resolving the missing link between single platelet force and clot contractile force. iScience 2022; 25:103690. [PMID: 35059605 PMCID: PMC8760458 DOI: 10.1016/j.isci.2021.103690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/04/2021] [Accepted: 12/20/2021] [Indexed: 12/29/2022] Open
Abstract
Blood clot contraction plays an important role in wound healing and hemostasis. Although clot contraction is known to be driven by platelets, how single platelet forces relate to the forces generated by macroscopic clots remains largely unknown. Using our microfabricated high-throughput platelet contraction cytometer, we find that single platelets have an average force of 34 nN ( n = 10 healthy individuals). However, multiple bulk clot experiments predict a mean single platelet force lower than 0.5 nN. To resolve this discrepancy, we use a mesoscale computational model to probe the mechanism by which individual platelets induce forces in macroscopic clots. Our experimentally informed model shows that the number of platelets in the clot cross-section defines the net clot force. We provide a relationship between single platelet force and the clot force that is useful for better understanding of blood disorders associated with bleeding and thrombosis, and facilitates the development of platelet-based and platelet-mimetic biomaterials.
Collapse
|
14
|
Yadav P, Beura SK, Panigrahi AR, Singh SK. Quantification and optimization of clot retraction in washed human platelets by Sonoclot coagulation analysis. Int J Lab Hematol 2021; 44:177-185. [PMID: 34609044 DOI: 10.1111/ijlh.13710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/19/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Clot retraction is a pivotal process for haemostasis, where platelets develop a contractile force in fibrin meshwork and lead to the increased rigidity of clot. The pathophysiological alteration in contractile forces generated by the platelet-fibrin meshwork can lead to haemostatic disorders. Regardless of its utter significance, clot retraction remains a limited understood process owing to lack of quantification methodology. Sonoclot analysis is a point-of-care technique used in clinical laboratories for whole blood analysis that provides in vitro qualitative as well as quantitative assessment of coagulation process from initial fibrin formation to clot retraction. METHODS Human washed platelets were isolated by differential centrifugation method and analysed via optical imaging, microscopy and Sonoclot analysis using 1-2 × 108 /mL of washed platelets, 1 U/mL of thrombin, 1 mg/mL of fibrinogen and 1 mM of calcium chloride. RESULTS In this study, we demonstrate the novelty of this instrument in the quantitative evaluation of clot retraction in washed platelets and attempted to optimize the reference range of Sonoclot parameters including ACT - 87.3 ± 20.997, CR - 16.23 ± 3.538 and PF - 3.57 ± 0.629, (n = 10). DISCUSSION Sonoclot analysis provides a simple and quantitative method to better understand in vitro clot retraction and its modulation by retraction components including platelet count, fibrinogen and platelet-fibrin interaction compared with existing conventional methods. Sonoclot may prove to be a valuable tool in thrombus biology research to understand fundamental basis of blood clot retraction.
Collapse
Affiliation(s)
- Pooja Yadav
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Bathinda, India
| | - Samir K Beura
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Bathinda, India
| | - Abhishek R Panigrahi
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Bathinda, India
| | - Sunil K Singh
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
15
|
Yeh HH, Yu K, Vappala S, Kalathottukaren MT, Abbina S, Luo HD, Grecov D, Kizhakkedathu JN. Rheological and clot microstructure evaluation of heparin neutralization by UHRA and protamine. J Mech Behav Biomed Mater 2021; 124:104851. [PMID: 34600430 DOI: 10.1016/j.jmbbm.2021.104851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/16/2021] [Accepted: 09/19/2021] [Indexed: 11/27/2022]
Abstract
The current study reports the use of small amplitude oscillatory rheometry to investigate the dynamics of blood clot formation upon heparin neutralization under three different oscillatory frequencies, two of which were mimicking physiological heart rates. We utilized two different heparin antidotes, namely protamine and newly developed universal heparin reversal agent (UHRA-7), at different concentrations to determine the quality of blood clot formed upon heparin neutralization by analyzing several key rheological parameters. Scanning electron microscopy (SEM) was used to determine the morphology and microstructure of the blood clot after heparin neutralization to support the rheological observations. The current study revealed that the structure of blood clots formed had significant differences when an oscillatory frequency that mimicked the physiological heart rate was used in comparison to a lower frequency commonly used in current clinical measurements. The limited working dose range for protamine and its intrinsic anticoagulation behaviour was observed. The neutralization profile of UHRA-7 showed a large window of activity. The global assessment of rheological parameters and microstructure of the clot together revealed additional details describing anticoagulant reversal and blood coagulation dynamics by relating the blood clot's fiber thickness and the oscillatory measurements, including storage modulus and blood clot's contractile force. Additionally, a mechanical characterization was conducted to provide a further assessment of blood coagulation using the rheological data.
Collapse
Affiliation(s)
- Han Hung Yeh
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada; Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Kai Yu
- Centre for Blood Research and Life Science Institute, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Sreeparna Vappala
- Centre for Blood Research and Life Science Institute, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Manu Thomas Kalathottukaren
- Centre for Blood Research and Life Science Institute, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Srinivas Abbina
- Centre for Blood Research and Life Science Institute, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Haiming D Luo
- Centre for Blood Research and Life Science Institute, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Dana Grecov
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada; Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| | - Jayachandran N Kizhakkedathu
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada; Centre for Blood Research and Life Science Institute, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.
| |
Collapse
|
16
|
Sun Y, Myers DR, Nikolov SV, Oshinowo O, Baek J, Bowie SM, Lambert TP, Woods E, Sakurai Y, Lam WA, Alexeev A. Platelet heterogeneity enhances blood clot volumetric contraction: An example of asynchrono-mechanical amplification. Biomaterials 2021; 274:120828. [PMID: 33964792 PMCID: PMC8184644 DOI: 10.1016/j.biomaterials.2021.120828] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/01/2021] [Accepted: 04/11/2021] [Indexed: 01/22/2023]
Abstract
Physiological processes such as blood clotting and wound healing as well as pathologies such as fibroses and musculoskeletal contractures, all involve biological materials composed of a contracting cellular population within a fibrous matrix, yet how the microscale interactions among the cells and the matrix lead to the resultant emergent behavior at the macroscale tissue level remains poorly understood. Platelets, the anucleate cell fragments that do not divide nor synthesize extracellular matrix, represent an ideal model to study such systems. During blood clot contraction, microscopic platelets actively pull fibers to shrink the macroscale clot to less than 10% of its initial volume. We discovered that platelets utilize a new emergent behavior, asynchrono-mechanical amplification, to enhanced volumetric material contraction and to magnify contractile forces. This behavior is triggered by the heterogeneity in the timing of a population of actuators. This result indicates that cell heterogeneity, often attributed to stochastic cell-to-cell variability, can carry an essential biophysical function, thereby highlighting the importance of considering 4 dimensions (space + time) in cell-matrix biomaterials. This concept of amplification via heterogeneity can be harnessed to increase mechanical efficiency in diverse systems including implantable biomaterials, swarm robotics, and active polymer composites.
Collapse
Affiliation(s)
- Yueyi Sun
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332-0405, USA
| | - David R Myers
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, 30322, USA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332, USA; Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Svetoslav V Nikolov
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332-0405, USA
| | - Oluwamayokun Oshinowo
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, 30322, USA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332, USA; Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA; Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - John Baek
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, 30322, USA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332, USA; Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA; Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Samuel M Bowie
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332-0405, USA
| | - Tamara P Lambert
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332, USA
| | - Eric Woods
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yumiko Sakurai
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, 30322, USA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332, USA; Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA; Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Wilbur A Lam
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, 30322, USA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332, USA; Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA; Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Alexander Alexeev
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332-0405, USA.
| |
Collapse
|
17
|
George MJ, Litvinov J, Aroom K, Spangler LJ, Caplan H, Wade CE, Cox CS, Gill BS. Microelectromechanical System Measurement of Platelet Contraction: Direct Interrogation of Myosin Light Chain Phosphorylation. Int J Mol Sci 2021; 22:ijms22126448. [PMID: 34208643 PMCID: PMC8234414 DOI: 10.3390/ijms22126448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/16/2022] Open
Abstract
Myosin Light Chain (MLC) regulates platelet contraction through its phosphorylation by Myosin Light Chain Kinase (MLCK) or dephosphorylation by Myosin Light Chain Phosphatase (MLCP). The correlation between platelet contraction force and levels of MLC phosphorylation is unknown. We investigate the relationship between platelet contraction force and MLC phosphorylation using a novel microelectromechanical (MEMS) based clot contraction sensor (CCS). The MLCK and MLCP pair were interrogated by inhibitors and activators of platelet function. The CCS was fabricated from silicon using photolithography techniques and force was validated over a range of deflection for different chip spring constants. The force of platelet contraction measured by the clot contraction sensor (CCS) was compared to the degree of MLC phosphorylation by Western Blotting (WB) and ELISA. Stimulators of MLC phosphorylation produced higher contraction force, higher phosphorylated MLC signal in ELISA and higher intensity bands in WB. Inhibitors of MLC phosphorylation produced the opposite. Contraction force is linearly related to levels of phosphorylated MLC. Direct measurements of clot contractile force are possible using a MEMS sensor platform and correlate linearly with the degree of MLC phosphorylation during coagulation. Measured force represents the mechanical output of the actin/myosin motor in platelets regulated by myosin light chain phosphorylation.
Collapse
Affiliation(s)
- Mitchell J. George
- Department of Surgery, McGovern Medical School at The University of Texas Health Science Center, Houston, TX 77030, USA; (K.A.); (C.E.W.); (C.S.C.J.); (B.S.G.)
- Correspondence:
| | - Julia Litvinov
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center, Houston, TX 77030, USA; (J.L.); (H.C.)
| | - Kevin Aroom
- Department of Surgery, McGovern Medical School at The University of Texas Health Science Center, Houston, TX 77030, USA; (K.A.); (C.E.W.); (C.S.C.J.); (B.S.G.)
| | | | - Henry Caplan
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center, Houston, TX 77030, USA; (J.L.); (H.C.)
| | - Charles E. Wade
- Department of Surgery, McGovern Medical School at The University of Texas Health Science Center, Houston, TX 77030, USA; (K.A.); (C.E.W.); (C.S.C.J.); (B.S.G.)
| | - Charles S. Cox
- Department of Surgery, McGovern Medical School at The University of Texas Health Science Center, Houston, TX 77030, USA; (K.A.); (C.E.W.); (C.S.C.J.); (B.S.G.)
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center, Houston, TX 77030, USA; (J.L.); (H.C.)
| | - Brijesh S. Gill
- Department of Surgery, McGovern Medical School at The University of Texas Health Science Center, Houston, TX 77030, USA; (K.A.); (C.E.W.); (C.S.C.J.); (B.S.G.)
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center, Houston, TX 77030, USA; (J.L.); (H.C.)
| |
Collapse
|
18
|
Significant differences in single-platelet biophysics exist across species but attenuate during clot formation. Blood Adv 2021; 5:432-437. [PMID: 33496738 DOI: 10.1182/bloodadvances.2020003755] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/06/2020] [Indexed: 12/14/2022] Open
Abstract
Key Points
Human, canine, ovine, and porcine platelets exhibit disparate biophysical signatures, whereas human and murine platelets are similar. Multiple biophysical parameters integrate during clot formation, measured by bulk clot contraction, and attenuate biophysical differences.
Collapse
|
19
|
Windberger U, Läuger J. Blood Clot Phenotyping by Rheometry: Platelets and Fibrinogen Chemistry Affect Stress-Softening and -Stiffening at Large Oscillation Amplitude. Molecules 2020; 25:molecules25173890. [PMID: 32858936 PMCID: PMC7503632 DOI: 10.3390/molecules25173890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 11/22/2022] Open
Abstract
(1) Background: Together with treatment protocols, viscoelastic tests are widely used for patient care. Measuring at broader ranges of deformation than currently done will add information on a clot’s mechanical phenotype because fibrin networks follow different stretching regimes, and blood flow compels clots into a dynamic non-linear response. (2) Methods: To characterize the influence of platelets on the network level, a stress amplitude sweep test (LAOStress) was applied to clots from native plasma with five platelet concentrations. Five species were used to validate the protocol (human, cow, pig, rat, horse). By Lissajous plots the oscillation cycle for each stress level was analyzed. (3) Results: Cyclic stress loading generates a characteristic strain response that scales with the platelet quantity at low stress, and that is independent from the platelet count at high shear stress. This general behavior is valid in the animal models except cow. Here, the specific fibrinogen chemistry induces a stiffer network and a variant high stress response. (4) Conclusions: The protocol provides several thresholds to connect the softening and stiffening behavior of clots with the applied shear stress. This points to the reversible part of deformation, and thus opens a new route to describe a blood clot’s phenotype.
Collapse
Affiliation(s)
- Ursula Windberger
- Department for Biomedical Research, Decentralized Biomedical Facilities, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Correspondence: (U.W.); (J.L.); Tel.: +43-1-40160-37103 (U.W.)
| | - Jörg Läuger
- Anton Paar Germany GmbH, Helmuth-Hirth-Strasse 6, 73760 Ostfildern, Germany
- Correspondence: (U.W.); (J.L.); Tel.: +43-1-40160-37103 (U.W.)
| |
Collapse
|
20
|
Latham GJ. Highlights of Research in Congenital Cardiac Anesthesia: Summary of Selected Abstracts From the 2020 Congenital Cardiac Anesthesia Society Annual Meeting. Semin Cardiothorac Vasc Anesth 2020; 24:202-204. [PMID: 32452279 DOI: 10.1177/1089253220924523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Gregory J Latham
- Seattle Children's Hospital, Seattle, WA, USA.,University of Washington, Seattle, WA, USA
| |
Collapse
|