1
|
You Q, Ma Y, Woltornist RA, Lui NM, Spivey JA, Keresztes I, Collum DB. Sodium Alkyl(trimethylsilyl)amides: Substituent- and Solvent-dependent Solution Structures and Reactivities. J Am Chem Soc 2024; 146:30397-30421. [PMID: 39447193 DOI: 10.1021/jacs.4c10836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The preparation of sodium isopropyl(trimethylsilyl)amide (NaPTA), sodium (1-phenylethyl)(trimethylsilyl)amide (NaPETA), sodium tert-butyl(trimethylsilyl)amide (NaBTA), and isotopologues [15N]NaPTA and [15N]NaBTA are described. Solution structural studies using a combination of 29Si NMR spectroscopy, the Method of Continuous Variations, and density functional theory computations provided insights into aggregation and solvation in a range of solvents including toluene, N,N-dimethylethylamine, triethylamine, MTBE, THF, 1,2-dimethoxyethane (DME), diglyme, N,N,N',N'-tetramethylethylenediamine (TMEDA), N,N,N',N'-tetramethylcyclohexanediamine (TMCDA), N,N,N',N″,N″-pentamethyldiethylenetriamine (PMDTA). 12-crown-4, 15-crown-5, and 18-crown-6 revealed solvent- and substituent-dependent dimer-monomer mixtures with affiliated solvation numbers. Complexation of the three crown ethers documented both crown and substituent dependencies. Qualitative studies of reactivity showed a variety of reactions of NaPETA. Aminolysis of methyl benzoate with dialkylamines mediated by NaPTA afforded high yields of benzamides. Quantitative rate studies of aminolysis of methyl benzoate by NaPTA revealed a 47,000-fold range of rates. Detailed rate studies in toluene and THF showed dimer-based mechanisms. The role of primary- and secondary-shell solvation by THF is discussed, including nuances of methods used to separate the two contributions. PMDTA-solvated NaPTA monomer reacts as a monomer whereas bis-diglyme solvated monomer reacts as a dimer. Rate studies exploring the structure-reactivity correlations of the three crown ethers show mono- and bis-crown-based pathways in which 15-crown-5─the crown ether often said to be of choice for sodium─was decidedly inferior as an accelerant.
Collapse
Affiliation(s)
- Qiulin You
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Yun Ma
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Ryan A Woltornist
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Nathan M Lui
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Jesse A Spivey
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Ivan Keresztes
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - David B Collum
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
2
|
Spivey JA, Collum DB. Potassium Hexamethyldisilazide (KHMDS): Solvent-Dependent Solution Structures. J Am Chem Soc 2024; 146:17827-17837. [PMID: 38901126 PMCID: PMC11373885 DOI: 10.1021/jacs.4c03418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Solution structures of potassium hexamethyldisilazide [KHMDS] and labeled [15N]KHMDS were examined using a number of analytical methods including 29Si NMR spectroscopy and density functional theory computations. A combination of 15N-29Si couplings, 29Si chemical shifts, and the method of continuous variations reveals dimers, monomers, and ion pairs. Weakly coordinating monofunctional ligands such as toluene, N,N-dimethylethylamine, and Et3N afford exclusively dimers. 1,3-Dioxolane, THF, dimethoxyethane, hexamethylphosphoramide, and diglyme provide dimers at low ligand concentrations and monomers at high ligand concentrations. N,N,N',N'-Tetramethylethylenediamine and N,N,N',N'-tetramethylcyclohexanediamine provide exclusively dimers at all ligand concentrations at ambient temperatures and significant monomer at -80 °C. Studies of 12-crown-4 ran into technical problems. Equimolar 15-crown-5 forms a dimer, whereas excess 15-crown-5 affords a putative ion pair. Whereas equimolar 18-crown-6 also affords a dimer, an excess provides a monomer rather than a solvent-separated ion pair. [2.2.2]cryptand affords what is believed to be a contact-ion-paired cryptate. Solvation was probed using largely density functional theory (DFT) computations. Thermally corrected energies are consistent with lower aggregates and higher solvates at low temperatures, but the magnitudes of the computed temperature dependencies were substantially larger than the experimentally derived data.
Collapse
Affiliation(s)
- Jesse A Spivey
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - David B Collum
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
3
|
Macdonald PA, Kennedy AR, Weetman CE, Robertson SD, Mulvey RE. Synthesis, characterisation, and catalytic application of a soluble molecular carrier of sodium hydride activated by a substituted 4-(dimethylamino)pyridine. Commun Chem 2024; 7:94. [PMID: 38678145 PMCID: PMC11055874 DOI: 10.1038/s42004-024-01184-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Recently main group compounds have stepped into the territory of precious transition metal compounds with respect to utility in the homogeneous catalysis of fundamentally important organic transformations. Inspired by the need to promote more sustainability in chemistry because of their greater abundance in nature, this change of direction is surprising since main group metals generally do not possess the same breadth of reactivity as precious transition metals. Here, we introduce the dihydropyridylsodium compound, Na-1,2-tBu-DH(DMAP), and its monomeric variant [Na-1,2-tBu-DH(DMAP)]·Me6TREN, and demonstrate their effectiveness in transfer hydrogenation catalysis of the representative alkene 1,1-diphenylethylene to the alkane 1,1-diphenylethane using 1,4-cyclohexadiene as hydrogen source [DMAP = 4-dimethylaminopyridine; Me6TREN = tris(N,N-dimethyl-2-aminoethyl)amine]. Sodium is appealing because of its high abundance in the earth's crust and oceans, but organosodium compounds have been rarely used in homogeneous catalysis. The success of the dihydropyridylsodium compounds can be attributed to their high solubility and reactivity in organic solvents.
Collapse
Affiliation(s)
- Peter A Macdonald
- WestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Alan R Kennedy
- WestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Catherine E Weetman
- WestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Stuart D Robertson
- WestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK.
| | - Robert E Mulvey
- WestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK.
| |
Collapse
|
4
|
Rodríguez-Álvarez MJ, Ríos-Lombardía N, García-Garrido SE, Concellón C, del Amo V, Capriati V, García-Álvarez J. Recent Advancements in the Utilization of s-Block Organometallic Reagents in Organic Synthesis with Sustainable Solvents. Molecules 2024; 29:1422. [PMID: 38611702 PMCID: PMC11012548 DOI: 10.3390/molecules29071422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
This mini-review offers a comprehensive overview of the advancements made over the last three years in utilizing highly polar s-block organometallic reagents (specifically, RLi, RNa and RMgX compounds) in organic synthesis run under bench-type reaction conditions. These conditions involve exposure to air/moisture and are carried out at room temperature, with the use of sustainable solvents as reaction media. In the examples provided, the adoption of Deep Eutectic Solvents (DESs) or even water as non-conventional and protic reaction media has not only replicated the traditional chemistry of these organometallic reagents in conventional and toxic volatile organic compounds under Schlenk-type reaction conditions (typically involving low temperatures of -78 °C to 0 °C and a protective atmosphere of N2 or Ar), but has also resulted in higher conversions and selectivities within remarkably short reaction times (measured in s/min). Furthermore, the application of the aforementioned polar organometallics under bench-type reaction conditions (at room temperature/under air) has been extended to other environmentally responsible reaction media, such as more sustainable ethereal solvents (e.g., CPME or 2-MeTHF). Notably, this innovative approach contributes to enhancing the overall sustainability of s-block-metal-mediated organic processes, thereby aligning with several key principles of Green Chemistry.
Collapse
Affiliation(s)
- María Jesús Rodríguez-Álvarez
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Consorzio Interuniversitario Nazionale “Metodologie e Processi Innovativi di Sintesi” (C.I.N.M.P.I.S.), Via E. Orabona 4, I-70125 Bari, Italy
| | - Nicolás Ríos-Lombardía
- Laboratorio de Química Sintética Sostenible (QuimSinSos), Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica “Enrique Moles” (IUQOEM), Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Sergio E. García-Garrido
- Laboratorio de Química Sintética Sostenible (QuimSinSos), Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica “Enrique Moles” (IUQOEM), Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Carmen Concellón
- Laboratorio de Química Sintética Sostenible (QuimSinSos), Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica “Enrique Moles” (IUQOEM), Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Vicente del Amo
- Laboratorio de Química Sintética Sostenible (QuimSinSos), Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica “Enrique Moles” (IUQOEM), Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Vito Capriati
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Consorzio Interuniversitario Nazionale “Metodologie e Processi Innovativi di Sintesi” (C.I.N.M.P.I.S.), Via E. Orabona 4, I-70125 Bari, Italy
| | - Joaquín García-Álvarez
- Laboratorio de Química Sintética Sostenible (QuimSinSos), Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica “Enrique Moles” (IUQOEM), Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain
| |
Collapse
|
5
|
Anderson DE, Tortajada A, Hevia E. New Frontiers in Organosodium Chemistry as Sustainable Alternatives to Organolithium Reagents. Angew Chem Int Ed Engl 2024; 63:e202313556. [PMID: 37801443 DOI: 10.1002/anie.202313556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/08/2023]
Abstract
With their highly reactive respective C-Na and N-Na bonds, organosodium and sodium amide reagents could be viewed as obvious replacements or even superior reagents to the popular, widely utilised organolithiums. However, they have seen very limited applications in synthesis due mainly to poor solubility in common solvents and their limited stability. That notwithstanding in recent years there has been a surge of interest in bringing these sustainable metal reagents into the forefront of organometallics in synthesis. Showcasing the growth in utilisation of organosodium complexes within several areas of synthetic chemistry, this Minireview discusses promising new methods that have been recently reported with the goal of taming these powerful reagents. Special emphasis is placed on coordination and aggregation effects in these reagents which can impart profound changes in their solubility and reactivity. Differences in observed reactivity between more nucleophilic aryl and alkyl sodium reagents and the less nucleophilic but highly basic sodium amides are discussed along with current mechanistic understanding of their reactivities. Overall, this review aims to inspire growth in this exciting field of research to allow for the integration of organosodium complexes within common important synthetic transformations.
Collapse
Affiliation(s)
- David E Anderson
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Andreu Tortajada
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Eva Hevia
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
6
|
You Q, Collum DB. Carbon-Nitrogen Bond Formation Using Sodium Hexamethyldisilazide: Solvent-Dependent Reactivities and Mechanisms. J Am Chem Soc 2023; 145:23568-23584. [PMID: 37857357 PMCID: PMC11373886 DOI: 10.1021/jacs.3c07317] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The solvent-dependent reactivity of sodium hexamethyldisilazide (NaHMDS) toward carbon-centered electrophiles reveals reactions that are poorly represented or unrepresented in the literature, including direct aminolysis of aromatic methyl esters to give carboxamides, nitriles, or amidines, depending on the choice of solvent. SNAr substitutions of aryl halides and opening of terminal epoxides are also examined. A combination of 1H and 29Si nuclear magnetic resonance (NMR) spectroscopic studies using [15N]NaHMDS, kinetic studies, and computational studies reveals the complex mechanistic basis of the preferences for simple aryl carboxamides in toluene and dimethylethylamine and arylnitriles or amidines in tetrahydrofuran (THF). A prevalence of dimer- and mixed dimer-based chemistry even starting from the observable NaHMDS monomer in THF solution is notable.
Collapse
Affiliation(s)
- Qiulin You
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - David B Collum
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
7
|
Lui NM, Collum DB. Sodiated Oppolzer Enolates: Solution Structures, Mechanism of Alkylation, and Origin of Stereoselectivity. Org Chem Front 2023; 10:4750-4757. [PMID: 38144519 PMCID: PMC10746328 DOI: 10.1039/d3qo01021j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
NMR spectroscopic studies reveal camphorsultam-derived sodium enolates known as Oppolzer enolates reside as monomers in neat THF and THF/HMPA solutions and as dimers in toluene when solvated by N,N,N',N'-tetramethylethylenediamine (TMEDA) and N,N,N',N'',N''-pentamethyldiethylenediamine (PMDTA). Density functional theory (DFT) computations attest to the solvation numbers. Rate studies show analogy with previously studied lithiated Oppolzer enolates in which alkylation occurs through non-chelated solvent-separated ion pairs. The origins of the selectivity trace to transition structures in which the alkylating agent is guided to the exo face of the camphor owing to stereoelectronic preferences imparted by the sultam sulfonyl moiety. Marked secondary-shell solvation effects are gleaned from the rate studies.
Collapse
Affiliation(s)
- Nathan M Lui
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - David B Collum
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
8
|
Anderson DE, Tortajada A, Hevia E. Highly Reactive Hydrocarbon Soluble Alkylsodium Reagents for Benzylic Aroylation of Toluenes using Weinreb Amides. Angew Chem Int Ed Engl 2023; 62:e202218498. [PMID: 36636916 DOI: 10.1002/anie.202218498] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
Deaggregating the alkyl sodium NaCH2 SiMe3 with polydentate nitrogen ligands enables the preparation and characterisation of new, hydrocarbon soluble chelated alkylsodium reagents. Equipped with significantly enhanced metalating power over their organolithium counterparts, these systems can promote controlled sodiation of weakly acidic benzylic C-H bonds from a series of toluene derivatives under mild stoichiometric conditions. This has been demonstrated through the benzylic aroylation of toluenes with Weinreb amides, that delivers a wide range of 2-arylacetophenones in good to excellent yields. Success in isolating and determining the structures of key organometallic intermediates has provided useful mechanistic insight into these new sodium-mediated transformations.
Collapse
Affiliation(s)
- David E Anderson
- Department für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Andreu Tortajada
- Department für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Eva Hevia
- Department für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
9
|
Ma Y, Lui NM, Keresztes I, Woltornist RA, Collum DB. Sodium Isopropyl(trimethylsilyl)amide: A Stable and Highly Soluble Lithium Diisopropylamide Mimic. J Org Chem 2022; 87:14223-14229. [PMID: 36282953 PMCID: PMC10042304 DOI: 10.1021/acs.joc.2c01745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The preparation, structure, physical properties, and reactivities of sodium isopropyl(trimethylsilyl)amide (NaPTA) are described. The solubilities at room temperature range from n-heptane (0.55 M), n-hexane (0.60 M), toluene (0.65 M), MTBE (1.7 M), Et3N (3.2 M), and THF (>6.0 M). The half-life to destruction in neat THF is >1 year at 25 °C and 7 days at 70 °C, which compares favorably to 2.5 months and 1.5 days, respectively, for LDA in neat THF. This study focuses on NaPTA in THF. 29Si NMR spectroscopy shows exclusively a mixture of cis and trans stereoisomeric dimers in 0.10-12 M THF in hexane. Density functional theory (DFT) computations suggest that the pKb is intermediate between dimeric sodium diisopropylamide (NaDA) and dimeric sodium hexamethyldisilazide (NaHMDS). Metalations of arenes, epoxides, ketones, hydrazones, alkenes, and alkyl halides show higher reactivities than LDA (kNaPTA/LDA = 1-30). While the rates of arene metalation are high, the lower pKb of NaPTA limits the substrates. Metalation of pseudoephedrate-based carboxamides to form disodiated Myers enolates solves several challenging technical problems.
Collapse
Affiliation(s)
- Yun Ma
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Nathan M Lui
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Ivan Keresztes
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Ryan A Woltornist
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - David B Collum
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
10
|
Tortajada A, Hevia E. Perdeuteration of Arenes via Hydrogen Isotope Exchange Catalyzed by the Superbasic Sodium Amide Donor Species NaTMP·PMDETA. J Am Chem Soc 2022; 144:20237-20242. [DOI: 10.1021/jacs.2c09778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andreu Tortajada
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Eva Hevia
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
11
|
Harenberg JH, Reddy Annapureddy R, Karaghiosoff K, Knochel P. Continuous Flow Preparation of Benzylic Sodium Organometallics. Angew Chem Int Ed Engl 2022; 61:e202203807. [PMID: 35416397 PMCID: PMC9400861 DOI: 10.1002/anie.202203807] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 12/14/2022]
Abstract
We report a lateral sodiation of alkyl(hetero)arenes using on-demand generated hexane-soluble (2-ethylhexyl)sodium (1) in the presence of TMEDA. (2-Ethylhexyl)sodium (1) is prepared via a sodium packed-bed reactor and used for metalations at ambient temperature in batch as well as in continuous flow. The resulting benzylic sodium species are subsequently trapped with various electrophiles including carbonyl compounds, epoxides, oxetane, allyl/benzyl chlorides, alkyl halides and alkyl tosylates. Wurtz-type couplings with secondary alkyl halides and tosylates proceed under complete inversion of stereochemistry. Furthermore, the utility of this lateral sodiation is demonstrated in the synthesis of pharmaceutical relevant compounds. Thus, fingolimod is prepared from p-xylene applying the lateral sodiation twice. In addition, 7-fold isotopically labeled salmeterol-d7 and fenpiprane as well as precursors to super linear alkylbenzene (SLAB) surfactants are prepared.
Collapse
Affiliation(s)
- Johannes H. Harenberg
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstraße 5–13, Haus F81377MünchenGermany
| | | | - Konstantin Karaghiosoff
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstraße 5–13, Haus F81377MünchenGermany
| | - Paul Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstraße 5–13, Haus F81377MünchenGermany
| |
Collapse
|
12
|
Bole LJ, Tortajada A, Hevia E. Enhancing Metalating Efficiency of the Sodium Amide NaTMP in Arene Borylation Applications. Angew Chem Int Ed Engl 2022; 61:e202204262. [PMID: 35420221 PMCID: PMC9323492 DOI: 10.1002/anie.202204262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Indexed: 12/12/2022]
Abstract
Though LiTMP (TMP=2,2',6,6'-tetramethylpiperidide) is a commonly used amide, surprisingly the heavier NaTMP has hardly been utilised. Here, by mixing NaTMP with tridentate donor PMDETA (N,N,N',N'',N''-pentamethyldiethylenetriamine), we provide structural, and mechanistic insights into the sodiation of non-activated arenes (e.g. anisole and benzene). While these reactions are low yielding, adding B(OiPr)3 has a profound effect, not only by intercepting the CAr -Na bond, but also by driving the metalation reaction towards quantitative formation of more stabilized sodium aryl boronates. Demonstrating its metalating power, regioselective C2-metalation/borylation of naphthalene has been accomplished contrasting with single-metal based protocols which are unselective and low yielding. Extension to other arenes allows for in situ generation of aryl boronates which can then directly engage in Suzuki-Miyaura couplings, furnishing a range of biaryls in a selective and efficient manner.
Collapse
Affiliation(s)
- Leonie J. Bole
- Departement für Chemie, Biochemie und PharmazieUniversität BernFreiestrasse 33012BernSwitzerland
| | - Andreu Tortajada
- Departement für Chemie, Biochemie und PharmazieUniversität BernFreiestrasse 33012BernSwitzerland
| | - Eva Hevia
- Departement für Chemie, Biochemie und PharmazieUniversität BernFreiestrasse 33012BernSwitzerland
| |
Collapse
|
13
|
Tortajada A, Anderson DE, Hevia E. Gram‐Scale Synthesis, Isolation and Characterisation of Sodium Organometallics: nBuNa and NaTMP. Helv Chim Acta 2022. [DOI: 10.1002/hlca.202200060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andreu Tortajada
- Universitat Bern Department of Chemistry, Biochemistry and Pharmaceutical Sciences SWITZERLAND
| | - David E Anderson
- Universitat Bern Department of Chemistry, Biochemistry and Pharmaceutical Sciences SWITZERLAND
| | - Eva Hevia
- Universitat Bern Department of Chemistry and Biochemistry Freiestrasse 3 3012 Bern SWITZERLAND
| |
Collapse
|
14
|
Bole L, Tortajada A, Hevia E. Enhancing Metalating Efficiency of the Sodium Amide NaTMP in Arene Borylation Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Leonie Bole
- Universitat Bern Department of Chemistry, Biochemistry and Pharmaceutical Sciences SWITZERLAND
| | - Andreu Tortajada
- Universitat Bern Department of Chemistry, Biochemistry and Pharmaceutical Sciences SWITZERLAND
| | - Eva Hevia
- Universitat Bern Department of Chemistry and Biochemistry Freiestrasse 3 3012 Bern SWITZERLAND
| |
Collapse
|
15
|
Harenberg JH, Annapureddy RR, Karaghiosoff K, Knochel P. Continuous Flow Preparation of Benzylic Sodium Organometallics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Paul Knochel
- Ludwig-Maximilians-Universitat Munchen Department of Chemistry Butenandtstr. 5-13 81377 München GERMANY
| |
Collapse
|
16
|
Rae A, Byrne KM, Brown SA, Kennedy AR, Krämer T, Mulvey RE, Robertson SD. Sigma/pi Bonding Preferences of Solvated Alkali-Metal Cations to Ditopic Arylmethyl Anions. Chemistry 2022; 28:e202104260. [PMID: 35170823 PMCID: PMC9310864 DOI: 10.1002/chem.202104260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 12/14/2022]
Abstract
Arylmethyl anions allow alkali-metals to bind in a σ-fashion to the lateral carbanionic centre or a π-fashion to the aryl ring or in between these extremities, with the trend towards π bonding increasing on descending group 1. Here we review known alkali metal structures of diphenylmethane, fluorene, 2-benzylpyridine and 4-benzylpyridine. Next, we synthesise Li, Na, K monomers of these diarylmethyls using polydentate donors PMDETA or Me6 TREN to remove competing oligomerizing interactions, studying the effect that two aromatic rings has on negative charge (de)localisation via NMR, X-ray crystallographic and DFT studies. Diphenylmethyl and fluorenyl anions maintain C(H)-M interactions regardless of alkali-metal, although the adjacent arene carbons engage in interactions with larger alkali-metals. Introducing a nitrogen atom into the ring (at the 2- or 4-position) encourages relocalisation of negative charge away from the deprotonated carbon and onto nitrogen. Phenyl(2-pyridyl)methyl moves from an enamide formation at one extremity (lithium) to an aza-allyl formation at the other extremity (potassium), while C- or N-coordination modes become energetically viable for Na and K phenyl(4-pyridyl)methyl complexes.
Collapse
Affiliation(s)
- Annabel Rae
- WestCHEM, Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| | - Keelan M. Byrne
- Department of ChemistryMaynooth UniversityW23 F2H6Maynooth, Co KildareIreland
| | - Scott A. Brown
- WestCHEM, Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| | - Alan R. Kennedy
- WestCHEM, Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| | - Tobias Krämer
- Department of ChemistryMaynooth UniversityW23 F2H6Maynooth, Co KildareIreland
- Hamilton InstituteMaynooth UniversityW23 A3HYMaynooth, Co KildareIreland
| | - Robert E. Mulvey
- WestCHEM, Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| | - Stuart D. Robertson
- WestCHEM, Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| |
Collapse
|
17
|
Woltornist RA, Collum DB. Ketone Enolization with Sodium Hexamethyldisilazide: Solvent- and Substrate-Dependent E- Z Selectivity and Affiliated Mechanisms. J Am Chem Soc 2021; 143:17452-17464. [PMID: 34643382 PMCID: PMC10042305 DOI: 10.1021/jacs.1c06529] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ketone enolization by sodium hexamethyldisilazide (NaHMDS) shows a marked solvent and substrate dependence. Enolization of 2-methyl-3-pentanone reveals E-Z selectivities in Et3N/toluene (20:1), methyl-t-butyl ether (MTBE, 10:1), N,N,N',N″,N″-pentamethyldiethylenetriamine (PMDTA)/toluene (8:1), TMEDA/toluene (4:1), diglyme (1:1), DME (1:22), and tetrahydrofuran (THF) (1:90). Control experiments show slow or nonexistent stereochemical equilibration in all solvents except THF. Enolate trapping with Me3SiCl/Et3N requires warming to -40 °C whereas Me3SiOTf reacts within seconds. In situ enolate trapping at -78 °C using preformed NaHMDS/Me3SiCl mixtures is effective in Et3N/toluene yet fails in THF by forming (Me3Si)3N. Rate studies show enolization via mono- and disolvated dimers in Et3N/toluene, disolvated dimers in TMEDA, trisolvated monomers in THF/toluene, and free ions with PMDTA. Density functional theory computations explore the selectivities via the E- and Z-based transition structures. Failures of theory-experiment correlations of ionic fragments were considerable even when isodesmic comparisons could have canceled electron correlation errors. Swapping 2-methyl-3-pentanone with a close isostere, 2-methylcyclohexanone, causes a fundamental change in the mechanism to a trisolvated-monomer-based enolization in THF.
Collapse
Affiliation(s)
- Ryan A. Woltornist
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853–1301, United States
| | - David B. Collum
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853–1301, United States
| |
Collapse
|
18
|
Ma Y, Woltornist RA, Algera RF, Collum DB. Reactions of Sodium Diisopropylamide: Liquid-Phase and Solid-Liquid Phase-Transfer Catalysis by N, N, N', N″, N″-Pentamethyldiethylenetriamine. J Am Chem Soc 2021; 143:13370-13381. [PMID: 34375095 PMCID: PMC10042303 DOI: 10.1021/jacs.1c06528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sodium diisopropylamide (NaDA) in N,N-dimethylethylamine (DMEA) and DMEA-hydrocarbon mixtures with added N,N,N',N″,N″-pentamethyldiethylenetriamine (PMDTA) reacts with alkyl halides, epoxides, hydrazones, arenes, alkenes, and allyl ethers. Comparisons of PMDTA with N,N,N',N'-tetramethylethylenediamine (TMEDA) accompanied by detailed rate and computational studies reveal the importance of the trifunctionality and κ2-κ3 hemilability. Rate studies show exclusively monomer-based reactions of 2-bromooctane, cyclooctene oxide, and dimethylresorcinol. Catalysis with 10 mol % PMDTA shows up to >30-fold accelerations (kcat > 300) with no evidence of inhibition over 10 turnovers. Solid-liquid phase-transfer catalysis (SLPTC) is explored as a means to optimize the catalysis as well as explore the merits of heterogeneous reaction conditions.
Collapse
Affiliation(s)
- Yun Ma
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853–1301
| | - Ryan A. Woltornist
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853–1301
| | - Russell F. Algera
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853–1301
| | - David B. Collum
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853–1301
| |
Collapse
|
19
|
Harenberg JH, Weidmann N, Wiegand AJ, Hoefer CA, Annapureddy RR, Knochel P. (2-Ethylhexyl)sodium: A Hexane-Soluble Reagent for Br/Na-Exchanges and Directed Metalations in Continuous Flow. Angew Chem Int Ed Engl 2021; 60:14296-14301. [PMID: 33826212 PMCID: PMC8252725 DOI: 10.1002/anie.202103031] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 12/14/2022]
Abstract
We report the on-demand generation of hexane-soluble (2-ethylhexyl)sodium (1) from 3-(chloromethyl)heptane (2) using a sodium-packed-bed reactor under continuous flow conditions. Thus, the resulting solution of 1 is free of elemental sodium and therefore suited for a range of synthetic applications. This new procedure avoids the storage of an alkylsodium and limits the handling of metallic sodium to a minimum. (2-Ethylhexyl)sodium (1) proved to be a very useful reagent and undergoes in-line Br/Na-exchanges as well as directed sodiations. The resulting arylsodium intermediates are subsequently trapped in batch with various electrophiles such as ketones, aldehydes, Weinreb-amides, imines, allyl bromides, disulfides and alkyl iodides. A reaction scale-up of the Br/Na-exchange using an in-line electrophile quench was also reported.
Collapse
Affiliation(s)
- Johannes H. Harenberg
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Niels Weidmann
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Alexander J. Wiegand
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Carla A. Hoefer
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | | | - Paul Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
20
|
Harenberg JH, Weidmann N, Wiegand AJ, Hoefer CA, Annapureddy RR, Knochel P. (2‐Ethylhexyl)natrium: Ein hexanlösliches Reagenz für Br/Na‐Austauschreaktionen und dirigierte Metallierungen im kontinuierlichen Durchfluss. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Johannes H. Harenberg
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Niels Weidmann
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Alexander J. Wiegand
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Carla A. Hoefer
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Rajasekar Reddy Annapureddy
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Paul Knochel
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| |
Collapse
|
21
|
Asako S, Ilies L, De PB. Recent Advances in the Use of Sodium Dispersion for Organic Synthesis. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1478-7061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractThis short review describes the recent emergence of organosodium chemistry, motivated by the requirements of modern synthetic chemistry for sustainability, and powered by the use of sodium dispersion, a form of sodium that is commercially available, easy to handle, and has a large active surface area. We present recent methods for the preparation of organosodium compounds using sodium dispersion, and their applications to synthesis. Sodium amides and phosphides are also briefly discussed.1 Introduction2 Sodium Dispersion3 Preparation of Organosodium Compounds3.1 Two-Electron Reduction of Aryl Halides3.2 Halogen–Sodium Exchange3.3 Directed Metalation3.4 Cleavage of C–C and C–Heteroatom Bonds4 Synthetic Applications4.1 Reduction in Combination with a Proton Source4.1.1 Bouveault–Blanc Reduction4.1.2 Birch Reduction4.1.3 Reductive Deuteration4.1.4 Chemoselective Cleavage of Amides and Nitriles4.2 Difunctionalization of Alkenes and Alkynes5 Sodium Amides and Phosphides6 Conclusions and Outlook
Collapse
|
22
|
Kremsmair A, Harenberg JH, Schwärzer K, Hess A, Knochel P. Preparation and reactions of polyfunctional magnesium and zinc organometallics in organic synthesis. Chem Sci 2021; 12:6011-6019. [PMID: 33995997 PMCID: PMC8098701 DOI: 10.1039/d1sc00685a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/09/2021] [Indexed: 12/24/2022] Open
Abstract
Polyfunctional organometallics of magnesium and zinc are readily prepared from organic halides via a direct metal insertion in the presence of LiCl or a Br/Mg-exchange using iPrMgCl·LiCl (turbo-Grignard) or related reagents. Alternatively, such functionalized organometallics are prepared by metalations with TMP-bases (TMP = 2,2,6,6-tetramethylpiperidyl). The scope of these methods is described as well as applications in new Co- or Fe-catalyzed cross-couplings or aminations. It is shown that the use of a continous flow set-up considerably expands the field of applications of these methods and further allows the preparation of highly reactive organosodium reagents.
Collapse
Affiliation(s)
- Alexander Kremsmair
- Department of Chemistry, Ludwig-Maximilans-Universität München Butenandtstraße 5-13 81377 München Germany
| | - Johannes H Harenberg
- Department of Chemistry, Ludwig-Maximilans-Universität München Butenandtstraße 5-13 81377 München Germany
| | - Kuno Schwärzer
- Department of Chemistry, Ludwig-Maximilans-Universität München Butenandtstraße 5-13 81377 München Germany
| | - Andreas Hess
- Department of Chemistry, Ludwig-Maximilans-Universität München Butenandtstraße 5-13 81377 München Germany
| | - Paul Knochel
- Department of Chemistry, Ludwig-Maximilans-Universität München Butenandtstraße 5-13 81377 München Germany
| |
Collapse
|
23
|
Woltornist RA, Collum DB. Aggregation and Solvation of Sodium Hexamethyldisilazide: Across the Solvent Spectrum. J Org Chem 2021; 86:2406-2422. [PMID: 33471993 PMCID: PMC8011853 DOI: 10.1021/acs.joc.0c02546] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report solution structures of sodium hexamethyldisilazide (NaHMDS) solvated by >30 standard solvents (ligands). These include: toluene, benzene, and styrene; triethylamine and related trialkylamines; pyrrolidine as a representative dialkylamine; dialkylethers including THF, tert-butylmethyl ether, and diethyl ether; dipolar ligands such as DMF, HMPA, DMSO, and DMPU; a bifunctional dipolar ligand nonamethylimidodiphosphoramide (NIPA); polyamines N,N,N',N'-tetramethylenediamine (TMEDA), N,N,N',N″,N″-pentamethyldiethylenetriamine (PMDTA), N,N,N',N'-tetramethylcyclohexanediamine (TMCDA), and 2,2'-bipyridine; polyethers 12-crown-4, 15-crown-5, 18-crown-6, and diglyme; 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane ([2.2.2] cryptand); and tris[2-(2-methoxyethoxy)ethyl]amine (TDA-1). Combinations of 1H, 13C, 15N, and 29Si NMR spectroscopies, the method of continuous variations, X-ray crystallography, and density functional theory (DFT) computations reveal ligand-modulated aggregation to give mixtures of dimers, monomers, triple ions, and ion pairs. 15N-29Si coupling constants distinguish dimers and monomers. Solvation numbers are determined by a combination of solvent titrations, observed free and bound solvent in the slow exchange limit, and DFT computations. The relative abilities of solvents to compete in binary mixtures often match that predicted by conventional wisdom but with some exceptions and evidence of both competitive and cooperative (mixed) solvation. Crystal structures of a NaHMDS cryptate ion pair and a 15-crown-5-solvated monomer are included. Results are compared with those for lithium hexamethyldisilazide, lithium diisopropylamide, and sodium diisopropylamide.
Collapse
Affiliation(s)
- Ryan A Woltornist
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - David B Collum
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
24
|
Harenberg JH, Weidmann N, Karaghiosoff K, Knochel P. Continuous Flow Sodiation of Substituted Acrylonitriles, Alkenyl Sulfides and Acrylates. Angew Chem Int Ed Engl 2021; 60:731-735. [PMID: 33026681 PMCID: PMC7821005 DOI: 10.1002/anie.202012085] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 12/14/2022]
Abstract
The sodiation of substituted acrylonitriles and alkenyl sulfides in a continuous flow set-up using NaDA (sodium diisopropylamide) in EtNMe2 or NaTMP (sodium 2,2,6,6-tetramethylpiperidide)⋅TMEDA in n-hexane provides sodiated acrylonitriles and alkenyl sulfides, which are subsequently trapped in batch with various electrophiles such as aldehydes, ketones, disulfides and allylic bromides affording functionalized acrylonitriles and alkenyl sulfides. This flow-procedure was successfully extended to other acrylates by using Barbier-type conditions.
Collapse
Affiliation(s)
- Johannes H. Harenberg
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Niels Weidmann
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Konstantin Karaghiosoff
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Paul Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
25
|
Harenberg JH, Weidmann N, Karaghiosoff K, Knochel P. Natriierung von Substituierten Acrylonitrilen, Alkenylsulfiden und Acrylaten im Kontinuierlichen Durchfluss. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Johannes H. Harenberg
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Niels Weidmann
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Konstantin Karaghiosoff
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Paul Knochel
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| |
Collapse
|
26
|
Knochel P, Harenberg JH, Weidmann N. Continuous-Flow Reactions Mediated by Main Group Organometallics. Synlett 2020. [DOI: 10.1055/s-0040-1706536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractThe generation of reactive organometallic reagents in batch is often complicated by the low thermal stability of these important synthetic intermediates and can require low reaction temperatures and special reaction conditions. However, the use of continuous-flow setups and microreactors has led to a revolution in this field. In this short review, an overview is given of recent advances in this area, with a focus on the main group organometallics of Li, Na, and K.
Collapse
|