1
|
Oh J, Burla B, Muralidharan S, Wenk MR, Torta F. Sphingolipid Analysis in Clinical Research. Methods Mol Biol 2025; 2855:225-268. [PMID: 39354312 DOI: 10.1007/978-1-0716-4116-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Sphingolipids are the most diverse class of lipids due to the numerous variations in their structural components. This diversity is also reflected in their extremely different functions. Sphingolipids are not only constituents of cell membranes but have emerged as key signaling molecules involved in a variety of cellular functions, such as cell growth and differentiation, proliferation and apoptotic cell death. Lipidomic analyses in clinical research have identified pathways and products of sphingolipid metabolism that are altered in several human pathologies. In this article, we describe how to properly design a lipidomic experiment in clinical research, how to handle plasma and serum samples for this purpose, and how to measure sphingolipids using liquid chromatography-mass spectrometry.
Collapse
Affiliation(s)
- Jeongah Oh
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Precision Medicine Translational Research Programme and Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bo Burla
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| | - Sneha Muralidharan
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Precision Medicine Translational Research Programme and Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
- College of Health & Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Federico Torta
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore.
- Precision Medicine Translational Research Programme and Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore.
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS, Singapore, Singapore.
| |
Collapse
|
2
|
Benkhoff M, Polzin A. Lipoprotection in cardiovascular diseases. Pharmacol Ther 2024; 264:108747. [PMID: 39491757 DOI: 10.1016/j.pharmthera.2024.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Cardioprotection is a well-established term in the scientific world. It describes the protection of various mediators on the cardiovascular system. These protective effects can also be provided by certain lipids. Since lipids are a very specific and clearly definable class of substances, we define the term lipoprotection as lipid-mediated cardioprotection. In this review, we highlight high-density lipoprotein (HDL), sphingosine-1-phosphate (S1P) and omega-3 polyunsaturated fatty acids (n-3 PUFA) as the most important lipoprotective mediators and show their beneficial impact on coronary artery disease (CAD), acute myocardial infarction (AMI) and heart failure (HF).
Collapse
Affiliation(s)
- Marcel Benkhoff
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Amin Polzin
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany.
| |
Collapse
|
3
|
Matuskova H, Porschen LT, Matthes F, Lindgren AG, Petzold GC, Meissner A. Spatiotemporal sphingosine-1-phosphate receptor 3 expression within the cerebral vasculature after ischemic stroke. iScience 2024; 27:110031. [PMID: 38868192 PMCID: PMC11167442 DOI: 10.1016/j.isci.2024.110031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/29/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Sphingosine-1-phosphate receptors (S1PRs) are promising therapeutic targets in cardiovascular disease, including ischemic stroke. However, important spatiotemporal information for alterations of S1PR expression is lacking. Here, we investigated the role of S1PR3 in ischemic stroke in rodent models and patient samples. We show that S1PR3 is acutely upregulated in perilesional reactive astrocytes after stroke, and that stroke volume and behavioral deficits are improved in mice lacking S1PR3. Further, we find that administration of an S1PR3 antagonist at 4-h post-stroke, but not at later timepoints, improves stroke outcome. Lastly, we observed higher plasma S1PR3 concentrations in experimental stroke and in patients with ischemic stroke. Together, our results establish S1PR3 as a potential drug target and biomarker in ischemic stroke.
Collapse
Affiliation(s)
- Hana Matuskova
- Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
- Division of Vascular Neurology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Lisa T. Porschen
- Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
- Department of Physiology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Frank Matthes
- Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
- Department of Physiology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Arne G. Lindgren
- Department of Clinical Sciences Lund, Neurology, Lund University, Lund, Sweden
- Department of Neurology, Rehabilitation Medicine, Memory Disorders and Geriatrics, Skåne University Hospital, Lund, Sweden
| | - Gabor C. Petzold
- Division of Vascular Neurology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Anja Meissner
- Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department of Physiology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| |
Collapse
|
4
|
Schielke J, Ittermann T, Groß S, Moritz E, Nauck M, Friedrich N, Schwedhelm E, Rauch BH, Völzke H, Bülow R, Chamling B, Felix SB, Bahls M, Dörr M, Markus MRP. Sphingosine-1-phosphate levels are inversely associated with left ventricular and atrial chamber volume and cardiac mass in men : The Study of Health in Pomerania (SHIP). Clin Res Cardiol 2023; 112:1587-1599. [PMID: 37097463 PMCID: PMC10584720 DOI: 10.1007/s00392-023-02200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/03/2023] [Indexed: 04/26/2023]
Abstract
AIMS Sphingosine-1-phosphate (S1P) is a signaling lipid, which is involved in several cellular processes including cell growth, proliferation, migration and apoptosis. The associations of serum S1P levels with cardiac geometry and function are still not clear. We investigated the associations of S1P with cardiac structure and systolic function in a population-based sample. METHODS AND RESULTS We performed cross-sectional analyses of 858 subjects (467 men; 54.4%), aged 22 to 81 years, from a sub-sample of the population-based Study of Health in Pomerania (SHIP-TREND-0). We analyzed the associations of serum S1P with structural and systolic function left ventricular (LV) and left atrial (LA) parameters as determined by magnetic resonance imaging (MRI) using sex-stratified multivariable-adjusted linear regression models. In men, MRI data showed that a 1 µmol/L lower S1P concentration was associated with an 18.1 mL (95% confidence interval [CI] 3.66-32.6; p = 0.014) larger LV end-diastolic volume (LVEDV), a 0.46 mm (95% CI 0.04-0.89; p = 0.034) greater LV wall thickness (LVWT) and a 16.3 g (95% CI 6.55-26.1; p = 0.001) higher LV mass (LVM). S1P was also associated with a 13.3 mL/beat (95% CI 4.49-22.1; p = 0.003) greater LV stroke volume (LVSV), an 18.7 cJ (95% CI 6.43-30.9; p = 0.003) greater LV stroke work (LVSW) and a 12.6 mL (95% CI 1.03-24.3; p = 0.033) larger LA end-diastolic volume (LAEDV). We did not find any significant associations in women. CONCLUSIONS In this population-based sample, lower levels of S1P were associated with higher LV wall thickness and mass, larger LV and LA chamber sizes and greater stroke volume and work of the LV in men, but not in women. Our results indicate that lower levels of S1P were associated with parameters related with cardiac geometry and systolic function in men, but not in women.
Collapse
Affiliation(s)
- Jan Schielke
- Department of Internal Medicine B, Cardiology, Angiology, Pneumology and Internal Intensive Care Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Till Ittermann
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Department of Study of Health in Pomerania/Clinical-Epidemiological Research, Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Groß
- Department of Internal Medicine B, Cardiology, Angiology, Pneumology and Internal Intensive Care Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Eileen Moritz
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Department of General Pharmacology, Institute of Pharmacology, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Nauck
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Nele Friedrich
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partnerartner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Bernhard H Rauch
- Department of Human Medicine, Section of Pharmacology and Toxicology, Carl Von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Henry Völzke
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Department of Study of Health in Pomerania/Clinical-Epidemiological Research, Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Robin Bülow
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Bishwas Chamling
- Department of Internal Medicine B, Cardiology, Angiology, Pneumology and Internal Intensive Care Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
- Division of Cardiovascular Imaging, Department of Cardiology I, University Hospital Münster, Münster, Germany
| | - Stephan Burkhard Felix
- Department of Internal Medicine B, Cardiology, Angiology, Pneumology and Internal Intensive Care Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Martin Bahls
- Department of Internal Medicine B, Cardiology, Angiology, Pneumology and Internal Intensive Care Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Marcus Dörr
- Department of Internal Medicine B, Cardiology, Angiology, Pneumology and Internal Intensive Care Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Marcello Ricardo Paulista Markus
- Department of Internal Medicine B, Cardiology, Angiology, Pneumology and Internal Intensive Care Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany.
- German Center for Diabetes Research (DZD) Partner Site Greifswald, Greifswald, Germany.
| |
Collapse
|
5
|
Wang Z, Xu J, Zou S, Chen Z, Dong S, Wang K. Prognostic significance of plasma S1P in acute intracerebral hemorrhage: A prospective cohort study. Clin Chim Acta 2023; 551:117585. [PMID: 37813327 DOI: 10.1016/j.cca.2023.117585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE Sphingosine-1-phosphate (S1P) may regulate neuroinflammatory immunity and blood-brain barrier integrity. This study was designed to assess the prognostic role of plasma S1P in intracerebral hemorrhage (ICH). METHODS In this prospective cohort study, plasma S1P levels were measured in 51 controls, at admission in 114 ICH patients and at days 1, 3, 5 and 7 in 51 of all patients. Univariate analysis and multivariate analysis were sequentially used to investigate severity correlation and prognosis association. RESULTS Plasma S1P levels were significantly elevated at admission, peaked at day 5, and declined at day 7, which were significantly higher during 7 days than those of controls (all P < 0.001). Areas under receiver operating characteristic curve (AUCs) of plasma S1P levels insignificant differed among all time points (all P > 0.05). Admission plasma S1P levels, in close correlation with National Institutes of Health Stroke Scale (NIHSS) scores [β, 7.661; 95 % confidence interval (CI), 4.893-10.399; P < 0.001] and hematoma volume (β, 1.285; 95 % CI, 0.348-2.230; P < 0.001), independently predicted 3-month poor prognosis (modified Rankin Scale scores of 3-6) (odds ratio, 3.184; 95 % CI, 1.057-9.597; P = 0.040). Admission plasma S1P levels had AUC of 0.799 (95 % CI, 0.713-0.868) for prognosis prediction. The levels > 240.4 ng/ml distinguished risk of poor prognosis with the maximum Youden index of 0.518. Prediction model integrating NIHSS scores, hematoma volume and admission plasma S1P levels had substantially higher prognostic predictive ability than NIHSS scores (P = 0.023), but not than hematoma volume (P = 0.061). CONCLUSION There is a significant elevation of plasma S1P levels during early period after ICH, which were independently related to severity and poor prognosis. Thus, plasma S1P may be a potential prognostic biomarker of ICH.
Collapse
Affiliation(s)
- Zefan Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Jian Xu
- Graduate School, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Shengdong Zou
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Ziyin Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Shuangyong Dong
- Emergency Department, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou 310006, China
| | - Keyi Wang
- Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou 310006, China.
| |
Collapse
|
6
|
Saurabh K, Mbadhi MN, Prifti KK, Martin KT, Frolova AI. Sphingosine 1-Phosphate Activates S1PR3 to Induce a Proinflammatory Phenotype in Human Myometrial Cells. Endocrinology 2023; 164:bqad066. [PMID: 37120767 PMCID: PMC10201982 DOI: 10.1210/endocr/bqad066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/01/2023]
Abstract
One of the common mechanisms responsible for obstetric complications, affecting millions of women every year, is abnormal uterine contractility. Despite the critical importance of this process for women's health, the mechanisms of uterine contraction regulation remain poorly understood. The initiation of uterine smooth muscle (myometrial) contraction is an inflammatory process, accompanied by upregulation of proinflammatory genes and cytokine release. In this study, we show that sphingolipid metabolism is activated during human labor and that sphingosine 1-phosphate (S1P), the main bioactive sphingolipid, may modify the myometrial proinflammatory phenotype. Our data in both primary and immortalized human myometrial cells show that exogenous S1P induces a proinflammatory gene signature and upregulates the expression of known inflammatory markers of parturition, such as IL8 and COX2. Using expression of IL8 as a readout for S1P activity in myometrial cells, we established that these S1P effects are mediated through the activation of S1P receptor 3 (S1PR3) and downstream activation of ERK1/2 pathways. Inhibition of S1PR3 in human myometrial cells attenuates upregulation of IL8, COX2, and JUNB both at the mRNA and protein levels. Furthermore, activation of S1PR3 with a receptor-specific agonist recapitulated the effects seen after treatment with exogenous S1P. Collectively, these results suggest a signaling pathway activated by S1P in human myometrium during parturition and propose new targets for development of novel therapeutics to alter uterine contractility during management of preterm labor or labor dystocia.
Collapse
Affiliation(s)
- Kumar Saurabh
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Magdaleena Naemi Mbadhi
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kevin K Prifti
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kaci T Martin
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Antonina I Frolova
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
7
|
Wu L, Cui F, Zhang S, Ding X, Gao W, Chen L, Ma J, Niu P. Associations between multiple heavy metals exposure and neural damage biomarkers in welders: A cross-sectional study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161812. [PMID: 36706997 DOI: 10.1016/j.scitotenv.2023.161812] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Both occupational and environmental exposure to heavy metals are associated with various neurodegenerative diseases. However, limited evidence is available on the potential effects of exposure to metallic mixtures and neural damage. OBJECTIVES This study aimed to evaluate the association between metal mixtures in urine and neural damage biomarkers in welders. METHODS In this cross-sectional study, a total of 186 workers were recruited from steel mills. Twenty-three metals in urine were measured by inductively coupled plasma mass spectrometry. Serum neural damage biomarkers, including neurofilament light chain (NfL), sphingosine-1-phosphate (S1P), prolactin (PRL), and dopamine (DA) were detected using enzyme-linked immunosorbent assay kits. Multivariable linear regression, Bayesian kernel machine regression (BKMR), and Quantile g-computation (QG-C) were employed to estimate the association between metals exposure and neural damage biomarkers. RESULTS Inverted u-shaped associations of nickel with NfL, S1P, and DA were observed in the BKMR model. A non-linear relationship was also found between Fe and PRL. Urinary cobalt was positively associated with serum PRL and had the strongest positive weights in the QG-C model. Urinary lead was associated with higher serum S1P levels. We also found the interaction among nickel, zinc, arsenic, strontium, iron, and lead with the neural damage biomarkers. CONCLUSION This study provides new evidence of a direct association between metal mixture exposure and the serum biomarkers of neural damage. Several metals Ni, Co, Pb, Sr, As and Fe, may have adverse effects on the nervous system, while Zn may have neuroprotective effects.
Collapse
Affiliation(s)
- Luli Wu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, 100069 Beijing, China
| | - Fengtao Cui
- Occupational Disease Prevention and Control Hospital of Huaibei Mining Co., Ltd, Huaibei, Anhui Province 235000, China
| | - Shixuan Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, 100069 Beijing, China
| | - Xinping Ding
- Occupational Disease Prevention and Control Hospital of Huaibei Mining Co., Ltd, Huaibei, Anhui Province 235000, China
| | - Wei Gao
- Occupational Disease Prevention and Control Hospital of Huaibei Mining Co., Ltd, Huaibei, Anhui Province 235000, China
| | - Li Chen
- Experimental Teaching Center, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Junxiang Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, 100069 Beijing, China.
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, 100069 Beijing, China.
| |
Collapse
|
8
|
Yaginuma S, Omi J, Kano K, Aoki J. Lysophospholipids and their producing enzymes: Their pathological roles and potential as pathological biomarkers. Pharmacol Ther 2023; 246:108415. [PMID: 37061204 DOI: 10.1016/j.pharmthera.2023.108415] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
Accumulating evidence suggests that lysophospholipids (LPL) serve as lipid mediators that exert their diverse pathophysiological functions via G protein-coupled receptors. These include lysophosphatidic acid (LPA), sphingosine 1-phosphate (S1P), lysophosphatidylserine (LysoPS) and lysophosphatidylinositol (LPI). Unlike S1P, which is produced intracellularly and secreted from various cell types, some LPLs, such as LPA, LysoPS and LPI, are produced in lesions, especially under pathological conditions, where they positively or negatively regulate disease progression through their autacoid-like actions. Although these LPLs are minor components of the cell membrane, recent developments in mass spectrometry techniques have made it possible to detect and quantify them in a variety of biological fluids, including plasma, serum, urine and cerebrospinal fluid. The synthetic enzymes of LPA and LysoPS are also present in these biological fluids, which also can be detected by antibody-based methods. Importantly, their levels have been found to dramatically increase during various pathological conditions. Thus, LPLs and their synthetic enzymes in these biological fluids are potential biomarkers. This review discusses the potential of these LPLs and LPL-related molecules as pathological biomarkers, including methods and problems in their measurement.
Collapse
Affiliation(s)
- Shun Yaginuma
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Jumpei Omi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.
| |
Collapse
|
9
|
Johnstone ED, Westwood M, Dilworth M, Wray JR, Kendall AC, Nicolaou A, Myers JE. Plasma S1P and Sphingosine are not Different Prior to Pre-Eclampsia in Women at High Risk of Developing the Disease. J Lipid Res 2022; 64:100312. [PMID: 36370808 PMCID: PMC9760648 DOI: 10.1016/j.jlr.2022.100312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Sphingolipids like sphingosine-1-phosphate (S1P) have been implicated in the pathophysiology of pre-eclampsia. We hypothesized that plasma S1P would be increased in women at high risk of developing pre-eclampsia who subsequently develop the disease. Low circulating placental growth factor (PlGF) is known to be associated with development of pre-eclampsia; so further, we hypothesized that increased S1P would be associated with concurrently low PlGF. This was a case-control study using stored maternal blood samples from 14 to 24 weeks of pregnancy, collected from 95 women at increased risk of pre-eclampsia. Pregnancy outcome was classified as uncomplicated, preterm pre-eclampsia (<37 weeks), or term pre-eclampsia. Plasma lipids were extracted and analyzed by ultraperformance liquid chromatography coupled to electrospray ionization MS/MS to determine concentrations of S1P and sphingosine. Median plasma S1P was 0.339 nmol/ml, and median sphingosine was 6.77 nmol/l. There were no differences in the plasma concentrations of S1P or sphingosine in women who subsequently developed pre-eclampsia, no effect of gestational age, fetal sex, ethnicity, or the presence of pre-existing hypertension. There was a correlation between S1P and sphingosine plasma concentration (P < 0.0001). There was no relationship between S1P or sphingosine with PlGF. Previous studies have suggested that plasma S1P may be a biomarker of pre-eclampsia. In our larger study, we failed to demonstrate there are women at high risk of developing the disease. We did not show a relationship with known biomarkers of the disease, suggesting that S1P is unlikely to be a useful predictor of the development of pre-eclampsia later in pregnancy.
Collapse
Affiliation(s)
- Edward D. Johnstone
- Maternal and Fetal Health Research Centre, School of Medical Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK,For correspondence: Edward D. Johnstone
| | - Melissa Westwood
- Maternal and Fetal Health Research Centre, School of Medical Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Mark Dilworth
- Maternal and Fetal Health Research Centre, School of Medical Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jonathan R. Wray
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Alexandra C. Kendall
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jenny E. Myers
- Maternal and Fetal Health Research Centre, School of Medical Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
10
|
Yu CP, Pan YL, Wang XL, Xin R, Li HQ, Lei YT, Zhao FF, Zhang D, Zhou XR, Ma WW, Wang SY, Wu YH. Stimulating the expression of sphingosine kinase 1 (SphK1) is beneficial to reduce acrylamide-induced nerve cell damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113511. [PMID: 35489137 DOI: 10.1016/j.ecoenv.2022.113511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/03/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Sphingosine kinase 1 (SphK1) is an important signaling molecule for cell proliferation and survival. However, the role of SphK1 in acrylamide (ACR)-induced nerve injury remains unclear. The purpose of this study was to investigate the role and potential mechanism of SphK1 in ACR-induced nerve injury. Liquid chromatography triple quadrupole tandem mass spectrometry (LC-MS/MS) and reverse transcription-quantitative PCR (RT-qPCR) were used to detect sphingosine 1-phosphate (S1P) content in serum and SphK1 content in whole blood from an occupational work group exposed to ACR compared to a non-exposed group. For in vitro experiments, SphK1 in human SH-SY5Y neuroblastoma cells was activated using SphK1-specific activator phorbol 12-myristate 13-acetate (PMA). Our research also utilized cell viability assays, flow cytometry, western blots, RT-qPCR and related protein detection to assess activity of the mitogen activated protein kinase (MAPK) signaling pathway. The results of the population study showed that the contents of SphK1 and S1P in the ACR-exposed occupational contact group were lower than in the non-exposed group. The results of in vitro experiments showed that expression of SphK1 decreased with the increase in ACR concentration. Activating SphK1 improved the survival rate of SH-SY5Y cells and decreased the apoptosis rate. Activating SphK1 in SH-SY5Y cells also regulated MAPK signaling, including enhancing the phosphorylation of extracellular signal-regulated protein kinases (ERK) and inhibiting the phosphorylation of c-Jun N-terminal kinase (JNK) and p38. These results suggest that activating SphK1 can protect against nerve cell damage caused by ACR.
Collapse
Affiliation(s)
- Cui-Ping Yu
- Department of Occupational Health, Public Health College, Harbin Medical University, Harbin, PR China
| | - Yu-Lin Pan
- Department of Occupational Health, Public Health College, Harbin Medical University, Harbin, PR China
| | - Xiao-Li Wang
- Department of Occupational Health, Public Health College, Harbin Medical University, Harbin, PR China
| | - Rui Xin
- Department of Occupational Health, Public Health College, Harbin Medical University, Harbin, PR China
| | - Hong-Qiu Li
- Department of Occupational Health, Public Health College, Harbin Medical University, Harbin, PR China
| | - Ya-Ting Lei
- Department of Occupational Health, Public Health College, Harbin Medical University, Harbin, PR China
| | - Fang-Fang Zhao
- Department of Occupational Health, Public Health College, Harbin Medical University, Harbin, PR China
| | - Dan Zhang
- Department of Occupational Health, Public Health College, Harbin Medical University, Harbin, PR China
| | - Xiao-Rong Zhou
- Department of Occupational Health, Public Health College, Harbin Medical University, Harbin, PR China
| | - Wei-Wei Ma
- Harbin Railway Center for Disease Control and Prevention, Harbin, PR China
| | - Sheng-Yuan Wang
- Department of Occupational Health, Public Health College, Harbin Medical University, Harbin, PR China.
| | - Yong-Hui Wu
- Department of Occupational Health, Public Health College, Harbin Medical University, Harbin, PR China.
| |
Collapse
|
11
|
Schwedhelm E, Schwieren L, Tiedt S, von Lucadou M, Gloyer NO, Böger R, Magnus T, Daum G, Thomalla G, Gerloff C, Choe CU. Serum Sphingosine-1-Phosphate Levels Are Associated With Severity and Outcome in Patients With Cerebral Ischemia. Stroke 2021; 52:3901-3907. [PMID: 34496616 DOI: 10.1161/strokeaha.120.033414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND PURPOSE The aim of this study was to examine whether sphingosine-1-phosphate (S1P) levels in patients with acute stroke are associated with stroke severity and outcome. METHODS In a prospective stroke cohort (MARK-STROKE), 374 patients with acute ischemic stroke or transient ischemic attack were enrolled (mean age: 67.9±13.0 years, sex: 64.7% male), and serum-S1P at admission was analyzed with tandem mass spectrometry. In addition to cross-sectional analyses, 79 adverse events (death, stroke, myocardial infarction, rehospitalization) were recorded in 270 patients during follow-up. Regression analyses were adjusted for age, sex, low-density lipoprotein cholesterol, and vascular risk factors. Results were validated in an independent stroke cohort with 219 patients with acute ischemic stroke (CIRCULAS). RESULTS Low serum-S1P was associated with higher National Institutes of Health Stroke Scale score at admission and with anterior circulation nonlacunar infarcts determined by multivariate regression analyses. During a follow-up of 294±170 days, patients with S1P in the lowest tertile (<1.33 µmol/L) had more adverse events (Kaplan-Meier analysis, P=0.048 for trend). In adjusted Cox regression analysis, the lowest S1P tertile was associated with a worse outcome after stroke (hazard ratio, HR 0.51 [95% confidence interval 0.28-0.92]). Results were confirmed in an independent cohort, ie, low S1P levels were associated with higher National Institutes of Health Stroke Scale, larger infarct volumes and worse outcome after 90 days (β-coefficient: -0.03, P=0.026; β-coefficient: -0.099, P=0.009 and odds ratio 0.52 [0.28-0.96], respectively). CONCLUSIONS Our findings imply a detrimental role of low S1P levels in acute stroke and therefore underpin the therapeutic potential of S1P-mimics.
Collapse
Affiliation(s)
- Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Germany (E.S., L.S., M.v.L., N.-O.G., R.B.).,German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany (E.S., M.v.L., G.D.)
| | - Laura Schwieren
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Germany (E.S., L.S., M.v.L., N.-O.G., R.B.).,Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (L.S., T.M., G.T., C.G., C.-u.C.)
| | - Steffen Tiedt
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Germany (S.T.)
| | - Mirjam von Lucadou
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Germany (E.S., L.S., M.v.L., N.-O.G., R.B.).,German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany (E.S., M.v.L., G.D.)
| | - Nils-Ole Gloyer
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Germany (E.S., L.S., M.v.L., N.-O.G., R.B.)
| | - Rainer Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Germany (E.S., L.S., M.v.L., N.-O.G., R.B.)
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (L.S., T.M., G.T., C.G., C.-u.C.)
| | - Guenter Daum
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany (E.S., M.v.L., G.D.).,Department of Vascular Medicine, University Heart and Vascular Center Hamburg-Eppendorf, Germany (G.D.)
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (L.S., T.M., G.T., C.G., C.-u.C.)
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (L.S., T.M., G.T., C.G., C.-u.C.)
| | - Chi-Un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (L.S., T.M., G.T., C.G., C.-u.C.)
| |
Collapse
|
12
|
Ebenezer DL, Ramchandran R, Fu P, Mangio LA, Suryadevara V, Ha AW, Berdyshev E, Van Veldhoven PP, Kron SJ, Schumacher F, Kleuser B, Natarajan V. Nuclear Sphingosine-1-phosphate Lyase Generated ∆2-hexadecenal is A Regulator of HDAC Activity and Chromatin Remodeling in Lung Epithelial Cells. Cell Biochem Biophys 2021; 79:575-592. [PMID: 34085165 PMCID: PMC9128239 DOI: 10.1007/s12013-021-01005-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 12/14/2022]
Abstract
Sphingosine-1-phosphate (S1P), a bioactive lipid mediator, is generated from sphingosine by sphingosine kinases (SPHKs) 1 and 2 and is metabolized to ∆2-hexadecenal (∆2-HDE) and ethanolamine phosphate by S1P lyase (S1PL) in mammalian cells. We have recently demonstrated the activation of nuclear SPHK2 and the generation of S1P in the nucleus of lung epithelial cells exposed to Pseudomonas aeruginosa. Here, we have investigated the nuclear localization of S1PL and the role of ∆2-HDE generated from S1P in the nucleus as a modulator of histone deacetylase (HDAC) activity and histone acetylation. Electron micrographs of the nuclear fractions isolated from MLE-12 cells showed nuclei free of ER contamination, and S1PL activity was detected in nuclear fractions isolated from primary lung bronchial epithelial cells and alveolar epithelial MLE-12 cells. Pseudomonas aeruginosa-mediated nuclear ∆2-HDE generation, and H3/H4 histone acetylation was attenuated by S1PL inhibitors in MLE-12 cells and human bronchial epithelial cells. In vitro, the addition of exogenous ∆2-HDE (100-10,000 nM) to lung epithelial cell nuclear preparations inhibited HDAC1/2 activity, and increased acetylation of Histone H3 and H4, whereas similar concentrations of S1P did not show a significant change. In addition, incubation of ∆2-HDE with rHDAC1 generated five different amino acid adducts as detected by LC-MS/MS; the predominant adduct being ∆2-HDE with lysine residues of HDAC1. Together, these data show an important role for the nuclear S1PL-derived ∆2-HDE in the modification of HDAC activity, histone acetylation, and chromatin remodeling in lung epithelial cells.
Collapse
Affiliation(s)
- David L Ebenezer
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ramaswamy Ramchandran
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Panfeng Fu
- The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, China
| | - Lizar A Mangio
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Vidyani Suryadevara
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Alison W Ha
- Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Evgeny Berdyshev
- Department of Medicine, National Jewish Medical Center, Denver, CO, USA
| | - Paul P Van Veldhoven
- LIPIT, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA
| | - Fabian Schumacher
- Institute of Pharmacy, Department of Pharmacology & Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Department of Pharmacology & Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Viswanathan Natarajan
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
13
|
Jujic A, Matthes F, Vanherle L, Petzka H, Orho-Melander M, Nilsson PM, Magnusson M, Meissner A. Plasma S1P (Sphingosine-1-Phosphate) Links to Hypertension and Biomarkers of Inflammation and Cardiovascular Disease: Findings From a Translational Investigation. Hypertension 2021; 78:195-209. [PMID: 33993723 DOI: 10.1161/hypertensionaha.120.17379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Amra Jujic
- Department of Clinical Sciences (A.J., M.O.-M., P.M.N., M.M.), Lund University, Malmö, Sweden
- Wallenberg Centre for Molecular Medicine (A.J., F.M., L.V., M.M., A.M.), Lund University, Malmö, Sweden
- Lund University Diabetes Centre (A.J.), Lund University, Malmö, Sweden
| | - Frank Matthes
- Wallenberg Centre for Molecular Medicine (A.J., F.M., L.V., M.M., A.M.), Lund University, Malmö, Sweden
- Department of Experimental Medical Sciences (F.M., L.V., A.M.), Lund University, Malmö, Sweden
| | - Lotte Vanherle
- Wallenberg Centre for Molecular Medicine (A.J., F.M., L.V., M.M., A.M.), Lund University, Malmö, Sweden
- Department of Experimental Medical Sciences (F.M., L.V., A.M.), Lund University, Malmö, Sweden
| | - Henning Petzka
- Department of Mathematics, Lund Technical University, Sweden (H.P.)
| | - Marju Orho-Melander
- Department of Clinical Sciences (A.J., M.O.-M., P.M.N., M.M.), Lund University, Malmö, Sweden
| | - Peter M Nilsson
- Department of Clinical Sciences (A.J., M.O.-M., P.M.N., M.M.), Lund University, Malmö, Sweden
- Department of Internal Medicine, Clinical Research Unit, Malmö, Sweden (P.M.N.)
| | - Martin Magnusson
- Department of Clinical Sciences (A.J., M.O.-M., P.M.N., M.M.), Lund University, Malmö, Sweden
- Wallenberg Centre for Molecular Medicine (A.J., F.M., L.V., M.M., A.M.), Lund University, Malmö, Sweden
- Hypertension in Africa Research Team, North West University Potchefstroom, South Africa (M.M.)
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden (M.M.)
| | - Anja Meissner
- Department of Clinical Sciences (A.J., M.O.-M., P.M.N., M.M.), Lund University, Malmö, Sweden
- Department of Experimental Medical Sciences (F.M., L.V., A.M.), Lund University, Malmö, Sweden
| |
Collapse
|
14
|
Schwedhelm E, Englisch C, Niemann L, Lezius S, von Lucadou M, Marmann K, Böger R, Peine S, Daum G, Gerloff C, Choe CU. Sphingosine-1-Phosphate, Motor Severity, and Progression in Parkinson's Disease (MARK-PD). Mov Disord 2021; 36:2178-2182. [PMID: 34008894 DOI: 10.1002/mds.28652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/19/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Treatment with sphingosine-1-phosphate (S1P) agonists confers neuroprotective effects in animal models of Parkinson's disease (PD). OBJECTIVES We assessed the association of serum S1P levels with motor and cognitive symptoms in patients with PD. METHODS S1P concentrations were analyzed with liquid chromatography-tandem mass spectrometry (LC-MS/MS) in serum of 196 PD patients and in 196 age- and sex-matched controls. Motor (Unified Parkinson's disease rating scale III [UPDRS III], Hoehn and Yahr) and cognitive (Montreal Cognitive Assessment [MoCA]) function were assessed at baseline. Follow-up data was available from 64 patients (median [interquartile range], 513 [381-677] days). RESULTS S1P levels were lower in PD patients compared with controls, that is 1.75 (1.38-2.07) and 1.90 (1.59-2.18) μmol/L, respectively (P = 0.001). In PD patients, lower S1P concentrations were associated with higher UPDRS III scores and Hoehn and Yahr stage. In the follow-up cohort, S1P concentrations below the median were associated with faster motor decline (hazard ratio: 4.78 [95% CI, 1.98, 11.50]), but not with cognitive worsening. CONCLUSIONS Our observations reveal an association of S1P with PD. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/ Luebeck, Hamburg, Germany
| | - Catrin Englisch
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Louisa Niemann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Lezius
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mirjam von Lucadou
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/ Luebeck, Hamburg, Germany
| | - Kristina Marmann
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rainer Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/ Luebeck, Hamburg, Germany
| | - Sven Peine
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Günter Daum
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/ Luebeck, Hamburg, Germany.,Department of Vascular Medicine, University Heart and Vascular Center, Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chi-Un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
15
|
Schwedhelm E, von Lucadou M, Peine S, Lezius S, Thomalla G, Böger R, Gerloff C, Choe CU. Trimethyllysine, vascular risk factors and outcome in acute ischemic stroke (MARK-STROKE). Amino Acids 2021; 53:555-561. [PMID: 33788002 DOI: 10.1007/s00726-021-02969-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022]
Abstract
Trimethyllysine (TML) is involved in the generation of the pro-atherogenic metabolite trimethylamine-N-oxide (TMAO) by gut microbiota. In clinical studies, elevated TML levels predicted major adverse cardiovascular events (MACE) in patients with acute or stable coronary artery disease (CAD). In contrast to cardiovascular patients, the role of TML in patients with acute cerebral ischemia is unknown. Here, we evaluated circulating TML levels in 374 stroke patients from the prospective biomarkers in stroke (MARK-STROKE) study. Compared with 167 matched healthy controls, acute ischemic stroke patients had lower median TML plasma concentrations, i.e. 0.71 vs. 0.47 µmol/L (p < 0.001) and this difference persisted after adjusting for age and sex. TML plasma concentrations were associated with age, serum creatinine, glucose, cholesterol and lysine. Patients with prevalent arterial hypertension, atrial fibrillation or a history of myocardial infarction had increased TML levels, but this observation was not independent of age, sex and GFR. In 274 patients, follow-up data were available. During a median follow-up of 284 [25th-75th percentile: 198, 431] days, TML was not associated with incident MACE (stroke, myocardial infarction, death). In summary, our data suggests a different role of TML in acute ischemic stroke compared with CAD patients.
Collapse
Affiliation(s)
- Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany. .,German Center for Cardiovascular Research (DZHK), Partner site Kiel/Lübeck/Hamburg, Hamburg, Germany.
| | - Mirjam von Lucadou
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Kiel/Lübeck/Hamburg, Hamburg, Germany
| | - Sven Peine
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Lezius
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rainer Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Kiel/Lübeck/Hamburg, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chi-Un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
16
|
Claus RA, Graeler MH. Sphingolipidomics in Translational Sepsis Research-Biomedical Considerations and Perspectives. Front Med (Lausanne) 2021; 7:616578. [PMID: 33553212 PMCID: PMC7854573 DOI: 10.3389/fmed.2020.616578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Scientific Background: Sphingolipids are a highly diverse group of lipids with respect to physicochemical properties controlling either structure, distribution, or function, all of them regulating cellular response in health and disease. Mass spectrometry, on the other hand, is an analytical technique characterizing ionized molecules or fragments thereof by mass-to-charge ratios, which has been prosperingly developed for rapid and reliable qualitative and quantitative identification of lipid species. Parallel to best performance of in-depth chromatographical separation of lipid classes, preconditions of precise quantitation of unique molecular species by preprocessing of biological samples have to be fulfilled. As a consequence, “lipid profiles” across model systems and human individuals, esp. complex (clinical) samples, have become eminent over the last couple of years due to sensitivity, specificity, and discriminatory capability. Therefore, it is significance to consider the entire experimental strategy from sample collection and preparation, data acquisition, analysis, and interpretation. Areas Covered: In this review, we outline considerations with clinical (i.e., human) samples with special emphasis on sample handling, specific physicochemical properties, target measurements, and resulting profiling of sphingolipids in biomedicine and translational research to maximize sensitivity and specificity as well as to provide robust and reproducible results. A brief commentary is also provided regarding new insights of “clinical sphingolipidomics” in translational sepsis research. Expert Opinion: The role of mass spectrometry of sphingolipids and related species (“sphingolipidomics”) to investigate cellular and compartment-specific response to stress, e.g., in generalized infection and sepsis, is on the rise and the ability to integrate multiple datasets from diverse classes of biomolecules by mass spectrometry measurements and metabolomics will be crucial to fostering our understanding of human health as well as response to disease and treatment.
Collapse
Affiliation(s)
- Ralf A Claus
- Department for Anesthesiology and Intensive Care Medicine, Sepsis Research, Jena University Hospital, Jena, Germany
| | - Markus H Graeler
- Department for Anesthesiology and Intensive Care Medicine, Sepsis Research, Jena University Hospital, Jena, Germany.,Center for Sepsis Care & Control, Jena University Hospital, Jena, Germany.,Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Germany
| |
Collapse
|
17
|
Marfia G, Navone S, Guarnaccia L, Campanella R, Mondoni M, Locatelli M, Barassi A, Fontana L, Palumbo F, Garzia E, Ciniglio Appiani G, Chiumello D, Miozzo M, Centanni S, Riboni L. Decreased serum level of sphingosine-1-phosphate: a novel predictor of clinical severity in COVID-19. EMBO Mol Med 2021; 13:e13424. [PMID: 33190411 PMCID: PMC7744841 DOI: 10.15252/emmm.202013424] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
The severity of coronavirus disease 2019 (COVID-19) is a crucial problem in patient treatment and outcome. The aim of this study is to evaluate circulating level of sphingosine-1-phosphate (S1P) along with severity markers, in COVID-19 patients. One hundred eleven COVID-19 patients and forty-seven healthy subjects were included. The severity of COVID-19 was found significantly associated with anemia, lymphocytopenia, and significant increase of neutrophil-to-lymphocyte ratio, ferritin, fibrinogen, aminotransferases, lactate dehydrogenase (LDH), C-reactive protein (CRP), and D-dimer. Serum S1P level was inversely associated with COVID-19 severity, being significantly correlated with CRP, LDH, ferritin, and D-dimer. The decrease in S1P was strongly associated with the number of erythrocytes, the major source of plasma S1P, and both apolipoprotein M and albumin, the major transporters of blood S1P. Not last, S1P was found to be a relevant predictor of admission to an intensive care unit, and patient's outcome. Circulating S1P emerged as negative biomarker of severity/mortality of COVID-19 patients. Restoring abnormal S1P levels to a normal range may have the potential to be a therapeutic target in patients with COVID-19.
Collapse
Affiliation(s)
- Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell TherapyNeurosurgery UnitFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
- Istituto di Medicina Aerospaziale "A. Mosso"Aeronautica MilitareMilanItaly
- Aldo Ravelli” Research CenterMilanItaly
| | - Stefania Navone
- Laboratory of Experimental Neurosurgery and Cell TherapyNeurosurgery UnitFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
- Aldo Ravelli” Research CenterMilanItaly
| | - Laura Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell TherapyNeurosurgery UnitFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Rolando Campanella
- Laboratory of Experimental Neurosurgery and Cell TherapyNeurosurgery UnitFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Michele Mondoni
- Respiratory UnitASST Santi Paolo e CarloDepartment of Health SciencesUniversità degli Studi di MilanoMilanItaly
| | - Marco Locatelli
- Laboratory of Experimental Neurosurgery and Cell TherapyNeurosurgery UnitFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
- Aldo Ravelli” Research CenterMilanItaly
- Department of Medical‐Surgical Physiopathology and TransplantationUniversità degli Studi di MilanoMilanItaly
| | - Alessandra Barassi
- Laboratory of Clinical BiochemistryASST Santi Paolo e CarloDepartment of Health SciencesUniversità degli Studi di MilanoMilanItaly
| | - Laura Fontana
- Department of Medical‐Surgical Physiopathology and TransplantationUniversità degli Studi di MilanoMilanItaly
| | - Fabrizio Palumbo
- Istituto di Medicina Aerospaziale "A. Mosso"Aeronautica MilitareMilanItaly
| | - Emanuele Garzia
- Istituto di Medicina Aerospaziale "A. Mosso"Aeronautica MilitareMilanItaly
- Reproductive Medicine UnitASST Santi Paolo e CarloUniversità degli Studi di MilanoMilanItaly
| | | | | | - Monica Miozzo
- Department of Medical‐Surgical Physiopathology and TransplantationUniversità degli Studi di MilanoMilanItaly
- Unit of Research Laboratories CoordinationFondazione IRCCS Ca' GrandaOspedale Maggiore PoliclinicoMilanItaly
| | - Stefano Centanni
- Respiratory UnitASST Santi Paolo e CarloDepartment of Health SciencesUniversità degli Studi di MilanoMilanItaly
| | - Laura Riboni
- Department of Medical Biotechnology and Translational MedicineLITA‐Segrate, Università degli Studi di MilanoMilanItaly
| |
Collapse
|
18
|
Liu J, Sugimoto K, Cao Y, Mori M, Guo L, Tan G. Serum Sphingosine 1-Phosphate (S1P): A Novel Diagnostic Biomarker in Early Acute Ischemic Stroke. Front Neurol 2020; 11:985. [PMID: 33013650 PMCID: PMC7505997 DOI: 10.3389/fneur.2020.00985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/28/2020] [Indexed: 01/08/2023] Open
Abstract
Background: Sphingosine 1-phosphate (S1P) is a lipid metabolite that mediates various physiological processes, including vascular endothelial cell function, inflammation, coagulation/thrombosis, and angiogenesis. As a result, S1P may contribute to the pathogenesis of stroke. Objective: This study aimed to evaluate the diagnostic value of serum S1P in acute stroke. Method: A total of 72 patients with ischemic stroke, 36 patients with hemorrhagic stroke, and 65 controls were enrolled. Serum S1P was detected by enzyme-linked immunosorbent assay (ELISA). Results: Receiver operating characteristic curve analysis demonstrated that serum S1P could discriminate ischemic stroke from hemorrhagic stroke in both total population and subgroup analyses of samples obtained within 24 h of symptom onset (subgroup < 24h) (area under curve, AUCTotal = 0.64, P = 0.017; AUCSubgroup < 24h = 0.91, P < 0.001) and controls (AUCTotal = 0.62, P = 0.013; AUCSubgroup <24h = 0.83, P < 0.001). Furthermore, S1P showed higher efficacy than high-density lipoprotein cholesterol (HDL-C) in discriminating ischemic stroke from controls in the total population (PS1P = 0.013, PHDL−C = 0.366) and in the subgroup analysis (i.e., <24 h; PS1P < 0.001, PHDL−C = 0.081). Additionally, lower serum S1P was associated with cervical artery plaques (P = 0.021) in controls and with dyslipidemia (P = 0.036) and milder neurological impairment evaluated by the National Institute of Health Stroke Scale (NIHSS, P = 0.047) in the ischemic stroke group. Conclusions: The present study preliminarily investigated the diagnostic value of serum S1P in acute stroke. Decreased serum S1P may become a potential biomarker for early acute ischemic stroke and can indicate disease severity.
Collapse
Affiliation(s)
- Jia Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neurological Laboratory of Hebei Province, Shijiazhuang, China.,Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuo Sugimoto
- Department of Neurology, Dongzhimen Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China.,Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuanbo Cao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Masahiro Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Guojun Tan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neurological Laboratory of Hebei Province, Shijiazhuang, China
| |
Collapse
|