1
|
Ressler AM, Rao K, Young VB. Current Approaches to Treat and Prevent Recurrence of Clostridioides difficile. Gastroenterol Clin North Am 2025; 54:259-275. [PMID: 40348487 DOI: 10.1016/j.gtc.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Clostridioides difficile infection (CDI) and recurrent CDI (rCDI) are significant causes of morbidity and mortality. The microbiome plays a significant role in the body's defense against CDI and rCDI. Antibiotics can cause significant injury to the microbiome which leads to an increased risk of CDI and rCDI. Ongoing perturbations of the microbiome perpetuate this risk. Antibiotic treatments for CDI can kill C difficile but also can impact the microbiome. Microbiome therapeutics are effective in restoring the function of the gut microbiota and re-establishing colonization resistance. The field of microbiome therapeutics is evolving with newer, more refined, modalities in development.
Collapse
Affiliation(s)
- Adam M Ressler
- Department of Internal Medicine, Infectious Disease Division, University of Michigan Medicine, Ann Arbor, MI, USA
| | - Krishna Rao
- Department of Internal Medicine, Infectious Disease Division, University of Michigan Medicine, Ann Arbor, MI, USA
| | - Vincent B Young
- Department of Internal Medicine, Infectious Disease Division, University of Michigan Medicine, Ann Arbor, MI, USA; Department of Microbiology & Immunology.
| |
Collapse
|
2
|
Fachi JL, Vinolo MAR, Colonna M. Reviewing the Clostridioides difficile Mouse Model: Insights into Infection Mechanisms. Microorganisms 2024; 12:273. [PMID: 38399676 PMCID: PMC10891951 DOI: 10.3390/microorganisms12020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Clostridioides difficile is an anaerobic, spore-forming bacterium associated with intestinal infection, manifesting a broad spectrum of gastrointestinal symptoms, ranging from mild diarrhea to severe colitis. A primary risk factor for the development of C. difficile infection (CDI) is antibiotic exposure. Elderly and immunocompromised individuals are particularly vulnerable to CDI. A pivotal aspect for comprehending the complexities of this infection relies on the utilization of experimental models that mimic human CDI transmission, pathogenesis, and progression. These models offer invaluable insights into host-pathogen interactions and disease dynamics, and serve as essential tools for testing potential therapeutic approaches. In this review, we examine the animal model for CDI and delineate the stages of infection, with a specific focus on mice. Our objective is to offer an updated description of experimental models employed in the study of CDI, emphasizing both their strengths and limitations.
Collapse
Affiliation(s)
- José L. Fachi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Marco A. R. Vinolo
- Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil;
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
3
|
Naz F, Petri WA. Host Immunity and Immunization Strategies for Clostridioides difficile Infection. Clin Microbiol Rev 2023; 36:e0015722. [PMID: 37162338 PMCID: PMC10283484 DOI: 10.1128/cmr.00157-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Clostridioides difficile infection (CDI) represents a significant challenge to public health. C. difficile-associated mortality and morbidity have led the U.S. CDC to designate it as an urgent threat. Moreover, recurrence or relapses can occur in up to a third of CDI patients, due in part to antibiotics being the primary treatment for CDI and the major cause of the disease. In this review, we summarize the current knowledge of innate immune responses, adaptive immune responses, and the link between innate and adaptive immune responses of the host against CDI. The other major determinants of CDI, such as C. difficile toxins, the host microbiota, and related treatments, are also described. Finally, we discuss the known therapeutic approaches and the current status of immunization strategies for CDI, which might help to bridge the knowledge gap in the generation of therapy against CDI.
Collapse
Affiliation(s)
- Farha Naz
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - William A. Petri
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
4
|
Madden GR, Rigo I, Boone R, Abhyankar MM, Young MK, Basener W, Petri WA. Novel Biomarkers, Including tcdB PCR Cycle Threshold, for Predicting Recurrent Clostridioides difficile Infection. Infect Immun 2023; 91:e0009223. [PMID: 36975808 PMCID: PMC10112139 DOI: 10.1128/iai.00092-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
Traditional clinical models for predicting recurrent Clostridioides difficile infection do not perform well, likely owing to the complex host-pathogen interactions involved. Accurate risk stratification using novel biomarkers could help prevent recurrence by improving underutilization of effective therapies (i.e., fecal transplant, fidaxomicin, bezlotoxumab). We used a biorepository of 257 hospitalized patients with 24 features collected at diagnosis, including 17 plasma cytokines, total/neutralizing anti-toxin B IgG, stool toxins, and PCR cycle threshold (CT) (a proxy for stool organism burden). The best set of predictors for recurrent infection was selected by Bayesian model averaging for inclusion in a final Bayesian logistic regression model. We then used a large PCR-only data set to confirm the finding that PCR CT predicts recurrence-free survival using Cox proportional hazards regression. The top model-averaged features were (probabilities of >0.05, greatest to least): interleukin 6 (IL-6), PCR CT, endothelial growth factor, IL-8, eotaxin, IL-10, hepatocyte growth factor, and IL-4. The accuracy of the final model was 0.88. Among 1,660 cases with PCR-only data, cycle threshold was significantly associated with recurrence-free survival (hazard ratio, 0.95; P < 0.005). Certain biomarkers associated with C. difficile infection severity were especially important for predicting recurrence; PCR CT and markers of type 2 immunity (endothelial growth factor [EGF], eotaxin) emerged as positive predictors of recurrence, while type 17 immune markers (IL-6, IL-8) were negative predictors. In addition to novel serum biomarkers (particularly, IL-6, EGF, and IL-8), the readily available PCR CT may be critical to augment underperforming clinical models for C. difficile recurrence.
Collapse
Affiliation(s)
- Gregory R. Madden
- Division of Infectious Diseases & International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Isaura Rigo
- Division of Infectious Diseases & International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Rachel Boone
- Division of Infectious Diseases & International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Mayuresh M. Abhyankar
- Division of Infectious Diseases & International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Mary K. Young
- Division of Infectious Diseases & International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - William Basener
- School of Data Science, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - William A. Petri
- Division of Infectious Diseases & International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
5
|
Keestra-Gounder AM, Nagao PE. Inflammasome activation by Gram-positive bacteria: Mechanisms of activation and regulation. Front Immunol 2023; 14:1075834. [PMID: 36761775 PMCID: PMC9902775 DOI: 10.3389/fimmu.2023.1075834] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
The inflammasomes are intracellular multimeric protein complexes consisting of an innate immune sensor, the adapter protein ASC and the inflammatory caspases-1 and/or -11 and are important for the host defense against pathogens. Activaton of the receptor leads to formation of the inflammasomes and subsequent processing and activation of caspase-1 that cleaves the proinflammatory cytokines IL-1β and IL-18. Active caspase-1, and in some instances caspase-11, cleaves gasdermin D that translocates to the cell membrane where it forms pores resulting in the cell death program called pyroptosis. Inflammasomes can detect a range of microbial ligands through direct interaction or indirectly through diverse cellular processes including changes in ion fluxes, production of reactive oxygen species and disruption of various host cell functions. In this review, we will focus on the NLRP3, NLRP6, NLRC4 and AIM2 inflammasomes and how they are activated and regulated during infections with Gram-positive bacteria, including Staphylococcus spp., Streptococcus spp. and Listeria monocytogenes.
Collapse
Affiliation(s)
- A. Marijke Keestra-Gounder
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Prescilla Emy Nagao
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Lee CC, Lee JC, Chiu CW, Tsai PJ, Ko WC, Hung YP. Impacts of Corticosteroid Therapy at Acute Stage of Hospital-Onset Clostridioides difficile Infections. Infect Drug Resist 2022; 15:5387-5396. [PMID: 36119637 PMCID: PMC9473547 DOI: 10.2147/idr.s377967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction The influence of corticosteroid therapy before or after the onset of Clostridioides difficile infections (CDIs) on the clinical outcomes of adults with hospital-onset CDIs was investigated. Materials and Methods A clinical study was conducted on the medical wards of a teaching hospital between January 2013 and April 2020. Adults (aged ≥ 20 years) with hospital-onset CDIs (ie, symptom onset at least 48 hours after hospitalization) were included. "Corticosteroid therapy during acute CDIs" was defined as the receipt of a corticosteroid at the prednisolone equivalent (PE) dose of ≥10 mg for at least 48 hours within one week after the CDI diagnosis. "Prior corticosteroid exposure" was defined as the receipt of a corticosteroid at the PE dose of ≥5 mg PE for at least 48 hours within one month before the CDI diagnosis. Results Of the 243 adults with hospital-onset CDIs, patients (44, 18.1%) who received corticosteroid therapy during acute CDIs were more likely to have prior corticosteroid exposure (86.4% vs 11.9%, P <0.001) and CDI episodes in intensive care units (31.8% vs 10.8%, P =0.001). Of note, a crucial association between corticosteroid therapy during acute CDIs and CDI recurrence was evidenced (13.6% vs 1.5%, P =0.002). Prior corticosteroid exposure was not associated with favorable CDI outcomes in terms of successful treatment (78.3% vs 74.9%, P =0.89), in-hospital crude mortality (17.4% vs 24.0%, P =0.61), or CDI recurrence (4.3% vs 5.3%, P = 1.00). However, for 177 patients without prior corticosteroid exposure, corticosteroid therapy during acute CDIs was linked to a higher proportion of CDI recurrence (33.3% vs 5.3%, P =0.046). Conclusion Corticosteroid therapy during acute CDIs might impact the recurrence of CDIs, particularly in those with a lack of prior corticosteroid exposure.
Collapse
Affiliation(s)
- Ching-Chi Lee
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan.,Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Jen-Chieh Lee
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Chun-Wei Chiu
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, 700, Taiwan
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan.,Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Centers of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan.,Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Yuan-Pin Hung
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan.,Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, 700, Taiwan.,Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan.,Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
7
|
Mattana M, Tomasello R, Cammarata C, Di Carlo P, Fasciana T, Giordano G, Lucchesi A, Siragusa S, Napolitano M. Clostridium difficile Induced Inflammasome Activation and Coagulation Derangements. Microorganisms 2022; 10:microorganisms10081624. [PMID: 36014040 PMCID: PMC9416296 DOI: 10.3390/microorganisms10081624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
C. difficile enterocolitis (CDAC) is the most common hospital infection, burdened by an increased incidence of coagulation-related complications such as deep vein thrombosis (DVT) and disseminated intravascular coagulation (DIC) as well as a significant sepsis-related mortality. In this review, we analyzed the available data concerning the correlation between coagulation complications related to C. difficile infection (CDI) and inflammasome activation, in particular the pyrin-dependent one. The little but solid available preclinical and clinical evidence shows that inflammasome activation increases the risk of venous thromboembolism (VTE). As proof of this, it has been observed that in vitro inhibition of the molecules (e.g., tissue factor) mainly involved in coagulation activation could block the process. In vivo studies show that it could be possible to reduce the incidence of complications associated with C. difficile infection (CDI) and mortality due to a state of hypercoagulability. A personalized therapeutic approach to reduce the inflammatory activity and prevent thromboembolic complications could be preliminarily defined to reduce mortality.
Collapse
Affiliation(s)
- Marta Mattana
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90141 Palermo, Italy
| | - Riccardo Tomasello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90141 Palermo, Italy
| | - Claudia Cammarata
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90141 Palermo, Italy
| | - Paola Di Carlo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90141 Palermo, Italy
| | - Teresa Fasciana
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90141 Palermo, Italy
| | - Giulio Giordano
- Division of Internal Medicine, Hematology Service, Regional Hospital “A. Cardarelli”, 86100 Campobasso, Italy
| | - Alessandro Lucchesi
- Hematology Unit, IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Sergio Siragusa
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90141 Palermo, Italy
| | - Mariasanta Napolitano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90141 Palermo, Italy
- Correspondence: ; Tel.: +39-0916554519; Fax: +39-0916554500
| |
Collapse
|
8
|
Lee CC, Lee JC, Chiu CW, Tsai PJ, Ko WC, Hung YP. Neutrophil Ratio of White Blood Cells as a Prognostic Predictor of Clostridioides difficile Infection. J Inflamm Res 2022; 15:1943-1951. [PMID: 35342296 PMCID: PMC8943478 DOI: 10.2147/jir.s353814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/11/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction A leukocyte count ≥15,000 cells/mL and serum creatinine of >1.5 mg/dL have been reported as two important predictors of severe CDI. However, the association of the differential ratios of blood leukocytes, and the prognosis of Clostridioides difficile infection (CDI) is not clear. Materials and Methods A clinical study was conducted at medical wards of Tainan Hospital, Ministry of Health and Welfare in southern Taiwan between January 2013 and April 2020. Hospitalized adults (aged ≥20 years) with hospital-onset CDI (ie, symptom onset after at least 48 hours of admission) were included. Results A total of 235 adults with an average age of 75.7 years and female predominance (51.5%), including 146 (62%) adults with non-severe CDI and 87 (38%) severe CDI, were included for analysis. Patients with severe CDI had a higher crude in-hospital mortality rate than patients with non-severe CDI (35.6% vs 18.5%, P = 0.005). Multivariate analysis revealed no association between a leukocyte count >15,000 cell/mL at the onset of CDI and in-hospital mortality (odds ratio [OR] 1.66, P = 0.21). In contrast, a neutrophil ratio >75% (OR 2.65, P = 0.02), serum creatinine >1.5 mg/L (OR 3.42, P = 0.03), and CDI caused by isolates harboring the tcdC gene (OR 3.54, P = 0.02) were independently associated with in-hospital mortality. Patients with a neutrophil ratio >85%, 80–85%, or 75–80% of serum leukocytes had a higher mortality rate (34.8%, 30.3%, or 34.4%, respectively) than patients with a neutrophil ratio of 70–75% or ≤75% (12.5% or 13.9%, respectively). Conclusion Serum creatinine >1.5 mg/L, a high neutrophil ratio of blood leukocytes (>75%), and the causative C. difficile harboring the tcdC gene was independent prognostic predictors in hospitalized adults with CDI.
Collapse
Affiliation(s)
- Ching-Chi Lee
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Jen-Chieh Lee
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Chun-Wei Chiu
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, 700, Taiwan
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Centers of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
- Wen-Chien Ko, Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan, Email
| | - Yuan-Pin Hung
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, 700, Taiwan
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
- Correspondence: Yuan-Pin Hung, Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, 700, Taiwan, Email
| |
Collapse
|
9
|
Herrera G, Paredes-Sabja D, Patarroyo MA, Ramírez JD, Muñoz M. Updating changes in human gut microbial communities associated with Clostridioides difficile infection. Gut Microbes 2021; 13:1966277. [PMID: 34486488 PMCID: PMC8425690 DOI: 10.1080/19490976.2021.1966277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 02/04/2023] Open
Abstract
Clostridioides difficile is the causative agent of antibiotic-associated diarrhea, a worldwide public health problem. Different factors can promote the progression of C. difficile infection (CDI), mainly altered intestinal microbiota composition. Microbial species belonging to different domains (i.e., bacteria, archaea, eukaryotes, and even viruses) are synergistically and antagonistically associated with CDI. This review was aimed at updating changes regarding CDI-related human microbiota composition using recent data and an integral approach that included the different microorganism domains. The three domains of life contribute to intestinal microbiota homeostasis at different levels in which relationships among microorganisms could explain the wide range of clinical manifestations. A holistic understanding of intestinal ecosystem functioning will facilitate identifying new predictive factors for infection and developing better treatment and new diagnostic tools, thereby reducing this disease's morbidity and mortality.
Collapse
Affiliation(s)
- Giovanny Herrera
- Centro de Investigaciones en Microbiología y Biotecnología – UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad Del Rosario, Bogotá, Colombia
| | - Daniel Paredes-Sabja
- ANID – Millennium Science Initiative Program – Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá D.C. 111321, Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, Bogotá D.C. 110231, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología – UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad Del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología – UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad Del Rosario, Bogotá, Colombia
- ANID – Millennium Science Initiative Program – Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| |
Collapse
|
10
|
Hernández Del Pino RE, Barbero AM, Español LÁ, Morro LS, Pasquinelli V. The adaptive immune response to Clostridioides difficile: A tricky balance between immunoprotection and immunopathogenesis. J Leukoc Biol 2020; 109:195-210. [PMID: 32829520 DOI: 10.1002/jlb.4vmr0720-201r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Clostridioides difficile (C. difficile) is the major cause of hospital-acquired gastrointestinal infections in individuals following antibiotics treatment. The pathogenesis of C. difficile infection (CDI) is mediated mainly by the production of toxins that induce tissue damage and host inflammatory responses. While innate immunity is well characterized in human and animal models of CDI, adaptive immune responses remain poorly understood. In this review, the current understanding of adaptive immunity is summarized and its influence on pathogenesis and disease outcome is discussed. The perspectives on what we believe to be the main pending questions and the focus of future research are also provided. There is no doubt that the innate immune response provides a first line of defense to CDI. But, is the adaptive immune response a friend or a foe? Probably it depends on the course of the disease. Adaptive immunity is essential for pathogen eradication, but may also trigger uncontrolled or pathological inflammation. Most of the understanding of the role of T cells is based on findings from experimental models. While they are a very valuable tool for research studies, more studies in human are needed to translate these findings into human disease. Another main challenge is to unravel the role of the different T cell populations on protection or induction of immunopathogenesis.
Collapse
Affiliation(s)
- Rodrigo Emanuel Hernández Del Pino
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina.,Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA-Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Angela María Barbero
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina.,Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA-Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laureano Ángel Español
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina
| | - Lorenzo Sebastián Morro
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina
| | - Virginia Pasquinelli
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina.,Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA-Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
11
|
Chénard T, Prévost K, Dubé J, Massé E. Immune System Modulations by Products of the Gut Microbiota. Vaccines (Basel) 2020; 8:vaccines8030461. [PMID: 32825559 PMCID: PMC7565937 DOI: 10.3390/vaccines8030461] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota, which consists of all bacteria, viruses, fungus, and protozoa living in the intestine, and the immune system have co-evolved in a symbiotic relationship since the origin of the immune system. The bacterial community forming the microbiota plays an important role in the regulation of multiple aspects of the immune system. This regulation depends, among other things, on the production of a variety of metabolites by the microbiota. These metabolites range from small molecules to large macro-molecules. All types of immune cells from the host interact with these metabolites resulting in the activation of different pathways, which result in either positive or negative responses. The understanding of these pathways and their modulations will help establish the microbiota as a therapeutic target in the prevention and treatment of a variety of immune-related diseases.
Collapse
|
12
|
Aging Dampens the Intestinal Innate Immune Response during Severe Clostridioides difficile Infection and Is Associated with Altered Cytokine Levels and Granulocyte Mobilization. Infect Immun 2020; 88:IAI.00960-19. [PMID: 32284366 DOI: 10.1128/iai.00960-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/04/2020] [Indexed: 12/12/2022] Open
Abstract
Clostridioides (formerly Clostridium) difficile is the most common cause of hospital-acquired infection, and advanced age is a risk factor for C. difficile infection. Disruption of the intestinal microbiota and immune responses contribute to host susceptibility and severity of C. difficile infection. However, the specific impact of aging on immune responses during C. difficile infection remains to be well described. This study explores the effect of age on cellular and cytokine immune responses during C. difficile infection. Young mice (2 to 3 months old) and aged mice (22 to 28 months old) were rendered susceptible to C. difficile infection with the antibiotic cefoperazone and then infected with C. difficile strains with varied disease-causing potentials. We observe that the host age and the infecting C. difficile strain influenced the severity of disease associated with infection. Tissue-specific CD45+ immune cell responses occurred at the time of peak disease severity in the ceca and colons of all mice infected with a high-virulence strain of C. difficile; however, significant deficits in intestinal neutrophils and eosinophils were detected in aged mice, with a corresponding decrease in circulating CXCL1, an important neutrophil recruiter and activator. Interestingly, this lack of intestinal granulocyte response in aged mice during severe C. difficile infection was accompanied by a simultaneous increase in circulating white blood cells, granulocytes, and interleukin 17A (IL-17A). These findings demonstrate that age-related alterations in neutrophils and eosinophils and systemic cytokine and chemokine responses are associated with severe C. difficile infection and support a key role for intestinal eosinophils in mitigating C. difficile-mediated disease severity.
Collapse
|