Yi S, Kim D, Cho W, Lee JH, Kwon JH, Kim J, Park SB. Rational Design of Pyrido[3,2-
b]indolizine as a Tunable Fluorescent Scaffold for Fluorogenic Bioimaging.
JACS AU 2024;
4:2896-2906. [PMID:
39211616 PMCID:
PMC11350592 DOI:
10.1021/jacsau.4c00135]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 09/04/2024]
Abstract
Novel fluorescent scaffolds are highly demanding for a wide range of applications in biomedical investigation. To meet this demand, the pyrido[3,2-b]indolizine scaffold was designed as a versatile organic fluorophore. With the aid of computational modeling, fluorophores offering tunable emission colors (blue to red) were constructed. Notably, constructed fluorophores absorb lights in the visible range (>400 nm) despite their small sizes (<300 g/mol). Among the fluorophores was discovered a highly fluorogenic fluorophore with a unique turn-on property, 1, and it was developed into a washing-free bioprobe for visualizing cellular lipid droplets in living cells. Furthermore, motivated by the core's compact size and structural analogy to indole, unprecedented tryptophan-analogous fluorogenic unnatural amino acids were constructed and incorporated into fluorogenic peptide probes for monitoring peptide-protein interactions.
Collapse