1
|
Natho P, Colella M, Vicenti A, Romanazzi G, Ullah F, Sheikh NS, White AJP, Pasca F, Luisi R. Shifting Lithium Amide Reactivity to the Radical Domain: Regioselective Radical C-H Functionalization of 3-Iodooxetane for the Synthesis of 1,5-Dioxaspiro[2.3]hexanes. Angew Chem Int Ed Engl 2025; 64:e202424346. [PMID: 39869059 DOI: 10.1002/anie.202424346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 01/28/2025]
Abstract
Strained spiro-heterocycles (SSHs) have gained significant attention within the medicinal chemistry community as promising sp3-rich bioisosteres for their aromatic and non-spirocyclic counterparts. We herein report access to an unprecedented spiro-heterocycle-1,5-dioxaspiro[2.3]hexane. Our synthetic approach leverages a lithium-amide induced single-electron transfer to benzophenones generating an N-centered radical and a ketyl radical anion-reminiscent of a frustrated radical pair. This pair works synergistically to selectively abstract the β-hydrogen from 3-iodooxetane, initiating an exergonic radical-radical coupling reaction. This process enables the formation of the desired bond between the oxetane core and benzophenone derivatives, ultimately yielding the novel 1,5-dioxaspiro[2.3]hexane core. The stability and synthetic utility of the novel 1,5-dioxaspiro[2.3]hexane motif are showcased. An in-depth mechanistic investigation is presented, including cyclic voltammetry studies, as well as computational calculations and experiments to support the mechanism of this new single electron synthetic tactic.
Collapse
Affiliation(s)
- Philipp Natho
- Department of Pharmacy-Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Marco Colella
- Department of Pharmacy-Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Annarita Vicenti
- Department of Pharmacy-Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125, Bari, Italy
| | | | - Faizan Ullah
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, KPK, 22060, Pakistan
| | - Nadeem S Sheikh
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Andrew J P White
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Francesco Pasca
- Department of Pharmacy-Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Renzo Luisi
- Department of Pharmacy-Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
2
|
Miele M, Smajić A, Pace V. The Versatility of the Roskamp Homologation in Synthesis. Molecules 2025; 30:1192. [PMID: 40141968 PMCID: PMC11944290 DOI: 10.3390/molecules30061192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Modern organic synthesis continues to benefit from the flexibility of α-diazo carbonyl intermediates. In the context of homologation processes, the Roskamp reaction-first introduced in 1989-has become a valuable tool due to its selectivity and mild condition reactions for accessing important synthons amenable to further functionalization as β-keto esters. The fine-tuning of reaction parameters-including the nature of Lewis acids, solvents, and temperature-has enabled the development of catalyzed continuous-flow methodologies, as well as a series of asymmetric variants characterized by high transformation rates, excellent stereocontrol, and formidable chemoselectivity. This review aims to emphasize the attractive features of the Roskamp reaction and its applicability for addressing challenging homologation processes.
Collapse
Affiliation(s)
- Margherita Miele
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Turin, Italy;
| | - Aljoša Smajić
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, A-1090 Vienna, Austria;
| | - Vittorio Pace
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Turin, Italy;
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, A-1090 Vienna, Austria;
| |
Collapse
|
3
|
Miele M, Castiglione D, Holzer W, Castoldi L, Pace V. Chemoselective homologative preparation of trisubstituted alkenyl halides from carbonyls and carbenoids. Chem Commun (Camb) 2025; 61:1180-1183. [PMID: 39692802 DOI: 10.1039/d4cc05937a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The chemoselective synthesis of trisubstituted alkenyl halides (Cl, Br, F, I) starting from ketones and aldehydes and lithium halocarbenoids is reported. Upon forming the corresponding tetrahedral intermediate adduct, followed by the addition of thionyl chloride, a selective E2-type elimination is triggered, furnishing the targeted motifs. The transformation takes place under full chemocontrol: various sensitive functionalities (e.g. ester, nitrile, nitro, or halogen groups) can be placed on the starting materials, thus documenting a wide reaction scope, as well as the application of the technique to biologically active substances.
Collapse
Affiliation(s)
- Margherita Miele
- University of Turin - Department of Chemistry, Via Giuria 7, 10125, Turin, Italy.
| | - Davide Castiglione
- University of Turin - Department of Chemistry, Via Giuria 7, 10125, Turin, Italy.
| | - Wolfgang Holzer
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Laura Castoldi
- University of Milan - Department of Pharmaceutical Sciences, General and Organic Chemisty Section "A. Marchesini" - Via Venezian 21, 20133 Milan, Italy.
| | - Vittorio Pace
- University of Turin - Department of Chemistry, Via Giuria 7, 10125, Turin, Italy.
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| |
Collapse
|
4
|
Sperga A, Veliks J. Recent Advances in Monofluorinated Carbenes, Carbenoids, Ylides, and Related Species. Chemistry 2023:e202301851. [PMID: 37902650 DOI: 10.1002/chem.202301851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Indexed: 10/31/2023]
Abstract
The synthesis of monofluorinated compounds is of great interest because of the vast applications of organofluorine compounds. Recently, the introduction of monofluorocarbene synthons has emerged as an important strategy for the synthesis of fluorine-containing products. In contrast to direct fluorination, in which C-F bonds are formed, the use of monofluorinated carbenes and related reactive species involves C-C or C-X bond formation while delivering valuable fluorine atoms into the target structure. Owing to increased knowledge on carbon-carbon and carbon-heteroatom bond formations, monofluorinated carbenes have enormous potential for the synthesis of organofluorine compounds, which, in our opinion, has not yet been fully exploited. This review summarizes the recent advances in the synthetic applications of monofluorinated carbenes, carbenoids, ylides, and related species.
Collapse
Affiliation(s)
- Arturs Sperga
- Latvian Institute of OrganicSynthesis, Aizkrauklesiela 21, 1006, Riga, Latvia
| | - Janis Veliks
- Latvian Institute of OrganicSynthesis, Aizkrauklesiela 21, 1006, Riga, Latvia
| |
Collapse
|
5
|
Ielo L, Patamia V, Citarella A, Schirmeister T, Stagno C, Rescifina A, Micale N, Pace V. Selective noncovalent proteasome inhibiting activity of trifluoromethyl-containing gem-quaternary aziridines. Arch Pharm (Weinheim) 2023:e2300174. [PMID: 37119396 DOI: 10.1002/ardp.202300174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/01/2023]
Abstract
The ubiquitin-proteasome pathway (UPP) represents the principal proteolytic apparatus in the cytosol and nucleus of all eukaryotic cells. Nowadays, proteasome inhibitors (PIs) are well-known as anticancer agents. However, although three of them have been approved by the US Food and Drug Administration (FDA) for treating multiple myeloma and mantel cell lymphoma, they present several side effects and develop resistance. For these reasons, the development of new PIs with better pharmacological characteristics is needed. Recently, noncovalent inhibitors have gained much attention since they are less toxic as compared with covalent ones, providing an alternative mechanism for solid tumors. Herein, we describe a new class of bis-homologated chloromethyl(trifluoromethyl)aziridines as selective noncovalent PIs. In silico and in vitro studies were conducted to elucidate the mechanism of action of such compounds. Human gastrointestinal absorption (HIA) and blood-brain barrier (BBB) penetration were also considered together with absorption, distribution, metabolism, and excretion (ADMET) predictions.
Collapse
Affiliation(s)
- Laura Ielo
- Department of Chemistry, University of Turin, Torino, Italy
| | - Vincenzo Patamia
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | | | - Tanja Schirmeister
- Department of Medicinal Chemistry, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Claudio Stagno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Vittorio Pace
- Department of Chemistry, University of Turin, Torino, Italy
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Guo S, Sun W, Tucker JW, Hesp KD, Szymczak NK. Preparation and Functionalization of Mono- and Polyfluoroepoxides via Fluoroalkylation of Carbonyl Electrophiles. Chemistry 2023; 29:e202203578. [PMID: 36478306 DOI: 10.1002/chem.202203578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
We outline a new synthetic method to prepare mono- and polyfluoroepoxides from a diverse pool of electrophiles (ketones, acyl chlorides, esters) and fluoroalkyl anion equivalents. The initially formed α-fluoro alkoxides undergo subsequent intramolecular ring closure when heated. We demonstrated the versatility of the method through the isolation of 16 mono- and polyfluoroepoxide products. These compounds provide unique entry points for further diversification via either fluoride migration coupled with ring opening, or defluorinative functionalization reactions, the latter of which can be used as a late-stage method to install select bioactive moieties. The reaction sequences described herein provide a pathway to functionalize the commonly observed products formed from 1,2-addition into carbonyl electrophiles.
Collapse
Affiliation(s)
- Shuo Guo
- Department of Chemistry, University of Michigan, Willard Henry Dow Laboratory, 930 North University Ave., Ann Arbor, MI 48109, USA
| | - Wei Sun
- Department of Chemistry, University of Michigan, Willard Henry Dow Laboratory, 930 North University Ave., Ann Arbor, MI 48109, USA
| | - Joseph W Tucker
- Medicine Design, Pfizer Inc.: Eastern Point Rd., Groton, CT., 06340, USA
| | - Kevin D Hesp
- Medicine Design, Pfizer Inc.: Eastern Point Rd., Groton, CT., 06340, USA
| | - Nathaniel K Szymczak
- Department of Chemistry, University of Michigan, Willard Henry Dow Laboratory, 930 North University Ave., Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Miele M, Castoldi L, Simeone X, Holzer W, Pace V. Straightforward synthesis of bench-stable heteroatom-centered difluoromethylated entities via controlled nucleophilic transfer from activated TMSCHF 2. Chem Commun (Camb) 2022; 58:5761-5764. [PMID: 35450981 DOI: 10.1039/d2cc00886f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The commercially available and experimentally convenient (bp 65 °C) difluoromethyltrimethylsilane (TMSCHF2) is proposed as a valuable difluoromethylating transfer reagent for delivering the CHF2 moiety to various heteroatom-based electrophiles. Upon activation with an alkoxide, a conceptually intuitive nucleophilic displacement directly furnishes in high yields the bench-stable analogues.
Collapse
Affiliation(s)
- Margherita Miele
- University of Vienna - Department of Pharmaceutical Chemistry, Althanstrasse, 14 1090 Vienna, Austria.
| | - Laura Castoldi
- University of Milano - Department of Pharmaceutical Sciences, Via Golgi 19, 20133 Milano, Italy
| | - Xenia Simeone
- University of Vienna - Department of Pharmaceutical Chemistry, Althanstrasse, 14 1090 Vienna, Austria.
| | - Wolfgang Holzer
- University of Vienna - Department of Pharmaceutical Chemistry, Althanstrasse, 14 1090 Vienna, Austria.
| | - Vittorio Pace
- University of Vienna - Department of Pharmaceutical Chemistry, Althanstrasse, 14 1090 Vienna, Austria. .,University of Torino - Department of Chemistry, Via Giuria 7, 10125 Torino, Italy
| |
Collapse
|
8
|
Senatore R, Malik M, Langer T, Holzer W, Pace V. Consecutive and Selective Double Methylene Insertion of Lithium Carbenoids to Isothiocyanates: A Direct Assembly of Four-Membered Sulfur-Containing Cycles. Angew Chem Int Ed Engl 2021; 60:24854-24858. [PMID: 34534400 PMCID: PMC9293044 DOI: 10.1002/anie.202110641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Indexed: 12/15/2022]
Abstract
A formal CH2 -CH2 homologation conducted with C1 carbenoids on a carbon electrophile for the obtainment of a four-membered cycle is reported. The logic proposes the consecutive delivery of two single nucleophilic CH2 units to an isothiocyanate-as competent electrophilic partner-resulting in the assembling of a rare imino-thietane cluster. The single synthetic operation procedure documents genuine chemocontrol, as indicated by the tolerance to various reactive elements decorating the starting materials. Significantly, the double homologation protocol is accomplished directly on a carbon electrophile, thus not requiring the installation of heteroatom-centered manifolds (e.g. boron).
Collapse
Affiliation(s)
- Raffaele Senatore
- University of ViennaDepartment of Pharmaceutical SciencesAlthanstrasse, 14A-1090ViennaAustria
| | - Monika Malik
- University of ViennaDepartment of Pharmaceutical SciencesAlthanstrasse, 14A-1090ViennaAustria
| | - Thierry Langer
- University of ViennaDepartment of Pharmaceutical SciencesAlthanstrasse, 14A-1090ViennaAustria
| | - Wolfgang Holzer
- University of ViennaDepartment of Pharmaceutical SciencesAlthanstrasse, 14A-1090ViennaAustria
| | - Vittorio Pace
- University of ViennaDepartment of Pharmaceutical SciencesAlthanstrasse, 14A-1090ViennaAustria
- University of TurinDepartment of ChemistryVia P. Giuria 710125TurinItaly
| |
Collapse
|
9
|
Senatore R, Malik M, Langer T, Holzer W, Pace V. Consecutive and Selective Double Methylene Insertion of Lithium Carbenoids to Isothiocyanates: A Direct Assembly of Four‐Membered Sulfur‐Containing Cycles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Raffaele Senatore
- University of Vienna Department of Pharmaceutical Sciences Althanstrasse, 14 A-1090 Vienna Austria
| | - Monika Malik
- University of Vienna Department of Pharmaceutical Sciences Althanstrasse, 14 A-1090 Vienna Austria
| | - Thierry Langer
- University of Vienna Department of Pharmaceutical Sciences Althanstrasse, 14 A-1090 Vienna Austria
| | - Wolfgang Holzer
- University of Vienna Department of Pharmaceutical Sciences Althanstrasse, 14 A-1090 Vienna Austria
| | - Vittorio Pace
- University of Vienna Department of Pharmaceutical Sciences Althanstrasse, 14 A-1090 Vienna Austria
- University of Turin Department of Chemistry Via P. Giuria 7 10125 Turin Italy
| |
Collapse
|
10
|
Touqeer S, Ielo L, Miele M, Urban E, Holzer W, Pace V. Direct and straightforward transfer of C1 functionalized synthons to phosphorous electrophiles for accessing gem-P-containing methanes. Org Biomol Chem 2021; 19:2425-2429. [PMID: 33666635 DOI: 10.1039/d1ob00273b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The direct transfer of different α-substituted methyllithium reagents to chlorinated phosphorous electrophiles of diverse oxidation state (phosphates, phosphine oxides and phosphines) is proposed as an effective strategy to synthesize geminal P-containing methanes. The methodology relies on the efficient nucleophilic substitution conducted on the P-chlorine linkage. Uniformly high yields are observed regardless the specific nature of the carbanion employed: once established the conditions for generating the competent nucleophile (LiCH2Hal, LiCHHal2, LiCH2CN, LiCH2SeR etc.) the homologated compounds are obtained via a single operation. Some P-containing formal carbanions have been evaluated in transferring processes, including the carbonyl-difluoromethylation of the opioid agent Hydrocodone.
Collapse
Affiliation(s)
- Saad Touqeer
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
11
|
Andresini M, Degannaro L, Luisi R. A sustainable strategy for the straightforward preparation of 2 H-azirines and highly functionalized NH-aziridines from vinyl azides using a single solvent flow-batch approach. Beilstein J Org Chem 2021; 17:203-209. [PMID: 33564330 PMCID: PMC7849244 DOI: 10.3762/bjoc.17.20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/29/2020] [Indexed: 02/04/2023] Open
Abstract
The reported flow-batch approach enables the easy preparation of 2H-azirines and their stereoselective transformation into highly functionalized NH-aziridines, starting from vinyl azides and organolithium compounds. The protocol has been developed using cyclopentyl methyl ether (CPME) as an environmentally benign solvent, resulting into a sustainable, safe and potentially automatable method for the synthesis of interesting strained compounds.
Collapse
Affiliation(s)
- Michael Andresini
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, Bari, 70125, Italy
| | - Leonardo Degannaro
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, Bari, 70125, Italy
| | - Renzo Luisi
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, Bari, 70125, Italy
| |
Collapse
|
12
|
Ielo L, Pillari V, Gajic N, Holzer W, Pace V. Straightforward chemoselective access to unsymmetrical dithioacetals through a thiosulfonate homologation-nucleophilic substitution sequence. Chem Commun (Camb) 2020; 56:12395-12398. [PMID: 32935694 DOI: 10.1039/d0cc04896h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A two-step electrophilic sulfur homologation strategy for building up unsymmetrical dithioacetals.
Collapse
Affiliation(s)
- Laura Ielo
- Department of Pharmaceutical Chemistry
- University of Vienna
- Vienna
- Austria
| | - Veronica Pillari
- Department of Pharmaceutical Chemistry
- University of Vienna
- Vienna
- Austria
| | - Natalie Gajic
- X-Ray Structure Analysis Center
- University of Vienna
- Vienna
- Austria
| | - Wolfgang Holzer
- Department of Pharmaceutical Chemistry
- University of Vienna
- Vienna
- Austria
| | - Vittorio Pace
- Department of Pharmaceutical Chemistry
- University of Vienna
- Vienna
- Austria
- Department of Chemistry
| |
Collapse
|