1
|
Tian D, He YP, Yang LS, Li ZC, Wu H. Switchable skeletal editing of quinolines enabled by cyclizative sequential rearrangements. Nat Chem 2025:10.1038/s41557-025-01793-0. [PMID: 40195435 DOI: 10.1038/s41557-025-01793-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025]
Abstract
The rapid diversification of core ring structures in complex molecules through switchable skeletal editing is valuable in the drug discovery process. However, controllable methods for chemically divergent modifications of azaarene frameworks using common substrates are challenging, despite the potential to maximize structural diversity and complexity. Here we report the tunable skeletal editing of quinolines through Brønsted acid-catalysed multicomponent reactions of quinoline N-oxides, dialkyl acetylenedicarboxylates and water to generate nitrogen-containing heteroaromatic compounds together with linear compounds in a modular fashion. Specifically, in a one-pot procedure, after cyclization and sequential rearrangement processes, the quinoline N-oxides are easily converted into unique 2-substituted indolines. These then undergo acid-promoted fragmentation to give indoles, base-facilitated ring-opening to afford 2-alkenylanilines and oxidative cyclization to yield isoquinolinones. Catalytic asymmetric skeletal editing of quinolines is also realized, providing enantioenriched benzazepines bearing quaternary stereocentres, and late-stage skeletal modification of quinoline cores in several drugs is demonstrated.
Collapse
Affiliation(s)
- Di Tian
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, Laboratory of Innovative Immunotherapy, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Ping He
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, Laboratory of Innovative Immunotherapy, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, China
| | - Lu-Sen Yang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, Laboratory of Innovative Immunotherapy, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuo-Chen Li
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, Laboratory of Innovative Immunotherapy, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Wu
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, Laboratory of Innovative Immunotherapy, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Lei ZJ, Ma YJ, Fan QQ, Wu ZX, Zheng YY, Sun G, Xi ZW, Shen C, Shen YM. Visible-Light-Mediated Three-Component Alkene 1,2-Alkylpyridylation Reaction Using Alkylboronic Acids as Radical Precursors for the Synthesis of 4-Alkylpyridines. J Org Chem 2025; 90:3563-3569. [PMID: 40029075 DOI: 10.1021/acs.joc.4c02600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
We report the photocatalyzed three-component alkene 1,2-alkylpyridylation reaction between alkylboronic acids, 4-cyanopyridine, and an olefin to achieve the pyridination and alkylation of the olefin and the synthesis of structurally diversified 4-alkylpyridines. The readily available and easily manipulated alkylboronic acids were used as alkyl radical precursors. The reactions take place under mild conditions with a broad substrate scope and are easy to scale up to gram level, and they are therefore of potential practical value for the synthesis and structural modification of biologically active alkylpyridine derivatives.
Collapse
Affiliation(s)
- Zi-Jun Lei
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Yi-Jian Ma
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Qian-Qian Fan
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Zhi-Xiong Wu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Yi-Yang Zheng
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Guoming Sun
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, PR China
| | - Zi-Wei Xi
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, PR China
| | - Chengshuo Shen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, PR China
| | - Yong-Miao Shen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, PR China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
3
|
Jo W, Thangsrikeattigun C, Ryu C, Han S, Oh C, Baik MH, Cho SH. Regiodivergent Alkylation of Pyridines: Alkyllithium Clusters Direct Chemical Reactivity. J Am Chem Soc 2025. [PMID: 40009550 DOI: 10.1021/jacs.4c17198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Regiodivergent C-C bond-forming reactions are a powerful tool for constructing diverse molecular architectures from common precursors. While transition metal catalysis has dominated regioselective transformations, achieving similar precision with transition-metal-free methods remains an unmet challenge, particularly when using identical starting materials. In this work, we report a transition-metal-free, regiodivergent direct alkylation of electronically unbiased pyridines using 1,1-diborylalkanes as the sole alkylating agent. The key to controlling regioselectivity lies in the choice of alkyllithium activator of 1,1-diborylalkanes: methyllithium directs alkylation predominantly to the C4 position, while sec-butyllithium promotes C2-alkylation. Mechanistic studies reveal that the structural dynamics of alkyllithium clusters dictate the regioselectivity, with tetrameric clusters favoring C4-alkylation and dimeric clusters preferring C2-alkylation. This method demonstrates broad substrate scope, enables late-stage functionalization of complex molecules, and allows for the sequential installation of two distinct alkyl groups onto a pyridine scaffold. Our approach provides a versatile tool for site-selective pyridine functionalization, offering new possibilities for synthesizing diverse alkylated pyridines in pharmaceutical and materials research.
Collapse
Affiliation(s)
- Woohyun Jo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Chattawat Thangsrikeattigun
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Changsu Ryu
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seungcheol Han
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Changjin Oh
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Seung Hwan Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
4
|
He SM, Yang YB, Liu LY, Yu N, Zhou YQ, Zhou JH, Zheng MJ, Jin XK, Jiang K, Wei Y. Copper-Catalyzed Annulation of α,β-Unsaturated Ketoximes with Dialkyl Acetylenedicarboxylates for the Synthesis of Highly Substituted Pyridines. Org Lett 2025; 27:1100-1105. [PMID: 39849985 DOI: 10.1021/acs.orglett.4c04351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
A copper-catalyzed [4 + 2] annulation protocol from readily available α,β-unsaturated ketoximes and dialkyl acetylenedicarboxylates has been achieved. The approach enables the expedient construction of a series of structurally new highly substituted pyridines with good functional group tolerance.
Collapse
Affiliation(s)
- Shi-Mei He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yun-Bo Yang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Lv-Yan Liu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ning Yu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yu-Qiang Zhou
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jia-Hao Zhou
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Mei-Jun Zheng
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xiao-Kun Jin
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Kun Jiang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ye Wei
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| |
Collapse
|
5
|
Mohite SB, Mirza YK, Bera PS, Nadigar S, Yugendhar S, Karpoormath R, Bera M. Advances in Pyridine C-H Functionalizations: Beyond C2 Selectivity. Chemistry 2025; 31:e202403032. [PMID: 39604069 DOI: 10.1002/chem.202403032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/29/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
The pyridine core is a crucial component in numerous FDA-approved drugs and Environmental Protection Agency (EPA) regulated agrochemicals. It also plays a significant role in ligands for transition metals, alkaloids, catalysts, and various organic materials with diverse properties, making it one of the most important structural frameworks. However, despite its significance, direct and selective functionalization of pyridine is still relatively underdeveloped due to its electron-deficient nature and the strong coordinating ability of nitrogen. Among the variety of synthetic transformation, direct functionalization of C-H bond is straightforward and atom economical approach and it's advantageous for late-stage functionalization of pyridine containing drugs. In recent years, innovative strategies for regioselective C-H functionalization of pyridines and azines have emerged, offering numerous benefits such as high regioselectivity, mild conditions, and enabling transformations that were challenging with traditional methods. This review emphasizes the latest advancements in meta and para-C-H functionalization of pyridines through various approaches, including pyridine phosphonium salts, photocatalytic methods, temporary de-aromatization, Minisci-type reactions, and transition metal-catalyzed C-H activation techniques. We discuss the advantages and limitations of these current methods and aim to inspire further progress in this significant field.
Collapse
Affiliation(s)
- Sachin Balaso Mohite
- Department: Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Yafia Kousin Mirza
- Department: Photocatalysis & Synthetic Methodology Lab (PSML), Amity Institute of Click Chemistry Research & Studies (AICCRS), Amity University, Noida, 201303, India
| | - Partha Sarathi Bera
- Department: Photocatalysis & Synthetic Methodology Lab (PSML), Amity Institute of Click Chemistry Research & Studies (AICCRS), Amity University, Noida, 201303, India
| | - Siddaram Nadigar
- Department: Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Soorni Yugendhar
- Department: Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Rajsekhar Karpoormath
- Department: Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Milan Bera
- Department: Photocatalysis & Synthetic Methodology Lab (PSML), Amity Institute of Click Chemistry Research & Studies (AICCRS), Amity University, Noida, 201303, India
| |
Collapse
|
6
|
Thompson LC, Kinsey AM, Shahla Z, Scheerer JR. Polysubstituted Pyridines from 1,4-Oxazinone Precursors. J Org Chem 2024; 89:17635-17642. [PMID: 39532705 PMCID: PMC11629385 DOI: 10.1021/acs.joc.4c02389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
This study describes a general method for the preparation of 1,4-oxazin-2-one intermediates from acetylene dicarboxylate and β-amino alcohol precursors. Oxazinones prepared in this manner were employed in a tandem cycloaddition/cycloreversion reaction sequence with a model alkyne (phenyl acetylene) to give substituted pyridine products. Fundamental reactivity and selectivity studies are complemented by the synthesis of the polycyclic ergot alkaloid natural product xylanigripone A.
Collapse
Affiliation(s)
- L. C. Thompson
- Department of Chemistry, William & Mary, P.O. Box 8795, Williamsburg, Virginia 23187, United States
| | - Adrianne M. Kinsey
- Department of Chemistry, William & Mary, P.O. Box 8795, Williamsburg, Virginia 23187, United States
| | - Zannatul Shahla
- Department of Chemistry, William & Mary, P.O. Box 8795, Williamsburg, Virginia 23187, United States
| | - Jonathan R. Scheerer
- Department of Chemistry, William & Mary, P.O. Box 8795, Williamsburg, Virginia 23187, United States
| |
Collapse
|
7
|
Kim J, Kim YE, Hong S. Traceless Nucleophile Strategy for C5-Selective C-H Sulfonylation of Pyridines. Angew Chem Int Ed Engl 2024; 63:e202409561. [PMID: 39126202 DOI: 10.1002/anie.202409561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
The functionalization of pyridines is crucial for the rapid construction and derivatization of agrochemicals, pharmaceuticals, and materials. Conventional functionalization approaches have primarily focused on the ortho- and para-positions, while achieving precise meta-selective functionalization, particularly at the C5 position in substituted pyridines, remains a formidable challenge due to the intrinsic electronic properties of pyridines. Herein, we present a new strategy for meta- and C5-selective C-H sulfonylation of N-amidopyridinium salts, which employs a transient enamine-type intermediate generated through a nucleophilic addition to N-amidopyridinium salts. This process harnesses the power of electron donor-acceptor complexes, enabling high selectivity and broad applicability, including the construction of complex pyridines bearing valuable sulfonyl functionalities under mild conditions without the need for an external photocatalyst. The remarkable C5 selectivity, combined with the broad applicability to late-stage functionalization, significantly expands the toolbox for pyridine functionalization, unlocking access to previously unattainable meta-sulfonylated pyridines.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), 34141, Daejeon, Republic of Korea
| | - Ye-Eun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), 34141, Daejeon, Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), 34141, Daejeon, Republic of Korea
| |
Collapse
|
8
|
Li S, Tang J, Shi Y, Yan M, Fu Y, Su Z, Xu J, Xue W, Zheng X, Ge Y, Li R, Chen H, Fu H. C3 Selective chalcogenation and fluorination of pyridine using classic Zincke imine intermediates. Nat Commun 2024; 15:7420. [PMID: 39198410 PMCID: PMC11358504 DOI: 10.1038/s41467-024-51452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Regioselective C-H functionalization of pyridines remains a persistent challenge due to their inherent electronically deficient properties. In this report, we present a strategy for the selective pyridine C3-H thiolation, selenylation, and fluorination under mild conditions via classic N-2,4-dinitrophenyl Zincke imine intermediates. Radical inhibition and trapping experiments, as well as DFT theoretical calculations, indicated that the thiolation and selenylation proceeds through a radical addition-elimination pathway, whereas fluorination via a two-electron electrophilic substitution pathway. The pre-installed electron-deficient activating N-DNP group plays a crucial and positive role, with the additional benefit of recyclability. The practicability of this protocol was demonstrated in the gram-scale synthesis and the late-stage modification of pharmaceutically relevant pyridines.
Collapse
Affiliation(s)
- Shun Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Juan Tang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Yonglin Shi
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Meixin Yan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Yihua Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Jiaqi Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Weichao Xue
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Xueli Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Yicen Ge
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, PR China
| | - Ruixiang Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Hua Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| | - Haiyan Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| |
Collapse
|
9
|
Shambalova VE, Larkovich RV, Aldoshin AS, Lyssenko KA, Nechaev MS, Nenajdenko VG. Sequential Modification of Pyrrole Ring with up to Three Different Nucleophiles. J Org Chem 2024; 89:11183-11194. [PMID: 39087640 DOI: 10.1021/acs.joc.4c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
An umpolung strategy was used for the preparation of highly functionalized 3-pyrrolin-2-ones. This approach involves dearomative double chlorination of 1H-pyrroles to form highly reactive dichloro-substituted 2H-pyrroles. The resulting intermediate reacts selectively with wet alcohols to form the corresponding alkoxy-substituted 3-pyrrolin-2-ones via double nucleophilic substitution in up to 99% yield. The subsequent reaction with different N-, O-, and S-nucleophiles opens access to highly functionalized pyrrolinones bearing additional functionality. The overall outcome of the reported sequence is step-by-step nucleophilic modification of pyrroles with three different nucleophiles. All steps were found to be highly efficient and 100% regioselective. This transformation proceeds under mild conditions and does not require any catalyst to give final products in very high yields. The obtained experimental results are in perfect agreement with the data obtained by theoretical investigation of these reactions.
Collapse
Affiliation(s)
- Victoria E Shambalova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| | - Roman V Larkovich
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| | - Alexander S Aldoshin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| | - Konstantin A Lyssenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| | - Mikhail S Nechaev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, Moscow 119991, Russian Federation
| | - Valentine G Nenajdenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| |
Collapse
|
10
|
Feng M, Norlöff M, Guichard B, Kealey S, D'Anfray T, Thuéry P, Taran F, Gee A, Feuillastre S, Audisio D. Pyridine-based strategies towards nitrogen isotope exchange and multiple isotope incorporation. Nat Commun 2024; 15:6063. [PMID: 39025881 PMCID: PMC11258231 DOI: 10.1038/s41467-024-50139-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Isotopic labeling is at the core of health and life science applications such as nuclear imaging, metabolomics and plays a central role in drug development. The rapid access to isotopically labeled organic molecules is a sine qua non condition to support these societally vital areas of research. Based on a rationally driven approach, this study presents an innovative solution to access labeled pyridines by a nitrogen isotope exchange reaction based on a Zincke activation strategy. The technology conceptualizes an opportunity in the field of isotope labeling. 15N-labeling of pyridines and other relevant heterocycles such as pyrimidines and isoquinolines showcases on a large set of derivatives, including pharmaceuticals. Finally, we explore a nitrogen-to-carbon exchange strategy in order to access 13C-labeled phenyl derivatives and deuterium labeling of mono-substituted benzene from pyridine-2H5. These results open alternative avenues for multiple isotope labeling on aromatic cores.
Collapse
Affiliation(s)
- Minghao Feng
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Maylis Norlöff
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Benoit Guichard
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Steven Kealey
- King's College London, School of Biomedical Engineering and Imaging Sciences, Department of Imaging Chemistry and Biology, 4th Floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK
| | - Timothée D'Anfray
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France
| | - Frédéric Taran
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Antony Gee
- King's College London, School of Biomedical Engineering and Imaging Sciences, Department of Imaging Chemistry and Biology, 4th Floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK
| | - Sophie Feuillastre
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France.
| | - Davide Audisio
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France.
| |
Collapse
|
11
|
Cheng Q, Bhattacharya D, Haring M, Cao H, Mück-Lichtenfeld C, Studer A. Skeletal editing of pyridines through atom-pair swap from CN to CC. Nat Chem 2024; 16:741-748. [PMID: 38238464 PMCID: PMC11087273 DOI: 10.1038/s41557-023-01428-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/15/2023] [Indexed: 05/12/2024]
Abstract
Skeletal editing is a straightforward synthetic strategy for precise substitution or rearrangement of atoms in core ring structures of complex molecules; it enables quick diversification of compounds that is not possible by applying peripheral editing strategies. Previously reported skeletal editing of common arenes mainly relies on carbene- or nitrene-type insertion reactions or rearrangements. Although powerful, efficient and applicable to late-stage heteroarene core structure modification, these strategies cannot be used for skeletal editing of pyridines. Here we report the direct skeletal editing of pyridines through atom-pair swap from CN to CC to generate benzenes and naphthalenes in a modular fashion. Specifically, we use sequential dearomatization, cycloaddition and rearomatizing retrocycloaddition reactions in a one-pot sequence to transform the parent pyridines into benzenes and naphthalenes bearing diversified substituents at specific sites, as defined by the cycloaddition reaction components. Applications to late-stage skeletal diversification of pyridine cores in several drugs are demonstrated.
Collapse
Affiliation(s)
- Qiang Cheng
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | | | - Malte Haring
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Hui Cao
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | | | - Armido Studer
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany.
| |
Collapse
|
12
|
Wang H, Greaney MF. Regiodivergent Arylation of Pyridines via Zincke Intermediates. Angew Chem Int Ed Engl 2024; 63:e202315418. [PMID: 37985419 DOI: 10.1002/anie.202315418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
An arylation protocol for pyridines is described, via the ring-opened Zincke intermediate. Treatment of pyridines with triflic anhydride and a secondary amine produces an azahexatriene species, which undergoes regioselective Pd-catalyzed arylation at the putative C4 position. Recyclization then provides the pyridine products. Alternatively, metal-free arylation with a diaryliodonium salt is selective for the pyridine meta-position, affording a regiodivergent approach to pyridine biaryls from a common intermediate.
Collapse
Affiliation(s)
- Haiwen Wang
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Michael F Greaney
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
13
|
Tyagi S, Mishra R, Mazumder R, Mazumder A. Current Market Potential and Prospects of Copper-based Pyridine Derivatives: A Review. Curr Mol Med 2024; 24:1111-1123. [PMID: 37496249 DOI: 10.2174/1566524023666230726160056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 07/28/2023]
Abstract
Nicotine, minodronic acid, nicotinamide (niacin), zolpidem, zolimidine, and other pyridine-based chemicals play vital roles in medicine and biology. Pyridinecontaining drugs are widely available on the market to treat a wide range of human ailments. As a result of these advances, pyridine research is continually expanding, and there are now higher expectations for how it may aid in the treatment of numerous ailments. This evaluation incorporates data acquired from sources, like PubMed, to provide a thorough summary of the approved drugs and bioactivity data for compounds containing pyridine. Most of the reactions discussed in this article will provide readers with a deeper understanding of various pyridine-related examples, which is necessary for the creation of copper catalysis-based synthetic processes that are more accessible, secure, environmentally friendly, and practical, and that also have higher accuracy and selectivity. This paper also discusses significant innovations in the multi-component copper-catalyzed synthesis of N-heterocycles (pyridine), with the aim of developing precise, cost-effective, and environmentally friendly oxygenation and oxidation synthetic methods for the future synthesis of additional novel pyridine base analogs. Therefore, the review article will serve as a novel platform for researchers investigating copperbased pyridine compounds.
Collapse
Affiliation(s)
- Shivani Tyagi
- Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, 201306, India
| | - Rakhi Mishra
- Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, 201306, India
| | - Rupa Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, 201306, India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, 201306, India
| |
Collapse
|
14
|
Liu R, Zou T, Yu S, Li W, Wei S, Gong Y, Zhang Z, Zhang S, Yi D. Photoredox-Catalyzed Three-Component 1,2-Cyanoalkylpyridylation of Styrenes with Nonredox-Active Cyclic Oximes. J Org Chem 2023; 88:16410-16423. [PMID: 37943006 DOI: 10.1021/acs.joc.3c01936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Three-component alkene 1,2-difunctionalizations have emerged as a powerful strategy for rapid buildup of diverse and complex alkylpyridines, but the distal functionalized alkyl radicals for the alkene 1,2-alkylpyridylations were still rare. Herein, we report an example of regioselective three-component 1,2-cyanoalkylpyridylation of feedstock styrenes with accessible nonredox-active cyclic oximes through visible-light photoredox catalysis, providing a series of structurally diverse β-cyanoalkylated alkylpyridines. This protocol proceeds through a radical relay pathway including the generation of iminyl radicals enabled by phosphoranyl radical-mediated β-scission, radical transposition through C-C bond cleavage, highly selective radical addition, and precise radical-radical cross-coupling sequence, thus facilitating the regioselective formation of two distinct C-C single bonds in a single-pot operation. This synthetic strategy features mild conditions, broad compatibility of functional groups and substrate scope, diverse product derivatization, and late-stage modification.
Collapse
Affiliation(s)
- Rui Liu
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Ting Zou
- Pharmacy Intravenous Admixture Service, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Sha Yu
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Weicai Li
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Siping Wei
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yimou Gong
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Zhijie Zhang
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Shiqi Zhang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Dong Yi
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| |
Collapse
|
15
|
Cao H, Cheng Q, Studer A. meta-Selective C-H Functionalization of Pyridines. Angew Chem Int Ed Engl 2023; 62:e202302941. [PMID: 37013613 DOI: 10.1002/anie.202302941] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023]
Abstract
The pyridine moiety is an important core structure for a variety of drugs, agrochemicals, catalysts, and functional materials. Direct functionalization of C-H bonds in pyridines is a straightforward approach to access valuable substituted pyridines. Compared to the direct ortho- and para-functionalization, meta-selective pyridine C-H functionalization is far more challenging due to the inherent electronic properties of the pyridine entity. This review summarizes currently available methods for pyridine meta-C-H functionalization using a directing group, non-directed metalation, and temporary dearomatization strategies. Recent advances in ligand control and temporary dearomatization are highlighted. We analyze the advantages as well as limitations of current techniques and hope to inspire further developments in this important area.
Collapse
Affiliation(s)
- Hui Cao
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Qiang Cheng
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
16
|
Zhang L, Yan J, Ahmadli D, Wang Z, Ritter T. Electron-Transfer-Enabled Concerted Nucleophilic Fluorination of Azaarenes: Selective C-H Fluorination of Quinolines. J Am Chem Soc 2023; 145:20182-20188. [PMID: 37695320 PMCID: PMC10515641 DOI: 10.1021/jacs.3c07119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 09/12/2023]
Abstract
Direct C-H fluorination is an efficient strategy to construct aromatic C-F bonds, but the cleavage of specific C-H bonds in the presence of other functional groups and the high barrier of C-F bond formation make the transformation challenging. Progress for the electrophilic fluorination of arenes has been reported, but a similar transformation for electron-deficient azaarenes has remained elusive due to the high energy of the corresponding Wheland intermediates. Nucleophilic fluorination of electron-deficient azaarenes is difficult owing to the identity of the Meisenheimer intermediate after fluoride attack, from which fluoride elimination to regenerate the substrate is favored over hydride elimination to form the product. Herein, we report a new concept for C-H nucleophilic fluorination without the formation of azaarene Meisenheimer intermediates through a chain process with an asynchronous concerted F--e--H+ transfer. The concerted nucleophilic aromatic substitution strategy allows for the first successful nucleophilic oxidative fluorination of quinolines.
Collapse
Affiliation(s)
- Li Zhang
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Jiyao Yan
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Dilgam Ahmadli
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Zikuan Wang
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Tobias Ritter
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
17
|
Zhang M, Zhou Q, Luo H, Tang ZL, Xu X, Wang XC. C3-Cyanation of Pyridines: Constraints on Electrophiles and Determinants of Regioselectivity. Angew Chem Int Ed Engl 2023; 62:e202216894. [PMID: 36517651 DOI: 10.1002/anie.202216894] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Methods for C-H cyanation of pyridines are rare. Here, we report a method for C3-selective cyanation of pyridines by a tandem process with the reaction of an in situ generated dihydropyridine with a cyano electrophile as the key step. The method is suitable for late-stage functionalization of pyridine drugs. The low reduction potential of the electrophile and effective transfer of the nitrile group were found to be essential for the success of this method. We studied the reaction mechanism in detail by means of control experiments and theoretical calculations and found that a combination of electronic and steric factors determined the regioselectivity of reactions involving C2-substituted pyridines.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Qingyang Zhou
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Heng Luo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zi-Lu Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xiufang Xu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xiao-Chen Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
18
|
Oudeyer S, Levacher V, Beucher H, Brière JF. Recent Advances in Catalytic and Technology-Driven Radical Addition to N, N-Disubstituted Iminium Species. Molecules 2023; 28:molecules28031071. [PMID: 36770738 PMCID: PMC9921492 DOI: 10.3390/molecules28031071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Recently, radical chemistry has grown exponentially in the toolbox of organic synthetic chemists. Upon the (re)introduction of modern catalytic and technology-driven strategies, the implementation of highly reactive radical species is currently facilitated while expanding the scope of numerous synthetic methodologies. In this context, this review intends to cover the recent advances in radical-based transformations of N,N-disubstituted iminium substrates that encompass unique reactivities with respect to imines or protonated iminium salts. In particular, we have focused on the literature concerning the dipole type substrates, such as nitrones or azomethine imines, together with the chemistry of N+-X- (X = O, NR) azaarenium dipoles, which proved to be very versatile platforms in that field of research. The N-alkylazaarenium salts were been considered, which demonstrated specific reactivity profiles in radical chemistry.
Collapse
|
19
|
Cao H, Cheng Q, Studer A. Radical and ionic
meta
-C–H functionalization of pyridines, quinolines, and isoquinolines. Science 2022; 378:779-785. [DOI: 10.1126/science.ade6029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Carbon-hydrogen (C−H) functionalization of pyridines is a powerful tool for the rapid construction and derivatization of many agrochemicals, pharmaceuticals, and materials. Because of the inherent electronic properties of pyridines, selective
meta
-C−H functionalization is challenging. Here, we present a protocol for highly regioselective
meta
-C−H trifluoromethylation, perfluoroalkylation, chlorination, bromination, iodination, nitration, sulfanylation, and selenylation of pyridines through a redox-neutral dearomatization-rearomatization process. The introduced dearomative activation mode provides a diversification platform for meta-selective reactions on pyridines and other azaarenes through radical as well as ionic pathways. The broad scope and high selectivity of these catalyst-free reactions render these processes applicable for late-stage functionalization of drugs.
Collapse
Affiliation(s)
- Hui Cao
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Münster, Germany
| | - Qiang Cheng
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Münster, Germany
| |
Collapse
|
20
|
Direct photolysis of N-methoxypyridiniums for the pyridylation of carbon/heteroatom-hydrogen bonds. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1399-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Wang R, Abbaspour S, Vahabi N, Tayebee R. NiO @TPP-HPA as an Efficient Integrated Nanocatalyst and Anti-Liver Cancer Agent. Synthesis of 2-Substituted Indoles. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2136215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Rongsheng Wang
- Department of Hepatobiliary surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Sedighe Abbaspour
- Department of Chemistry, School of Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Nasrin Vahabi
- Department of Chemistry, School of Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Reza Tayebee
- Department of Chemistry, School of Sciences, Hakim Sabzevari University, Sabzevar, Iran
| |
Collapse
|
22
|
Niu C, Yang J, Yan K, Xie J, Jiang W, Li B, Wen J. An electrochemical gram-scale protocol for pyridylation of inert N-heterocycles with cyanopyridines. STAR Protoc 2022; 3:101565. [PMID: 35880134 PMCID: PMC9307674 DOI: 10.1016/j.xpro.2022.101565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Here, we present a protocol to decyanopyridate inert N-heterocycles access to N-fused heterocycles via the mechanism of dual proton-coupled electron transfer (PCET). We describe a detailed guide to performing an electrochemical gram-scale protocol for decyanopyridation of inert N-heterocycles. The desired pyridylated quinolone is synthesized in a 5.0 mmol scale with a yield of 76%. The protocol is limited to cyanopyridines. For complete details on the use and execution of this protocol, please refer to Niu et al. (2022). Electrochemical NH4+-assisted dual PCET followed by radical cross-coupling Synthesis of N-fused heterocycles in gram scale Application of electron-deficient quinolines as radical precursors The protocol is limited to cyanopyridines
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
Affiliation(s)
- Cong Niu
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Jianjing Yang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Kelu Yan
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Jiafang Xie
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Wei Jiang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Bingwen Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Jiangwei Wen
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China.
| |
Collapse
|
23
|
Preparation of Substituted Pyridines via a Coupling of β-Enamine Carbonyls with Rongalite-Application for Synthesis of Terpyridines. REACTIONS 2022. [DOI: 10.3390/reactions3030029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A Hantzsch-type strategy for the synthesis of 2,3,5,6-tetrasubstituted pyridines via an oxidative coupling of β-enamine carbonyl compounds with rongalite was developed. This method employs rongalite as a C1 unit for the assembly of a pyridine ring at C-4 position, offering a facile method for the preparation of substituted pyridine derivatives with a broad functional group tolerance. In particular, this method allows us to prepare terpyridine derivatives, which are important ligands or structural fragments for catalysts and 3D metal–organic frameworks.
Collapse
|
24
|
Friedrich M, Manolikakes G. Base‐mediated C4‐selective C‐H‐sulfonylation of pyridine. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marius Friedrich
- University of Kaiserslautern: Technische Universitat Kaiserslautern Chemistry GERMANY
| | - Georg Manolikakes
- TU Kaiserslautern fachbereich Chemie Erwin-schrödinger-Str. Geb 54 67663 Kaiserslautern GERMANY
| |
Collapse
|
25
|
Zhou XY, Zhang M, Liu Z, He JH, Wang XC. C3-Selective Trifluoromethylthiolation and Difluoromethylthiolation of Pyridines and Pyridine Drugs via Dihydropyridine Intermediates. J Am Chem Soc 2022; 144:14463-14470. [PMID: 35913823 DOI: 10.1021/jacs.2c06776] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, we report a method for unprecedented C3-selective C-H tri- and difluoromethylthiolation of pyridines. The method relies on borane-catalyzed pyridine hydroboration for generation of nucleophilic dihydropyridines; these intermediates react with trifluoromethylthio and difluoromethylthio electrophiles to form functionalized dihydropyridines, which then undergo oxidative aromatization. The method can be used for late-stage functionalization of pyridine drugs for the generation of new drug candidates.
Collapse
Affiliation(s)
- Xin-Yue Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ming Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhong Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jia-Hao He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao-Chen Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
26
|
Gao L, Liu X, Li G, Chen S, Cao J, Wang G, Li S. 1,2-Silylpyridylation Reaction of Aryl Alkenes with Silylboronate. Org Lett 2022; 24:5698-5703. [PMID: 35905289 DOI: 10.1021/acs.orglett.2c02074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A metal-free silyl-pyridylation of alkenes using silyl boronates and B2pin2 through a pyridine-mediated B-interelement activation has been demonstrated, which provides a practical strategy for a variety of C4-silylalkylated pyridines. DFT calculations and control experiments show that the reaction proceeds through a silyl radical addition/radical-radical coupling sequence. This protocol features a broad substrate scope and excellent functional group compatibility, and thus it showcases great potential in the late-stage modification of bioactive molecules.
Collapse
Affiliation(s)
- Liuzhou Gao
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Xueting Liu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Guoao Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Shengda Chen
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Jia Cao
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Guoqiang Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
27
|
Zhu H, Xing J, Wu C, Wang C, Yao W, Dou X. Rhodium-Catalyzed Chemodivergent Pyridylation of Alkynes with Pyridylboronic Acids. Org Lett 2022; 24:4896-4901. [PMID: 35770903 DOI: 10.1021/acs.orglett.2c01718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pyridylation of alkynes with pyridylboronic acids is realized under rhodium catalysis. Chemodivergent pyridylation products, including alkenylpyridines produced via the hydropyridylation pathway and cyclopenta[c]pyridines produced via the pyridylation/cyclization pathway, were selectively produced by fine-tuning the reaction conditions. A mechanistic study revealed that 1,4-rhodium migration to the pyridine ring was involved as the key step in the chemodivergent synthesis.
Collapse
Affiliation(s)
- Huilong Zhu
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Junhao Xing
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Changhui Wu
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Chenhong Wang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Weijun Yao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Xiaowei Dou
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| |
Collapse
|
28
|
Niu C, Yang J, Yan K, Xie J, Jiang W, Li B, Wen J. Electrochemical ammonium-cation-assisted pyridylation of inert N-heterocycles via dual-proton-coupled electron transfer. iScience 2022; 25:104253. [PMID: 35521512 PMCID: PMC9062347 DOI: 10.1016/j.isci.2022.104253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/15/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022] Open
Abstract
A straightforward and practical strategy for pyridylation of inert N-heterocycles, enabled by ammonium cation and electrochemical, has been described. This protocol gives access to various N-fused heterocycles and bidentate nitrogen ligand compounds, through dual-proton-coupled electron transfer (PCET) and radical cross-coupling in the absence of exogenous metal and redox reagent. It features broad substrate scope, wide functional group tolerance, and easy gram-scale synthesis. Various experiments and density functional theory (DFT) calculation results show the mechanism of dual PCET followed by radical cross-coupling is the preferred pathway. Moreover, ammonium salt plays the dual role of protonation reagent and electrolyte in this conversion, and the resulting product 9-(pyridin-4-yl)acridine compound can be used for fluorescence recognition of Fe2+ and Pd2+ with high sensitivity.
Collapse
Affiliation(s)
- Cong Niu
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Jianjing Yang
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Kelu Yan
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Jiafang Xie
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Wei Jiang
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Bingwen Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, P. R. China
| | - Jiangwei Wen
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| |
Collapse
|
29
|
Wu T, Tatton MR, Greaney MF. NHC Catalysis for Umpolung Pyridinium Alkylation via Deoxy-Breslow Intermediates. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202117524. [PMID: 38504766 PMCID: PMC10947523 DOI: 10.1002/ange.202117524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/09/2022]
Abstract
Umpolung N-heterocyclic carbene (NHC) catalysis of non-aldehyde substrates offers new pathways for C-C bond formation, but has proven challenging to develop in terms of viable substrate classes. Here, we demonstrate that pyridinium ions can undergo NHC addition and subsequent intramolecular C-C bond formation through a deoxy-Breslow intermediate. The alkylation demonstrates, for the first time, that deoxy-Breslow intermediates are viable for catalytic umpolung of areniums.
Collapse
Affiliation(s)
- Terence Wu
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Matthew R. Tatton
- Early Chemical DevelopmentPharmaceutical SciencesR&D, AstraZenecaMacclesfieldSK10 2NAUK
| | - Michael F. Greaney
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
30
|
Wu T, Tatton MR, Greaney MF. NHC Catalysis for Umpolung Pyridinium Alkylation via Deoxy-Breslow Intermediates. Angew Chem Int Ed Engl 2022; 61:e202117524. [PMID: 35103381 PMCID: PMC9306516 DOI: 10.1002/anie.202117524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 12/24/2022]
Abstract
Umpolung N-heterocyclic carbene (NHC) catalysis of non-aldehyde substrates offers new pathways for C-C bond formation, but has proven challenging to develop in terms of viable substrate classes. Here, we demonstrate that pyridinium ions can undergo NHC addition and subsequent intramolecular C-C bond formation through a deoxy-Breslow intermediate. The alkylation demonstrates, for the first time, that deoxy-Breslow intermediates are viable for catalytic umpolung of areniums.
Collapse
Affiliation(s)
- Terence Wu
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Matthew R. Tatton
- Early Chemical DevelopmentPharmaceutical SciencesR&D, AstraZenecaMacclesfieldSK10 2NAUK
| | - Michael F. Greaney
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
31
|
Zhang L, Ritter T. A Perspective on Late-Stage Aromatic C-H Bond Functionalization. J Am Chem Soc 2022; 144:2399-2414. [PMID: 35084173 PMCID: PMC8855345 DOI: 10.1021/jacs.1c10783] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 12/18/2022]
Abstract
Late-stage functionalization of C-H bonds (C-H LSF) can provide a straightforward approach to the efficient synthesis of functionalized complex molecules. However, C-H LSF is challenging because the C-H bond must be functionalized in the presence of various other functional groups. In this Perspective, we evaluate aromatic C-H LSF on the basis of four criteria─reactivity, chemoselectivity, site-selectivity, and substrate scope─and provide our own views on current challenges as well as promising strategies and areas of growth going forward.
Collapse
Affiliation(s)
- Li Zhang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der
Ruhr, Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der
Ruhr, Germany
| |
Collapse
|
32
|
Ye B, Yao J, Wu C, Zhu H, Yao W, Jin L, Dou X. Rhodium-Catalyzed Asymmetric Conjugate Pyridylation with Pyridylboronic Acids. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Bihai Ye
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Jian Yao
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Changhui Wu
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Huilong Zhu
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Weijun Yao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lili Jin
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaowei Dou
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
33
|
Mao Y, Mao H, Xu J, Liu T, Liu B, Tan Q, Ding CH, Xu B. Synthesis of Poly-Substituted Pyridines via Noble-Metal-Free Cycloaddition of Ketones and Imines. Chem Asian J 2021; 16:3905-3908. [PMID: 34626095 DOI: 10.1002/asia.202100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/05/2021] [Indexed: 11/12/2022]
Abstract
An eco-friendly and noble-metal-free formal [4+2] cycloaddition reaction was developed for the efficient synthesis of biologically interesting poly-substituted pyridines from easily available ketones and imines, whereby two sequential C-C bonds are formed. The given approach features a unique synthetic strategy of imines and ketones with wide substrate scope, good functional group tolerance, mild conditions and operational simplicity, which represents a more direct pathway to synthesize poly-substituted pyridines than traditional methods.
Collapse
Affiliation(s)
- Yeting Mao
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Hong Mao
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Jiaojiao Xu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Tianqi Liu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Bingxin Liu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Qitao Tan
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Chang-Hua Ding
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Bin Xu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| |
Collapse
|
34
|
Choi J, Laudadio G, Godineau E, Baran PS. Practical and Regioselective Synthesis of C-4-Alkylated Pyridines. J Am Chem Soc 2021; 143:11927-11933. [PMID: 34318659 PMCID: PMC8721863 DOI: 10.1021/jacs.1c05278] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The direct position-selective C-4 alkylation of pyridines has been a long-standing challenge in heterocyclic chemistry, particularly from pyridine itself. Historically this has been addressed using prefunctionalized materials to avoid overalkylation and mixtures of regioisomers. This study reports the invention of a simple maleate-derived blocking group for pyridines that enables exquisite control for Minisci-type decarboxylative alkylation at C-4 that allows for inexpensive access to these valuable building blocks. The method is employed on a variety of different pyridines and carboxylic acid alkyl donors, is operationally simple and scalable, and is applied to access known structures in a rapid and inexpensive fashion. Finally, this work points to an interesting strategic departure for the use of Minisci chemistry at the earliest possible stage (native pyridine) rather than current dogma that almost exclusively employs Minisci chemistry as a late-stage functionalization technique.
Collapse
Affiliation(s)
- Jin Choi
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Gabriele Laudadio
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Edouard Godineau
- Process Research, Syngenta Crop Protection, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Phil S Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
35
|
Bugaenko DI, Yurovskaya MA, Karchava AV. From Pyridine- N-oxides to 2-Functionalized Pyridines through Pyridyl Phosphonium Salts: An Umpolung Strategy. Org Lett 2021; 23:6099-6104. [PMID: 34269594 DOI: 10.1021/acs.orglett.1c02165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The reactions of pyridine-N-oxides with Ph3P under the developed conditions provide an unprecedented route to (pyridine-2-yl)phosphonium salts. Upon activation with DABCO, these salts readily serve as functionalized 2-pyridyl nucleophile equivalents. This umpolung strategy allows for the selective C2 functionalization of the pyridine ring with electrophiles, avoiding the generation and use of unstable organometallic reagents. The protocol operates at ambient temperature and tolerates sensitive functional groups, enabling the synthesis of otherwise challenging compounds.
Collapse
Affiliation(s)
- Dmitry I Bugaenko
- Department of Chemistry, Moscow State University, Moscow 119992, Russia
| | | | | |
Collapse
|
36
|
Abstract
![]()
Practical, efficient,
and general methods for the diversification
of N-heterocycles have been a recurrent goal in chemical
synthesis due to the ubiquitous influence of these motifs within bioactive
frameworks. Here, we describe a direct, catalytic, and selective functionalization
of azines via silylium activation. Our catalyst design enables mild
conditions and a remarkable functional group tolerance in a one-pot
setup.
Collapse
Affiliation(s)
- Carla Obradors
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| |
Collapse
|
37
|
Campeau LC, Rovis T. Preface: Modern Heterocycle Synthesis and Functionalization. Synlett 2021. [DOI: 10.1055/s-0040-1706679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
obtained his PhD degree in 2008 with the late Professor Keith Fagnou at the University of Ottawa in Canada as an NSERC Doctoral Fellow. He then joined Merck Research Laboratories at Merck-Frosst in Montreal in 2007, making key contributions to the discovery of Doravirine (MK-1439) for which he received a Merck Special Achievement Award. In 2010, he moved from Quebec to New Jersey, where he has served in roles of increasing responsibility with Merck ever since. L.-C. is currently Executive Director and the Head of Process Chemistry and Discovery Process Chemistry organizations, leading a team of smart creative scientists developing innovative chemistry solutions in support of all discovery, pre-clinical and clinical active pharmaceutical ingredient deliveries for the entire Merck portfolio for small-molecule therapeutics. Over his tenure at Merck, L.-C. and his team have made important contributions to >40 clinical candidates and 4 commercial products to date.
Tom Rovis was born in Zagreb in former Yugoslavia but was largely raised in southern Ontario, Canada. He earned his PhD degree at the University of Toronto (Canada) in 1998 under the direction of Professor Mark Lautens. From 1998–2000, he was an NSERC Postdoctoral Fellow at Harvard University (USA) with Professor David A. Evans. In 2000, he began his independent career at Colorado State University and was promoted in 2005 to Associate Professor and in 2008 to Professor. His group’s accomplishments have been recognized by a number of awards including an Arthur C. Cope Scholar, an NSF CAREER Award, a Fellow of the American Association for the Advancement of Science and a Katritzky Young Investigator in Heterocyclic Chemistry. In 2016, he moved to Columbia University where he is currently the Samuel Latham Mitchill Professor of Chemistry.
Collapse
|