1
|
Cheng KY, Moazamian D, Namiranian B, Shaterian Mohammadi H, Alenezi S, Chung CB, Jerban S. Estimation of Trabecular Bone Volume with Dual-Echo Ultrashort Echo Time (UTE) Magnetic Resonance Imaging (MRI) Significantly Correlates with High-Resolution Computed Tomography (CT). J Imaging 2025; 11:57. [PMID: 39997559 PMCID: PMC11856473 DOI: 10.3390/jimaging11020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/02/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
Trabecular bone architecture has important implications for the mechanical strength of bone. Trabecular elements appear as signal void when imaged utilizing conventional magnetic resonance imaging (MRI) sequences. Ultrashort echo time (UTE) MRI can acquire high signal from trabecular bone, allowing for quantitative evaluation. However, the trabecular morphology is often disturbed in UTE-MRI due to chemical shift artifacts caused by the presence of fat in marrow. This study aimed to evaluate a UTE-MRI technique to estimate the trabecular bone volume fraction (BVTV) without requiring trabecular-level morphological assessment. A total of six cadaveric distal tibial diaphyseal trabecular bone cubes were scanned using a dual-echo UTE Cones sequence (TE = 0.03 and 2.2 ms) on a clinical 3T MRI scanner and on a micro-computed tomography (μCT) scanner. The BVTV was calculated from 10 consecutive slices on both the MR and μCT images. BVTV calculated from the MR images showed strongly significant correlation with the BVTV determined from μCT images (R = 0.84, p < 0.01), suggesting that UTE-MRI is a feasible technique for the assessment of trabecular bone microarchitecture. This would allow for the non-invasive assessment of information regarding bone strength, and UTE-MRI may potentially serve as a novel tool for assessment of fracture risk.
Collapse
Affiliation(s)
- Karen Y. Cheng
- Department of Radiology, University of California, La Jolla, San Diego, CA 92037, USA
| | - Dina Moazamian
- Department of Radiology, University of California, La Jolla, San Diego, CA 92037, USA
| | - Behnam Namiranian
- Department of Radiology, University of California, La Jolla, San Diego, CA 92037, USA
| | | | - Salem Alenezi
- Research and Laboratories Sector, Saudi Food and Drug Authority, Riyadh 13513-7148, Saudi Arabia
| | - Christine B. Chung
- Department of Radiology, University of California, La Jolla, San Diego, CA 92037, USA
- Department of Radiology, Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA 92161, USA
| | - Saeed Jerban
- Department of Radiology, University of California, La Jolla, San Diego, CA 92037, USA
- Research Service, Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA 92161, USA
| |
Collapse
|
2
|
Shin SH, Chae HD, Suprana A, Jerban S, Chang EY, Shi L, Sah RL, Pettus JH, Woods GN, Du J. UTE MRI technical developments and applications in osteoporosis: a review. Front Endocrinol (Lausanne) 2025; 16:1510010. [PMID: 39980853 PMCID: PMC11839439 DOI: 10.3389/fendo.2025.1510010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025] Open
Abstract
Osteoporosis (OP) is a metabolic bone disease that affects more than 10 million people in the USA and leads to over two million fractures every year. The disease results in serious long-term disability and death in a large number of patients. Bone mineral density (BMD) measurement is the current standard in assessing fracture risk; however, the majority of fractures cannot be explained by BMD alone. Bone is a composite material of mineral, organic matrix, and water. While bone mineral provides stiffness and strength, collagen provides ductility and the ability to absorb energy before fracturing, and water provides viscoelasticity and poroelasticity. These bone components are arranged in a complex hierarchical structure. Both material composition and physical structure contribute to the unique strength of bone. The contribution of mineral to bone's mechanical properties has dominated scientific thinking for decades, partly because collagen and water are inaccessible using X-ray based techniques. Accurate evaluation of bone requires information about its components (mineral, collagen, water) and structure (cortical porosity, trabecular microstructure), which are all important in maintaining the mechanical integrity of bone. Magnetic resonance imaging (MRI) is routinely used to diagnose soft tissue diseases, but bone is "invisible" with clinical MRI due to its short transverse relaxation time. This review article discusses using ultrashort echo time (UTE) sequences to evaluate bone composition and structure. Both morphological and quantitative UTE MRI techniques are introduced. Their applications in osteoporosis are also briefly discussed. These UTE-MRI advancements hold great potential for improving the diagnosis and management of osteoporosis and other metabolic bone diseases by providing a more comprehensive assessment of bone quantity and quality.
Collapse
Affiliation(s)
- Soo Hyun Shin
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Hee Dong Chae
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Arya Suprana
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
| | - Lingyan Shi
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Robert L. Sah
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Jeremy H. Pettus
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Gina N. Woods
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Jiang Du
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
3
|
Galbusera F, Cina A, O'Riordan D, Vitale JA, Loibl M, Fekete TF, Kleinstück F, Haschtmann D, Mannion AF. Estimating lumbar bone mineral density from conventional MRI and radiographs with deep learning in spine patients. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:4092-4103. [PMID: 39212711 DOI: 10.1007/s00586-024-08463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE This study aimed to develop machine learning methods to estimate bone mineral density and detect osteopenia/osteoporosis from conventional lumbar MRI (T1-weighted and T2-weighted images) and planar radiography in combination with clinical data and imaging parameters of the acquisition protocol. METHODS A database of 429 patients subjected to lumbar MRI, radiographs and dual-energy x-ray absorptiometry within 6 months was created from an institutional database. Several machine learning models were trained and tested (373 patients for training, 86 for testing) with the following objectives: (1) direct estimation of the vertebral bone mineral density; (2) classification of T-score lower than - 1 or (3) lower than - 2.5. The models took as inputs either the images or radiomics features derived from them, alone or in combination with metadata (age, sex, body size, vertebral level, parameters of the imaging protocol). RESULTS The best-performing models achieved mean absolute errors of 0.15-0.16 g/cm2 for the direct estimation of bone mineral density, and areas under the receiver operating characteristic curve of 0.82 (MRIs) - 0.80 (radiographs) for the classification of T-scores lower than - 1, and 0.80 (MRIs) - 0.65 (radiographs) for T-scores lower than - 2.5. CONCLUSIONS The models showed good discriminative performances in detecting cases of low bone mineral density, and more limited capabilities for the direct estimation of its value. Being based on routine imaging and readily available data, such models are promising tools to retrospectively analyse existing datasets as well as for the opportunistic investigation of bone disorders.
Collapse
Affiliation(s)
- Fabio Galbusera
- Department of Teaching, Research and Development, Schulthess Clinic, Lengghalde 2, Zurich, 8008, Switzerland.
| | - Andrea Cina
- Department of Teaching, Research and Development, Schulthess Clinic, Lengghalde 2, Zurich, 8008, Switzerland
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, Zurich, Switzerland
| | - Dave O'Riordan
- Department of Teaching, Research and Development, Schulthess Clinic, Lengghalde 2, Zurich, 8008, Switzerland
| | - Jacopo A Vitale
- Department of Teaching, Research and Development, Schulthess Clinic, Lengghalde 2, Zurich, 8008, Switzerland
| | - Markus Loibl
- Department of Teaching, Research and Development, Schulthess Clinic, Lengghalde 2, Zurich, 8008, Switzerland
| | - Tamás F Fekete
- Department of Teaching, Research and Development, Schulthess Clinic, Lengghalde 2, Zurich, 8008, Switzerland
| | - Frank Kleinstück
- Department of Teaching, Research and Development, Schulthess Clinic, Lengghalde 2, Zurich, 8008, Switzerland
| | - Daniel Haschtmann
- Department of Teaching, Research and Development, Schulthess Clinic, Lengghalde 2, Zurich, 8008, Switzerland
| | - Anne F Mannion
- Department of Teaching, Research and Development, Schulthess Clinic, Lengghalde 2, Zurich, 8008, Switzerland
| |
Collapse
|
4
|
Jerban S, Ma Y, Wei Z, Shen M, Ibrahim Z, Jang H, Lu P, Chang DG, Woods G, Chung CB, Chang EY, Du J. Ultrashort echo time MRI detects significantly lower collagen but higher pore water in the tibial cortex of female patients with osteopenia and osteoporosis. J Bone Miner Res 2024; 39:707-716. [PMID: 38591788 PMCID: PMC11523241 DOI: 10.1093/jbmr/zjae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 03/10/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Ultrashort echo time (UTE) MRI can quantify the major proton pool densities in cortical bone, including total (TWPD), bound (BWPD), and pore water (PWPD) proton densities, as well as the macromolecular proton density (MMPD), associated with the collagen content, which is calculated using macromolecular fraction (MMF) from UTE magnetization transfer (UTE-MT) modeling. This study aimed to investigate the differences in water and collagen contents in tibial cortical bone, between female osteopenia (OPe) patients, osteoporosis (OPo) patients, and young participants (Young). Being postmenopausal and above 55 yr old were the inclusion criteria for OPe and OPo groups. The tibial shaft of 14 OPe (72.5 ± 6.8 yr old), 31 OPo (72.0 ± 6.4 yr old), and 31 young subjects (28.0 ± 6.1 yr old) were scanned using a knee coil on a clinical 3T scanner. Basic UTE, inversion recovery UTE, and UTE-MT sequences were performed. Investigated biomarkers were compared between groups using Kruskal-Wallis test. Spearman's correlation coefficients were calculated between the TH DXA T-score and UTE-MRI results. MMF, BWPD, and MMPD were significantly lower in OPo patients than in the young group, whereas T1, TWPD, and PWPD were significantly higher in OPo patients. The largest OPo/Young average percentage differences were found in MMF (41.9%), PWPD (103.5%), and MMPD (64.0%). PWPD was significantly higher (50.7%), while BWPD was significantly lower (16.4%) in OPe than the Young group on average. MMF was found to be significantly lower (27%) in OPo patients compared with OPe group. T1, MMF, TWPD, PWPD, and MMPD values significantly correlated with the TH DXA T-scores (provided by the patients and only available for OPe and OPo patients). DXA T-score showed the highest correlations with PWPD (R = 0.55) and MMF (R = 0.56) values. TWPD, PWPD, and MMF estimated using the UTE-MRI sequences were recommended to evaluate individuals with OPe and OPo.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, CA 92093, United States
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA 92093, United States
| | - Zhao Wei
- Department of Radiology, University of California, San Diego, CA 92093, United States
| | - Meghan Shen
- Department of Radiology, University of California, San Diego, CA 92093, United States
| | - Zubaid Ibrahim
- Department of Radiology, University of California, San Diego, CA 92093, United States
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, CA 92093, United States
| | - Pengzhe Lu
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, United States
- Department of Neurosciences, University of California, San Diego, CA 92093, United States
| | - Douglas G Chang
- Department of Orthopaedic Surgery, University of California, San Diego, CA 92093, United States
| | - Gina Woods
- Department of Medicine, University of California, San Diego, CA 92093, United States
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, CA 92093, United States
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, United States
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, CA 92093, United States
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, United States
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA 92093, United States
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, United States
| |
Collapse
|
5
|
Jerban S, Barrere V, Namiranian B, Wu Y, Alenezi S, Dorthe E, Dlima D, Shah SB, Chung CB, Du J, Andre MP, Chang EY. Ultrasound attenuation of cortical bone correlates with biomechanical, microstructural, and compositional properties. Eur Radiol Exp 2024; 8:21. [PMID: 38316687 PMCID: PMC10844174 DOI: 10.1186/s41747-023-00418-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/09/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND We investigated the relationship of two commonly used quantitative ultrasound (QUS) parameters, speed of sound (SoS) and attenuation coefficient (α), with water and macromolecular contents of bovine cortical bone strips as measured with ultrashort echo time (UTE) magnetic resonance imaging (MRI). METHODS SoS and α were measured in 36 bovine cortical bone strips utilizing a single-element transducer with nominal 5 MHz center frequency based on the time of flight principles after accommodating for reflection losses. Specimens were then scanned using UTE MRI to measure total, bound, and pore water proton density (TWPD, BWPD, and PWPD) as well as macromolecular proton fraction and macromolecular transverse relaxation time (T2-MM). Specimens were also scanned using microcomputed tomography (μCT) at 9-μm isometric voxel size to measure bone mineral density (BMD), porosity, and pore size. The elastic modulus (E) of each specimen was measured using a 4-point bending test. RESULTS α demonstrated significant positive Spearman correlations with E (R = 0.69) and BMD (R = 0.44) while showing significant negative correlations with porosity (R = -0.41), T2-MM (R = -0.47), TWPD (R = -0.68), BWPD (R = -0.67), and PWPD (R = -0.45). CONCLUSIONS The negative correlation between α and T2-MM is likely indicating the relationship between QUS and collagen matrix organization. The higher correlations of α with BWPD than with PWPD may indicate that water organized in finer structure (bound to matrix) provides lower acoustic impedance than water in larger pores, which is yet to be investigated thoroughly. RELEVANCE STATEMENT This study highlights the importance of future investigations exploring the relationship between QUS measures and all major components of the bone, including the collagenous matrix and water. Investigating the full potential of QUS and its validation facilitates a more affordable and accessible tool for bone health monitoring in clinics. KEY POINTS • Ultrasound attenuation demonstrated significant positive correlations with bone mechanics and mineral density. • Ultrasound attenuation demonstrated significant negative correlations with porosity and bone water contents. • This study highlights the importance of future investigations exploring the relationship between QUS measures and all major components of the bone.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.
| | - Victor Barrere
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Behnam Namiranian
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Yuanshan Wu
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Salem Alenezi
- Research and Laboratories Sector, Saudi Food and Drug Authority, Riyadh, Kingdom of Saudi Arabia
| | - Erik Dorthe
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Darryl Dlima
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Sameer B Shah
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
| | - Michael P Andre
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.
| |
Collapse
|
6
|
Jerban S, Ma Y, Jang H, Chang EY, Bukata S, Du J, Chung CB. Bone Biomarkers Based on Magnetic Resonance Imaging. Semin Musculoskelet Radiol 2024; 28:62-77. [PMID: 38330971 PMCID: PMC11786623 DOI: 10.1055/s-0043-1776431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Magnetic resonance imaging (MRI) is increasingly used to evaluate the microstructural and compositional properties of bone. MRI-based biomarkers can characterize all major compartments of bone: organic, water, fat, and mineral components. However, with a short apparent spin-spin relaxation time (T2*), bone is invisible to conventional MRI sequences that use long echo times. To address this shortcoming, ultrashort echo time MRI sequences have been developed to provide direct imaging of bone and establish a set of MRI-based biomarkers sensitive to the structural and compositional changes of bone. This review article describes the MRI-based bone biomarkers representing total water, pore water, bound water, fat fraction, macromolecular fraction in the organic matrix, and surrogates for mineral density. MRI-based morphological bone imaging techniques are also briefly described.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, CA, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, CA, USA
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Susan Bukata
- Department of Orthopaedic Surgery, University of California, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Christine B. Chung
- Department of Radiology, University of California, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
7
|
Jerban S, Ma Y, Alenezi S, Moazamian D, Athertya J, Jang H, Dorthe E, Dlima D, Woods G, Chung CB, Chang EY, Du J. Ultrashort Echo Time (UTE) MRI porosity index (PI) and suppression ratio (SR) correlate with the cortical bone microstructural and mechanical properties: Ex vivo study. Bone 2023; 169:116676. [PMID: 36657630 PMCID: PMC9987215 DOI: 10.1016/j.bone.2023.116676] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/19/2022] [Accepted: 01/08/2023] [Indexed: 01/18/2023]
Abstract
Ultrashort echo time (UTE) MRI can image and consequently enable quantitative assessment of cortical bone. UTE-MRI-based evaluation of bone is largely underutilized due to the high cost and time demands of MRI in general. The signal ratio in dual-echo UTE imaging, known as porosity index (PI), as well as the signal ratio between UTE and inversion recovery UTE (IR-UTE) imaging, known as the suppression ratio (SR), are two rapid UTE-based bone evaluation techniques (∼ 5 mins scan time each), which can potentially reduce the time demand and cost in future clinical studies. This study aimed to investigate the correlations of PI and SR measures with cortical bone microstructural and mechanical properties. Cortical bone strips (n = 135) from tibial and femoral midshafts of 37 donors (61 ± 24 years old) were scanned using a dual-echo 3D Cones UTE sequence and a 3D Cones IR-UTE sequence for PI and SR calculations, respectively. Average bone mineral density, porosity, and pore size were measured using microcomputed tomography (μCT). Bone mechanical properties were measured using 4-point bending tests. The μCT measures showed significant correlations with PI (moderate to strong, R = 0.68-0.71) and SR (moderate, R = 0.58-0.68). Young's modulus, yield stress, and ultimate stress demonstrated significant moderate correlations with PI and SR (R = 0.52-0.62) while significant strong correlations with μCT measures (R > 0.7). PI and SR can potentially serve as fast and noninvasive (non-ionizing radiation) biomarkers for evaluating cortical bone in various bone diseases.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA; Department of Orthopedic Surgery, University of California, San Diego, La Jolla, CA, USA.
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Salem Alenezi
- Research and Laboratories Sector, Saudi Food and Drug Authority, Riyadh, Kingdom of Saudi Arabia
| | - Dina Moazamian
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Jiyo Athertya
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Erik Dorthe
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Darryl Dlima
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Gina Woods
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Jerban S, Ma Y, Moazamian D, Athertya J, Dwek S, Jang H, Woods G, Chung CB, Chang EY, Du J. MRI-based porosity index (PI) and suppression ratio (SR) in the tibial cortex show significant differences between normal, osteopenic, and osteoporotic female subjects. Front Endocrinol (Lausanne) 2023; 14:1148345. [PMID: 37025410 PMCID: PMC10070867 DOI: 10.3389/fendo.2023.1148345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction Ultrashort echo time (UTE) MRI enables quantitative assessment of cortical bone. The signal ratio in dual-echo UTE imaging, known as porosity index (PI), as well as the signal ratio between UTE and inversion recovery UTE (IR-UTE) imaging, known as the suppression ratio (SR), are two rapid UTE-based bone evaluation techniques developed to reduce the time demand and cost in future clinical studies. The goal of this study was to investigate the performance of PI and SR in detecting bone quality differences between subjects with osteoporosis (OPo), osteopenia (OPe), and normal bone (Normal). Methods Tibial midshaft of fourteen OPe (72 ± 6 years old), thirty-one OPo (72 ± 6 years old), and thirty-seven Normal (36 ± 19 years old) subjects were scanned using dual-echo UTE and IR-UTE sequences on a clinical 3T scanner. Measured PI, SR, and bone thickness were compared between OPo, OPe, and normal bone (Normal) subjects using the Kruskal-Wallis test by ranks. Spearman's rank correlation coefficients were calculated between dual-energy x-ray absorptiometry (DEXA) T-score and UTE-MRI results. Results PI was significantly higher in the OPo group compared with the Normal (24.1%) and OPe (16.3%) groups. SR was significantly higher in the OPo group compared with the Normal (41.5%) and OPe (21.8%) groups. SR differences between the OPe and Normal groups were also statistically significant (16.2%). Cortical bone was significantly thinner in the OPo group compared with the Normal (22.0%) and OPe (13.0%) groups. DEXA T-scores in subjects were significantly correlated with PI (R=-0.32), SR (R=-0.50), and bone thickness (R=0.51). Discussion PI and SR, as rapid UTE-MRI-based techniques, may be useful tools to detect and monitor bone quality changes, in addition to bone morphology, in individuals affected by osteoporosis.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, CA, United States
- Radiology Service, Department of Research, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
- Department of Orthopaedic Surgery, University of California, San Diego, CA, United States
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA, United States
- Radiology Service, Department of Research, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
| | - Dina Moazamian
- Department of Radiology, University of California, San Diego, CA, United States
| | - Jiyo Athertya
- Department of Radiology, University of California, San Diego, CA, United States
| | - Sophia Dwek
- Department of Radiology, University of California, San Diego, CA, United States
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, CA, United States
- Radiology Service, Department of Research, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
| | - Gina Woods
- Department of Medicine, University of California, San Diego, CA, United States
| | - Christine B. Chung
- Department of Radiology, University of California, San Diego, CA, United States
- Radiology Service, Department of Research, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, CA, United States
- Radiology Service, Department of Research, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, United States
- Radiology Service, Department of Research, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
9
|
Ma Y, Jang H, Jerban S, Chang EY, Chung CB, Bydder GM, Du J. Making the invisible visible-ultrashort echo time magnetic resonance imaging: Technical developments and applications. APPLIED PHYSICS REVIEWS 2022; 9:041303. [PMID: 36467869 PMCID: PMC9677812 DOI: 10.1063/5.0086459] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/12/2022] [Indexed: 05/25/2023]
Abstract
Magnetic resonance imaging (MRI) uses a large magnetic field and radio waves to generate images of tissues in the body. Conventional MRI techniques have been developed to image and quantify tissues and fluids with long transverse relaxation times (T2s), such as muscle, cartilage, liver, white matter, gray matter, spinal cord, and cerebrospinal fluid. However, the body also contains many tissues and tissue components such as the osteochondral junction, menisci, ligaments, tendons, bone, lung parenchyma, and myelin, which have short or ultrashort T2s. After radio frequency excitation, their transverse magnetizations typically decay to zero or near zero before the receiving mode is enabled for spatial encoding with conventional MR imaging. As a result, these tissues appear dark, and their MR properties are inaccessible. However, when ultrashort echo times (UTEs) are used, signals can be detected from these tissues before they decay to zero. This review summarizes recent technical developments in UTE MRI of tissues with short and ultrashort T2 relaxation times. A series of UTE MRI techniques for high-resolution morphological and quantitative imaging of these short-T2 tissues are discussed. Applications of UTE imaging in the musculoskeletal, nervous, respiratory, gastrointestinal, and cardiovascular systems of the body are included.
Collapse
Affiliation(s)
- Yajun Ma
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, California 92037, USA
| | | | | | - Graeme M Bydder
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Jiang Du
- Author to whom correspondence should be addressed:. Tel.: (858) 246-2248, Fax: (858) 246-2221
| |
Collapse
|
10
|
Surowiec RK, Allen MR, Wallace JM. Bone hydration: How we can evaluate it, what can it tell us, and is it an effective therapeutic target? Bone Rep 2022; 16:101161. [PMID: 35005101 PMCID: PMC8718737 DOI: 10.1016/j.bonr.2021.101161] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/22/2022] Open
Abstract
Water constitutes roughly a quarter of the cortical bone by volume yet can greatly influence mechanical properties and tissue quality. There is a growing appreciation for how water can dynamically change due to age, disease, and treatment. A key emerging area related to bone mechanical and tissue properties lies in differentiating the role of water in its four different compartments, including free/pore water, water loosely bound at the collagen/mineral interfaces, water tightly bound within collagen triple helices, and structural water within the mineral. This review summarizes our current knowledge of bone water across the four functional compartments and discusses how alterations in each compartment relate to mechanical changes. It provides an overview on the advent of- and improvements to- imaging and spectroscopic techniques able to probe nano-and molecular scales of bone water. These technical advances have led to an emerging understanding of how bone water changes in various conditions, of which aging, chronic kidney disease, diabetes, osteoporosis, and osteogenesis imperfecta are reviewed. Finally, it summarizes work focused on therapeutically targeting water to improve mechanical properties.
Collapse
Affiliation(s)
- Rachel K. Surowiec
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - Matthew R. Allen
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| |
Collapse
|
11
|
Jerban S, Alenezi S, Afsahi AM, Ma Y, Du J, Chung CB, Chang EY. MRI-based mechanical competence assessment of bone using micro finite element analysis (micro-FEA): Review. Magn Reson Imaging 2022; 88:9-19. [PMID: 35091024 PMCID: PMC8988995 DOI: 10.1016/j.mri.2022.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 12/09/2021] [Accepted: 01/20/2022] [Indexed: 12/18/2022]
Abstract
Areal bone mineral density (aBMD) from dual-energy x-ray absorptiometry (DEXA) and volumetric bone mineral density (vBMD) have demonstrated limited capabilities in the evaluation of bone mechanical competence and prediction of bone fracture. Predicting the macroscopic mechanical behavior of the bone structure has been challenging because of the heterogeneous and anisotropic nature of bone, such as the dependencies on loading direction, anatomical location, and sample dimensions. Magnetic resonance imaging (MRI) has been introduced as a promising modality that can be coupled with finite element analysis (FEA) for the assessment of bone mechanical competence. This review article describes studies investigating MRI-based micro-FEA as a potential non-invasive method to predict bone mechanical competence and facilitate bone fracture risk estimation without exposure to ionizing radiation. Specifically, the steps, applications, and future potential of FEA using indirect and direct bone imaging are discussed.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, CA, USA.
| | - Salem Alenezi
- Research and Laboratories Sector, Saudi Food and Drug Authority, Saudi Arabia
| | | | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, USA; Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, CA, USA; Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, CA, USA; Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
12
|
Afsahi AM, Ma Y, Jang H, Jerban S, Chung CB, Chang EY, Du J. Ultrashort Echo Time Magnetic Resonance Imaging Techniques: Met and Unmet Needs in Musculoskeletal Imaging. J Magn Reson Imaging 2021; 55:1597-1612. [PMID: 34962335 DOI: 10.1002/jmri.28032] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
This review article summarizes recent technical developments in ultrashort echo time (UTE) magnetic resonance imaging of musculoskeletal (MSK) tissues with short-T2 relaxation times. A series of contrast mechanisms are discussed for high-contrast morphological imaging of short-T2 MSK tissues including the osteochondral junction, menisci, ligaments, tendons, and bone. Quantitative UTE mapping of T1, T2*, T1ρ, adiabatic T1ρ, magnetization transfer ratio, MT modeling of macromolecular proton fraction, quantitative susceptibility mapping, and water content is also introduced. Met and unmet needs in MSK imaging are discussed. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Amir Masoud Afsahi
- Department of Radiology, University of California, San Diego, California, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, California, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, California, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, California, USA
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, California, USA.,Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, California, USA.,Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, California, USA.,Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
13
|
Jerban S, Kasibhatla A, Ma Y, Wu M, Chen Y, Guo T, Wan L, Szeverenyi N, Chang EY, Du J. Detecting Articular Cartilage and Meniscus Deformation Effects Using Magnetization Transfer Ultrashort Echo Time (MT-UTE) Modeling during Mechanical Load Application: Ex Vivo Feasibility Study. Cartilage 2021; 13:665S-673S. [PMID: 33289401 PMCID: PMC8808840 DOI: 10.1177/1947603520976771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Ultrashort echo time (UTE) magnetic resonance imaging (MRI) sequences have improved imaging of short T2 musculoskeletal (MSK) tissues. UTE-MRI combined with magnetization transfer modeling (UTE-MT) has demonstrated robust assessment of MSK tissues. This study aimed to investigate the variation of UTE-MT measures under mechanical loading in tibiofemoral cartilage and meniscus of cadaveric knee joints. DESIGN Fourteen knee joints from young (n = 8, 42 ± 12 years old) and elderly (n = 6, 89 ± 4 years old) donors were scanned on a 3-T scanner under 3 loading conditions: load = 300 N (Load1), load = 500 N (Load2), and load = 0 N (Unload). UTE-MT sequences were performed at each loading condition. Macromolecular proton fraction (MMF) was calculated from UTE-MT modeling. Wilcoxon rank sum test was used to examine the MRI data differences between loading conditions. RESULTS For young donors, MMF increased in all grouped regions of interest (meniscus [M], femoral articular cartilage [FAC], tibial articular cartilage [TAC], articular cartilage regions covered by meniscus [AC-MC], and articular cartilage regions uncovered by meniscus [AC-UC]) when the load increased from 300 to 500 N. The increases in MMF were significant for M (13.3%, P < 0.01) and AC-MC (9.2%, P = 0.04). MMF decreased in all studied regions after unloading, which was significant only for AC-MC (-8.9%, P = 0.01). For elderly donors, MRI parameters did not show significant changes by loading or unloading. CONCLUSION This study highlights the potential of the UTE-MT modeling combined with knee loading in differentiating between normal and abnormal knees. Average tissue deformation effects were likely higher and more uniformly distributed in the joints of young donors compared with elderly donors.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of
California, San Diego, CA, USA,Saeed Jerban, Department of Radiology,
University of California, 9500 Gilman Dr., San Diego, CA 92093, USA.
| | - Akhil Kasibhatla
- Department of Radiology, University of
California, San Diego, CA, USA
| | - Yajun Ma
- Department of Radiology, University of
California, San Diego, CA, USA
| | - Mei Wu
- Department of Radiology, University of
California, San Diego, CA, USA
| | - Yanjun Chen
- Department of Radiology, University of
California, San Diego, CA, USA
| | - Tan Guo
- Department of Radiology, University of
California, San Diego, CA, USA
| | - Lidi Wan
- Department of Radiology, University of
California, San Diego, CA, USA
| | | | - Eric Y. Chang
- Department of Radiology, University of
California, San Diego, CA, USA,Radiology Service, VA San Diego
Healthcare System, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of
California, San Diego, CA, USA
| |
Collapse
|