1
|
Cheng X, Chen J, Yang X, Chan H, Yang X, Jiao J, Wang A, Zhang G, Chen X, Li X, Wang M, Yang B, Yang H, Li Q. Comparison of different genetic testing modalities applied in paediatric patients with steroid-resistant nephrotic syndrome. Ital J Pediatr 2024; 50:85. [PMID: 38654395 DOI: 10.1186/s13052-024-01655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/07/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Steroid-resistant nephrotic syndrome (SRNS) are monogenic in some cases, however, there are still no clear guidelines on genetic testing in the clinical practice of SRNS in children. METHODS Three hundred thirty-two children were diagnosed with SRNS, and all children underwent genetic testing, including gene panels and/or whole-exome/genome sequencing (WES/WGS), during treatment. We analysed the relationship between clinical manifestation and genotype, and compared different genetic testing methods' detection rates and prices. RESULTS In this study, 30.12% (100/332) of children diagnosed with SRNS had monogenic causes of the disease. With 33.7% (122/332) of children achieving complete remission, 88.5% (108/122) received steroids combined with tacrolimus (TAC). In detectability, WES increased by 8.69% (4/46) on gene panel testing, while WGS increased by 4.27% (5/117) on WES, and WES was approximately 1/7 of the price of WGS for every further 1% increase in pathogenicity. CONCLUSIONS We verified that steroids combined with TAC were the most effective option in paediatric SRNS. In detection efficiency, we found that WGS was the highest, followed by WES. The panel was the lowest, but the most cost-effective method when considering the economic-benefit ratio, and thus it should be recommended first in SRNS.
Collapse
Affiliation(s)
- Xueting Cheng
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jiahuan Chen
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xueying Yang
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Han Chan
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xia Yang
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Jiao
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Anshuo Wang
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Gaofu Zhang
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuelan Chen
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqin Li
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Mo Wang
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Baohui Yang
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Haiping Yang
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Qiu Li
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Thomas MA, Bedard T, Crawford S, Grevers X, Lowry RB. Craniofacial Microsomia, Associated Congenital Anomalies, and Risk Factors in 63 Cases from the Alberta Congenital Anomalies Surveillance System. J Pediatr 2023; 261:113528. [PMID: 37268037 DOI: 10.1016/j.jpeds.2023.113528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/26/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
OBJECTIVE To report associated congenital anomalies with unexplained craniofacial microsomia (CFM) and the phenotypic overlap with other recurrent constellations of embryonic malformations (RCEM), and to assess prenatal and perinatal risk factors. STUDY DESIGN This is a retrospective cross-sectional study. Cases with CFM, delivered between January 1, 1997, and December 31, 2019, were abstracted from the population-based Alberta Congenital Anomalies Surveillance System. Livebirths, stillbirths, and early fetal losses were reviewed to include all types of pregnancy outcomes along the spectrum of this condition. Prenatal and perinatal risk factors were compared with the Alberta birth population to assess differences between the 2 groups. RESULTS There were 63 cases with CFM, yielding a frequency of 1 per 16 949. There was a high rate of cases (65%) with anomalies outside the craniofacial and vertebral regions. Congenital heart defects were the most common (33.3%). A single umbilical artery was found in 12.7% of cases. The twin/triplet rate of 12.7% was significantly higher than the Alberta rate of 3.3% (P < .0001). There was an overlap with a second RCEM condition in 9.5% of cases. CONCLUSIONS Although CFM is primarily a craniofacial condition, the majority of cases have congenital anomalies affecting other systems requiring additional assessments, including an echocardiogram, renal ultrasound examination, and a complete vertebral radiograph. The high rate of an associated single umbilical artery raises the possibility of a related etiological mechanism. Our findings support the proposed concept of RCEM conditions.
Collapse
Affiliation(s)
- Mary Ann Thomas
- Alberta Congenital Anomalies Surveillance System, Alberta Health Services, Calgary, Alberta, Canada; Departments of Pediatrics and Medical Genetics, University of Calgary and Alberta Children's Hospital, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tanya Bedard
- Alberta Congenital Anomalies Surveillance System, Alberta Health Services, Calgary, Alberta, Canada
| | - Susan Crawford
- Alberta Perinatal Health Program, Alberta Health Services, Calgary, Alberta, Canada
| | - Xin Grevers
- Alberta Congenital Anomalies Surveillance System, Alberta Health Services, Calgary, Alberta, Canada
| | - R Brian Lowry
- Alberta Congenital Anomalies Surveillance System, Alberta Health Services, Calgary, Alberta, Canada; Departments of Pediatrics and Medical Genetics, University of Calgary and Alberta Children's Hospital, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Carlotto BS, Deconte D, Diniz BL, Silva PRD, Zen PRG, Silva AAD. Fluorescence in situ hybridization (FISH) as an irreplaceable diagnostic tool for Williams-Beuren syndrome in developing countries: a literature review. REVISTA PAULISTA DE PEDIATRIA : ORGAO OFICIAL DA SOCIEDADE DE PEDIATRIA DE SAO PAULO 2023; 42:e2022125. [PMID: 37436242 DOI: 10.1590/1984-0462/2023/41/2022125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/14/2022] [Indexed: 07/13/2023]
Abstract
OBJECTIVE The aim of this study was to sum up and characterize all Williams-Beuren syndrome cases diagnosed by fluorescence in situ hybridization (FISH) since its implementation, as well as to discuss FISH as a cost-effective methodology in developing countries. DATA SOURCE From January 1986 to January 2022, articles were selected using the databases in PubMed (Medline) and SciELO. The following terms were used: Williams syndrome and In Situ Hybridization, Fluorescence. Inclusion criteria included Williams-Beuren syndrome cases diagnosed by FISH with a stratified phenotype of each patient. Only studies written in English, Spanish, and Portuguese were included. Studies with overlapping syndromes or genetic conditions were excluded. DATA SYNTHESIS After screening, 64 articles were included. A total of 205 individuals with Williams-Beuren syndrome diagnosed by FISH were included and further analyzed. Cardiovascular malformations were the most frequent finding (85.4%). Supravalvular aortic stenosis (62.4%) and pulmonary stenosis (30.7%) were the main cardiac alterations described. CONCLUSIONS Our literature review reinforces that cardiac features may be the key to early diagnosis in Williams-Beuren syndrome patients. In addition, FISH may be the best diagnostic tool for developing nations that have limited access to new technologic resources.
Collapse
Affiliation(s)
| | - Desirée Deconte
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Bruna Lixinski Diniz
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Paulo Ricardo Gazzola Zen
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Irmandade da Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, Brazil
| | | |
Collapse
|
4
|
The Enigmatic Etiology of Oculo-Auriculo-Vertebral Spectrum (OAVS): An Exploratory Gene Variant Interaction Approach in Candidate Genes. Life (Basel) 2022; 12:life12111723. [PMID: 36362878 PMCID: PMC9693117 DOI: 10.3390/life12111723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
The clinical diagnosis of oculo-auriculo-vertebral spectrum (OAVS) is established when microtia is present in association with hemifacial hypoplasia (HH) and/or ocular, vertebral, and/or renal malformations. Genetic and non-genetic factors have been associated with microtia/OAVS. Although the etiology remains unknown in most patients, some cases may have an autosomal dominant, autosomal recessive, or multifactorial inheritance. Among the possible genetic factors, gene−gene interactions may play important roles in the etiology of complex diseases, but the literature lacks related reports in OAVS patients. Therefore, we performed a gene−variant interaction analysis within five microtia/OAVS candidate genes (HOXA2, TCOF1, SALL1, EYA1 and TBX1) in 49 unrelated OAVS Mexican patients (25 familial and 24 sporadic cases). A statistically significant intergenic interaction (p-value < 0.001) was identified between variants p.(Pro1099Arg) TCOF1 (rs1136103) and p.(Leu858=) SALL1 (rs1965024). This intergenic interaction may suggest that the products of these genes could participate in pathways related to craniofacial alterations, such as the retinoic acid (RA) pathway. The absence of clearly pathogenic variants in any of the analyzed genes does not support a monogenic etiology for microtia/OAVS involving these genes in our patients. Our findings could suggest that in addition to high-throughput genomic approaches, future gene−gene interaction analyses could contribute to improving our understanding of the etiology of microtia/OAVS.
Collapse
|
5
|
Abstract
The field of craniofacial malformations is comprehensive and does not allow to discuss all craniofacial malformations which have been described as single entities. Many of the syndromes with craniofacial malformations are ultrarare. In this review we have chosen craniofacial malformation syndromes which are of relevance for the pediatrician, especially neonatologist: different types of craniosynostoses, oculo-auriculo-vertebral spectrum, Pierre Robin sequence and Treacher Collins syndrome. These syndromes will be described in detail. Diagnostic and therapeutic options will be discussed.
Collapse
Affiliation(s)
- Ariane Schmetz
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Jeanne Amiel
- Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Hôpital Necker, AP-HP, Paris, France
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany.
| |
Collapse
|
6
|
Khera D, Agarwal S, Kumar P, Singh K. Case of oculo-auriculo-vertebral spectrum: rare clinical features. BMJ Case Rep 2021; 14:14/3/e234181. [PMID: 33658211 PMCID: PMC7931756 DOI: 10.1136/bcr-2019-234181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A 2-month-old boy presented to us with bilateral microtia, left lower motor neuron facial palsy, micrognathia, hemivertebra, bifid rib, bifid thumb and absent/hypoplastic right-sided depressor anguli oris. He had bilateral external auditory canal atresia, although response to loud sound was present. Brain stem evoked response audiometry (BERA) was advised at 3 months of age. Karyotype was normal. We diagnosed him as a case of oculo-auriculo-vertebral spectrum. Child was discharged on request by the family with the plan for bone-anchored hearing aid after BERA and plan for pinna and ear canal reconstruction at a later age but child did not come for any follow-up visit. On telephonic enquiry, it was found that he is thriving well but has developmental delay including speech delay. We conclude that children presenting with external ear abnormalities should be screened for multiple congenital anomalies so that a multidisciplinary approach to management can be planned.
Collapse
Affiliation(s)
- Daisy Khera
- Department of Pediatrics, All India Institute of Medical Sciences Jodphur, Jodhpur, India
| | - Saurabh Agarwal
- Department of Pediatrics, All India Institute of Medical Sciences Jodphur, Jodhpur, India
| | - Prawin Kumar
- Department of Pediatrics, All India Institute of Medical Sciences Jodphur, Jodhpur, India
| | - Kuldeep Singh
- Department of Pediatrics, All India Institute of Medical Sciences Jodphur, Jodhpur, India
| |
Collapse
|