1
|
Saleem MK, Lal A, Ahmed N, Abbasi MS, Vohra F, Abduljabbar T. Oral health related quality of life and the prevalence of ageusia and xerostomia in active and recovered COVID-19 Patients. PeerJ 2023; 11:e14860. [PMID: 36908817 PMCID: PMC9997189 DOI: 10.7717/peerj.14860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 01/17/2023] [Indexed: 03/08/2023] Open
Abstract
Background Salivary disturbance is associated with patients who either have an active coronavirus disease 2019 (COVID-19) or have recovered from coronavirus infection along with loss of taste sensation. In addition, COVID-19 infection can drastically compromise quality of life of individuals. Objective This study aimed to analyze xerostomia, ageusia and the oral health impact in coronavirus disease-19 patients utilizing the Xerostomia Inventory scale-(XI) and the Oral Health Impact Profile-14. Methods In this cross-sectional survey-based study, data was collected from 301 patients who suffered and recovered from COVID-19. Using Google Forms, a questionnaire was developed and circulated amongst those who were infected and recovered from coronavirus infection. The Xerostomia Inventory (XI) and Oral Health Impact Profile-14 were used to assess the degree and quality of life. A paired T-test and Chi-square test were used to analyze the effect on xerostomia inventory scale-(XI) and OHIP-14 scale scores. A p-value of 0.05 was considered as statistically significant. Results Among 301 participants, 54.8% were females. The prevalence of xerostomia in participants with active COVID-19 disease was 39.53% and after recovery 34.88%. The total OHIP-14 scores for patients in the active phase of infection was 12.09, while 12.68 in recovered patients. A significant difference was found between the mean scores of the xerostomia inventory scale-11 and OHIP-14 in active and recovered COVID patients. Conclusion A higher prevalence of xerostomia was found in COVID-19 infected patients (39.53%) compared to recovered patients (34.88%). In addition, more than 70% reported aguesia. COVID-19 had a significantly higher compromising impact on oral function of active infected patients compared to recovered patients.
Collapse
Affiliation(s)
- Mahnoor K.M. Saleem
- Prosthodontics Department, Altamash Institute of Dental Medicine, Karachi, Pakistan
| | - Abhishek Lal
- Prosthodontics Department, Altamash Institute of Dental Medicine, Karachi, Pakistan
| | - Naseer Ahmed
- Prosthodontics Department, Altamash Institute of Dental Medicine, Karachi, Pakistan
- Prosthodontics Department, University Sains Malaysia, Kelantan, Malaysia
| | - Maria S. Abbasi
- Prosthodontics Department, Altamash Institute of Dental Medicine, Karachi, Pakistan
| | - Fahim Vohra
- Prosthetic Dental Sceinces, King Saud University, Riyadh, Saudi Arabia
| | - Tariq Abduljabbar
- Prosthetic Dental Sceinces, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Narayanan SN, Shivappa P, Padiyath S, Bhaskar A, Li YW, Merghani TH. The Prevalence and Pathophysiology of Chemical Sense Disorder Caused by the Novel Coronavirus. Front Public Health 2022; 10:839182. [PMID: 35734755 PMCID: PMC9207763 DOI: 10.3389/fpubh.2022.839182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 04/20/2022] [Indexed: 12/27/2022] Open
Abstract
Emerging viral infections are a ceaseless challenge and remain a global public health concern. The world has not yet come back to normal from the devastating effects of the highly contagious and pathogenic novel coronavirus, or Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Olfactory and taste dysfunction is common in patients infected by the novel coronavirus. In light of the emergence of different coronavirus variants, it is important to update the prevalence and pathophysiology of these side effects. In this review, articles published on the prevalence of olfactory and taste dysfunction from coronavirus disease (COVID-19) and their possible pathophysiologic mechanisms have been reviewed and reported. The modulatory role of different SARS-CoV-2 variants on the chemical senses is then described. The clinical relevance of chemical sense disorder and its long-term morbidity and management is also discussed.
Collapse
Affiliation(s)
- Sareesh Naduvil Narayanan
- Department of Physiology, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
- *Correspondence: Sareesh Naduvil Narayanan ; orcid.org/0000-0002-2980-2352
| | - Pooja Shivappa
- Department of Basic Sciences, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Sreeshma Padiyath
- Independent Microbiology Researcher, Ras Al Khaimah, United Arab Emirates
| | - Anand Bhaskar
- Department of Biomedical Sciences, Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Yan Wa Li
- Department of Biomedical Sciences, Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Tarig Hakim Merghani
- Department of Physiology, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|
3
|
Tsuchiya H. Gustatory and Saliva Secretory Dysfunctions in COVID-19 Patients with Zinc Deficiency. Life (Basel) 2022; 12:life12030353. [PMID: 35330104 PMCID: PMC8950751 DOI: 10.3390/life12030353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/22/2022] Open
Abstract
Given the ever-progressing studies on coronavirus disease 2019 (COVID-19), it is critical to update our knowledge about COVID-19 symptomatology and pathophysiology. In the present narrative review, oral symptoms were overviewed using the latest data and their pathogenesis was hypothetically speculated. PubMed, LitCovid, ProQuest, and Google Scholar were searched for relevant studies from 1 April 2021 with a cutoff date of 31 January 2022. The literature search indicated that gustatory dysfunction and saliva secretory dysfunction are prevalent in COVID-19 patients and both dysfunctions persist after recovery from the disease, suggesting the pathogenic mechanism common to these cooccurring symptoms. COVID-19 patients are characterized by hypozincemia, in which zinc is possibly redistributed from blood to the liver at the expense of zinc in other tissues. If COVID-19 induces intracellular zinc deficiency, the activity of zinc-metalloenzyme carbonic anhydrase localized in taste buds and salivary glands may be influenced to adversely affect gustatory and saliva secretory functions. Zinc-binding metallothioneins and zinc transporters, which cooperatively control cellular zinc homeostasis, are expressed in oral tissues participating in taste and saliva secretion. Their expression dysregulation associated with COVID-19-induced zinc deficiency may have some effect on oral functions. Zinc supplementation is expected to improve oral symptoms in COVID-19 patients.
Collapse
|
4
|
Saki EF, Setiawan SA, Wicaksono DHB. Portable Tools for COVID-19 Point-of-Care Detection: A Review. IEEE SENSORS JOURNAL 2021; 21:23737-23750. [PMID: 35582343 PMCID: PMC8864949 DOI: 10.1109/jsen.2021.3110857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/22/2021] [Accepted: 08/26/2021] [Indexed: 06/12/2023]
Abstract
Recently, several methods for SARS-CoV-2 detection have been developed to obtain rapid, portable, cheap, and easy-to-use diagnostic tools. This review paper summarizes and discusses studies on the development of point-of-care devices for SARS-CoV-2 diagnosis with comparisons between them from several aspects. Various detection methods of the recently developed portable COVID-19 biosensor will be presented in this review. The discussion is divided into four major classifications based on the target biomarkers of SARS-CoV-2, such as antibodies, nucleic acids, antigens, and metabolic products. An overview of the potential development for future study is also provided. Moreover, basic knowledge of biosensors is also explained for tutoring the implementation of theory into the research of COVID-19 biosensors. This review paper is aimed to provide a tutorial by collecting the information on the development of a point-of-care device for SARS-CoV-2 detection to provide information for further research and propose the new COVID-19 portable diagnostic tool.
Collapse
Affiliation(s)
- Elga F. Saki
- Department of Biomedical EngineeringFaculty of Life Sciences and TechnologySwiss German University (SGU)Tangerang15143Indonesia
| | | | - Dedy H. B. Wicaksono
- Department of Biomedical EngineeringFaculty of Life Sciences and TechnologySwiss German University (SGU)Tangerang15143Indonesia
| |
Collapse
|
5
|
Williams A, Branscome H, Khatkar P, Mensah GA, Al Sharif S, Pinto DO, DeMarino C, Kashanchi F. A comprehensive review of COVID-19 biology, diagnostics, therapeutics, and disease impacting the central nervous system. J Neurovirol 2021; 27:667-690. [PMID: 34581996 PMCID: PMC8477646 DOI: 10.1007/s13365-021-00998-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/17/2021] [Accepted: 07/01/2021] [Indexed: 01/08/2023]
Abstract
The ongoing COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a highly transmissible disease. SARS-CoV-2 is estimated to have infected over 153 million people and to have caused over 3.2 million global deaths since its emergence in December 2019. SARS-CoV-2 is the seventh coronavirus known to infect humans, and like other coronaviruses, SARS-CoV-2 infection is characterized by a variety of symptoms including general flu-like symptoms such as a fever, sore throat, fatigue, and shortness of breath. Severe cases often display signs of pneumonia, lymphopenia, acute kidney injury, cardiac injury, cytokine storms, lung damage, acute respiratory distress syndrome (ARDS), multiple organ failure, sepsis, and death. There is evidence that around 30% of COVID-19 cases have central nervous system (CNS) or peripheral nervous system (PNS) symptoms along with or in the absence of the previously mentioned symptoms. In cases of CNS/PNS impairments, patients display dizziness, ataxia, seizure, nerve pain, and loss of taste and/or smell. This review highlights the neurological implications of SARS-CoV-2 and provides a comprehensive summary of the research done on SARS-CoV-2 pathology, diagnosis, therapeutics, and vaccines up to May 5.
Collapse
Affiliation(s)
- Anastasia Williams
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Heather Branscome
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
- American Type Culture Collection (ATCC), Manassas, VA, USA
| | - Pooja Khatkar
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Gifty A Mensah
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Sarah Al Sharif
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Daniel O Pinto
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
- Immunology Core, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA.
| |
Collapse
|
6
|
Affiliation(s)
- S M Balaji
- Executive Editor, Indian Journal of Dental Research, Department of Oral and Maxillofacial Surgery, Balaji Dental and Craniofacial Hospital, Teynampet, Chennai, Tamil Nadu, India
| |
Collapse
|