1
|
Singh S, Kumar P, Padwad YS, Jaffer FA, Reed GL. Targeting Fibrinolytic Inhibition for Venous Thromboembolism Treatment: Overview of an Emerging Therapeutic Approach. Circulation 2024; 150:884-898. [PMID: 39250537 PMCID: PMC11433585 DOI: 10.1161/circulationaha.124.069728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Venous thrombosis and pulmonary embolism (venous thromboembolism) are important causes of morbidity and mortality worldwide. In patients with venous thromboembolism, thrombi obstruct blood vessels and resist physiological dissolution (fibrinolysis), which can be life threatening and cause chronic complications. Plasminogen activator therapy, which was developed >50 years ago, is effective in dissolving thrombi but has unacceptable bleeding risks. Safe dissolution of thrombi in patients with venous thromboembolism has been elusive despite multiple innovations in plasminogen activator design and catheter-based therapy. Evidence now suggests that fibrinolysis is rigidly controlled by endogenous fibrinolysis inhibitors, including α2-antiplasmin, plasminogen activator inhibitor-1, and thrombin-activable fibrinolysis inhibitor. Elevated levels of these fibrinolysis inhibitors are associated with an increased risk of venous thromboembolism in humans. New therapeutic paradigms suggest that accelerated and effective fibrinolysis may be achieved safely by therapeutically targeting these fibrinolytic inhibitors in venous thromboembolism. In this article, we discuss the role of fibrinolytic components in venous thromboembolism and the current status of research and development targeting fibrinolysis inhibitors.
Collapse
Affiliation(s)
- Satish Singh
- Protein Processing Center, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Translational Cardiovascular Research Center, Dept. of Medicine, University of Arizona, College of Medicine-Phoenix, AZ, USA
| | - Pardeep Kumar
- Protein Processing Center, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Yogendra S. Padwad
- Protein Processing Center, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Farouc A. Jaffer
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Guy L. Reed
- Translational Cardiovascular Research Center, Dept. of Medicine, University of Arizona, College of Medicine-Phoenix, AZ, USA
| |
Collapse
|
2
|
Wang J, Ho P, Nandurkar H, Lim HY. Overall haemostatic potential assay for prediction of outcomes in venous and arterial thrombosis and thrombo-inflammatory diseases. J Thromb Thrombolysis 2024; 57:852-864. [PMID: 38649560 DOI: 10.1007/s11239-024-02975-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Thromboembolic diseases including arterial and venous thrombosis are common causes of morbidity and mortality globally. Thrombosis frequently recurs and can also complicate many inflammatory conditions through the process of 'thrombo-inflammation,' as evidenced during the COVID-19 pandemic. Current candidate biomarkers for thrombosis prediction, such as D-dimer, have poor predictive efficacy. This limits our capacity to tailor anticoagulation duration individually and may expose lower risk individuals to undue bleeding risk. Global coagulation assays, such as the Overall Haemostatic Potential (OHP) assay, that investigate fibrin generation and fibrinolysis, may provide a more accurate and functional assessment of hypercoagulability. We present a review of fibrin's critical role as a central modulator of thrombotic risk. The results of our studies demonstrating the OHP assay as a predictive biomarker in venous thromboembolism, chronic renal disease, diabetes mellitus, post-thrombotic syndrome, and COVID-19 are discussed. As a comprehensive and global measurement of fibrin generation and fibrinolytic capacity, the OHP assay may be a valuable addition to future multi-modal predictive tools in thrombosis.
Collapse
Affiliation(s)
- Julie Wang
- Northern Health, 185 Cooper St, Epping, VIC, 3076, Australia.
| | - Prahlad Ho
- Northern Health, 185 Cooper St, Epping, VIC, 3076, Australia
| | - Harshal Nandurkar
- Australian Centre for Blood Diseases, Monash Health, Melbourne, Australia
| | - Hui Yin Lim
- Northern Health, 185 Cooper St, Epping, VIC, 3076, Australia
| |
Collapse
|
3
|
Bønløkke ST, Fenger-Eriksen C, Ommen HB, Hvas AM. Impaired fibrinolysis and increased clot strength are potential risk factors for thrombosis in lymphoma. Blood Adv 2023; 7:7056-7066. [PMID: 37756519 PMCID: PMC10694522 DOI: 10.1182/bloodadvances.2023011379] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 09/29/2023] Open
Abstract
Thrombosis and bleeding are significant contributors to morbidity and mortality in patients with hematological cancer, and the impact of altered fibrinolysis on bleeding and thrombosis risk is poorly understood. In this prospective cohort study, we investigated the dynamics of fibrinolysis in patients with hematological cancer. Fibrinolysis was investigated before treatment and 3 months after treatment initiation. A dynamic clot formation and lysis assay was performed beyond the measurement of plasminogen activator inhibitor 1, tissue- and urokinase-type plasminogen activators (tPA and uPA), plasmin-antiplasmin complexes (PAP), α-2-antiplasmin activity, and plasminogen activity. Clot initiation, clot propagation, and clot strength were assessed using rotational thromboelastometry. A total of 79 patients were enrolled. Patients with lymphoma displayed impaired fibrinolysis with prolonged 50% clot lysis time compared with healthy controls (P = .048). They also displayed decreased clot strength at follow-up compared with at diagnosis (P = .001). A patient with amyloid light-chain amyloidosis having overt bleeding at diagnosis displayed hyperfibrinolysis, indicated by a reduced 50% clot lysis time, α-2-antiplasmin activity, and plasminogen activity, and elevated tPA and uPA. A patient with acute promyelocytic leukemia also displayed marked hyperfibrinolysis with very high PAP, indicating extreme plasmin generation, and clot formation was not measurable, probably because of the extremely fast fibrinolysis. Fibrinolysis returned to normal after treatment in both patients. In conclusion, patients with lymphoma showed signs of impaired fibrinolysis and increased clot strength, whereas hyperfibrinolysis was seen in patients with acute promyelocytic leukemia and light-chain amyloidosis. Thus, investigating fibrinolysis in patients with hematological cancer could have diagnostic value.
Collapse
Affiliation(s)
- Søren Thorgaard Bønløkke
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christian Fenger-Eriksen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Anesthesiology, Aarhus University Hospital, Aarhus, Denmark
| | - Hans Beier Ommen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
4
|
Zöller B, Manderstedt E, Lind-Halldén C, Halldén C. The role of fibrinolysis in vascular diseases in UK biobank. J Thromb Thrombolysis 2023; 56:635-638. [PMID: 37566296 DOI: 10.1007/s11239-023-02876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Affiliation(s)
- Bengt Zöller
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University and Region Skåne, CRC, Building 28, Floor 11 Jan Waldenströms gata 35, Malmö, Sweden.
| | - Eric Manderstedt
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University and Region Skåne, CRC, Building 28, Floor 11 Jan Waldenströms gata 35, Malmö, Sweden
| | - Christina Lind-Halldén
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad, Sweden
| | - Christer Halldén
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University and Region Skåne, CRC, Building 28, Floor 11 Jan Waldenströms gata 35, Malmö, Sweden
| |
Collapse
|
5
|
Hvas CL, Larsen JB. The Fibrinolytic System and Its Measurement: History, Current Uses and Future Directions for Diagnosis and Treatment. Int J Mol Sci 2023; 24:14179. [PMID: 37762481 PMCID: PMC10532028 DOI: 10.3390/ijms241814179] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The fibrinolytic system is a key player in keeping the haemostatic balance, and changes in fibrinolytic capacity can lead to both bleeding-related and thrombosis-related disorders. Our knowledge of the fibrinolytic system has expanded immensely during the last 75 years. From the first successful use of thrombolysis in myocardial infarction in the 1960s, thrombolytic therapy is now widely implemented and has reformed treatment in vascular medicine, especially ischemic stroke, while antifibrinolytic agents are used routinely in the prevention and treatment of major bleeding worldwide. Despite this, this research field still holds unanswered questions. Accurate and timely laboratory diagnosis of disturbed fibrinolysis in the clinical setting remains a challenge. Furthermore, despite growing evidence that hypofibrinolysis plays a central role in, e.g., sepsis-related coagulopathy, coronary artery disease, and venous thromboembolism, there is currently no approved treatment of hypofibrinolysis in these settings. The present review provides an overview of the fibrinolytic system and history of its discovery; measurement methods; clinical relevance of the fibrinolytic system in diagnosis and treatment; and points to future directions for research.
Collapse
Affiliation(s)
- Christine Lodberg Hvas
- Department of Anaesthesiology and Intensive Care, Aarhus University Hospital, 8200 Aarhus N, Denmark;
- Department of Clinical Medicine, Faculty of Health Sciences, Aarhus University, 8200 Aarhus N, Denmark
| | - Julie Brogaard Larsen
- Department of Clinical Medicine, Faculty of Health Sciences, Aarhus University, 8200 Aarhus N, Denmark
- Department of Clinical Biochemistry, Regional Hospital Horsens, 8700 Horsens, Denmark
| |
Collapse
|
6
|
Larsen JB, Hvas CL, Hvas AM. Modified Rotational Thromboelastometry Protocol Using Tissue Plasminogen Activator for Detection of Hypofibrinolysis and Hyperfibrinolysis. Methods Mol Biol 2023; 2663:763-773. [PMID: 37204751 DOI: 10.1007/978-1-0716-3175-1_51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Viscoelastic testing includes thromboelastography (TEG®) and thromboelastometry (ROTEM®) and is widely used in bleeding patients to detect hypocoagulability and guide transfusion therapy. However, the ability of standard viscoelastic tests to assess fibrinolytic capacity is limited. We here describe a modified ROTEM® protocol with addition of tissue plasminogen activator that can be used to identify hypofibrinolysis or hyperfibrinolysis.
Collapse
Affiliation(s)
- Julie Brogaard Larsen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Christine Lodberg Hvas
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Anaesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Anne-Mette Hvas
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Risman RA, Abdelhamid A, Weisel JW, Bannish BE, Tutwiler V. Effects of clot contraction on clot degradation: A mathematical and experimental approach. Biophys J 2022; 121:3271-3285. [PMID: 35927957 PMCID: PMC9463642 DOI: 10.1016/j.bpj.2022.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022] Open
Abstract
Thrombosis, resulting in occlusive blood clots, blocks blood flow to downstream organs and causes life-threatening conditions such as heart attacks and strokes. The administration of tissue plasminogen activator (t-PA), which drives the enzymatic degradation (fibrinolysis) of these blood clots, is a treatment for thrombotic conditions, but the use of these therapeutics is often limited due to the time-dependent nature of treatment and their limited success. We have shown that clot contraction, which is altered in prothrombotic conditions, influences the efficacy of fibrinolysis. Clot contraction results in the volume shrinkage of blood clots, with the redistribution and densification of fibrin and platelets on the exterior of the clot and red blood cells in the interior. Understanding how these key structural changes influence fibrinolysis can lead to improved diagnostics and patient care. We used a combination of mathematical modeling and experimental methodologies to characterize the process of exogenous delivery of t-PA (external fibrinolysis). A three-dimensional (3D) stochastic, multiscale model of external fibrinolysis was used to determine how the structural changes that occur during the process of clot contraction influence the mechanism(s) of fibrinolysis. Experiments were performed based on modeling predictions using pooled human plasma and the external delivery of t-PA to initiate lysis. Analysis of fibrinolysis simulations and experiments indicate that fibrin densification makes the most significant contribution to the rate of fibrinolysis compared with the distribution of components and degree of compaction (p < 0.0001). This result suggests the possibility of a certain fibrin density threshold above which t-PA effective diffusion is limited. From a clinical perspective, this information can be used to improve on current therapeutics by optimizing timing and delivery of lysis agents.
Collapse
Affiliation(s)
| | | | - John W Weisel
- University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
8
|
Bryk-Wiązania AH, Cysewski D, Ocłoń E, Undas A. Mass-spectrometric identification of oxidative modifications in plasma-purified plasminogen: Association with hypofibrinolysis in patients with acute pulmonary embolism. Biochem Biophys Res Commun 2022; 621:53-58. [PMID: 35810591 DOI: 10.1016/j.bbrc.2022.06.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVES Mechanisms behind disturbed fibrinolysis in pulmonary embolism (PE) are poorly understood. We hypothesized that oxidative stress-induced changes in plasminogen contribute to impaired fibrinolysis in patients with acute PE. METHODS Oxidative and other modifications were investigated using mass-spectrometry in plasminogen purified from pooled plasma of 5 acute PE patients on admission and after 3 months of anticoagulant treatment, along with plasma clot lysis time, a measure of global efficiency of fibrinolysis, and a stable oxidative stress marker, plasma 8-isoprostane. RESULTS Twenty sites of oxidation, 3 sites of carbonylation and 4 sites of S-nitrosylation were identified in plasminogen. The intensity of peptides oxidized at cysteine residues with respect to unmodified peptides decreased after 3 months of anticoagulation (p = 0.018). This was not observed for oxidized methionine residues (p = 0.9). Oxidized tryptophan (n = 4) and proline (n = 2), as well as carbonylation at 3 threonine residues were selectively identified in acute PE episode, not after 3 months. This was accompanied by 12.8% decrease in clot lysis time (p = 0.043). Deamidation occurred at the arginine, previously identified to undergo the cleavage by plasminogen activator. Methylated were two lysine-binding sites important for an interaction of plasminogen with fibrin. Other identified modifications involved: glycation, acetylation, phosphorylation, homocysteinylation, carbamylation and dichlorination (88 modifications at 162 sites). CONCLUSIONS Data suggest that oxidative stress-induced changes in plasminogen molecules may contribute to less effective global fibrinolysis in patients with acute PE. The comprehensive library of posttranslational modifications in plasminogen molecules was provided, including modifications of sites reported to be involved in important biological functions.
Collapse
Affiliation(s)
- Agata Hanna Bryk-Wiązania
- Department of Endocrinology, Jagiellonian University Medical College, Krakow, Poland; University Hospital, Krakow, Poland.
| | - Dominik Cysewski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Ocłoń
- Centre for Experimental and Innovative Medicine, Laboratory of Recombinant Proteins Production, University of Agriculture in Krakow, Krakow, Poland
| | - Anetta Undas
- Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland; John Paul II Hospital, Krakow, Poland
| |
Collapse
|