1
|
Dai X, Feng S, Li T. Cold atmospheric plasma control metabolic syndromes via targeting fat mass and obesity-associated protein. Pharmacol Res 2025; 215:107720. [PMID: 40174815 DOI: 10.1016/j.phrs.2025.107720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/09/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
Both obesity and metabolic disorders are global medical problems. Driven by prolonged inflammation, obesity increases the risk of developing metabolic syndromes such as fatty liver, diabetes, cardiovascular diseases and cancers. The fat mass and obesity-associated protein (FTO) is an m6A demethylase, elevated activity of which is known to promote the pathogenesis of many metabolic disorders, leading to the establishment of various FTO inhibitors. By combing through intrinsic connections among obesity and the four primary metabolic problems, we attribute their shared pathological cause to prolonged inflammation. By reviewing the roles of FTO in promoting these disorders and the current status of existing FTO inhibitors in treating these syndromes, we underpinned the paramount potential of resolving these clinical issues by targeting FTO and the urgent need of establishing novel FTO inhibitors with maximized efficacy and minimized side effect. Cold atmospheric plasma (CAP) is the fourth state of matter with demonstrated efficacy in treating various diseases associated with chronic inflammation. By introducing the medical characteristics of CAP, we proposed it as a possible solution to unresolved issues of current FTO inhibitors given its anti-inflammation feature and demonstrated clinical safety. We also emphasized the need of intensive investigations in exploring the feasibility of using CAP in treating obesity and associated metabolic syndromes that might function through targeting FTO.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Shuo Feng
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Tian Li
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, 8 Changjiang Avenue, Tianjin 300100, China.
| |
Collapse
|
2
|
Liu T, Ge X, Song L, Wu H, Qian X, Jia B, Zhao C, Zhuang Y. Zingiber striolatum phytochemicals ameliorated hyperglycemia symptoms by modulating gut microbial communities in mice with type 2 diabetes mellitus. Front Nutr 2025; 12:1537932. [PMID: 39911803 PMCID: PMC11794074 DOI: 10.3389/fnut.2025.1537932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025] Open
Abstract
Introduction Prolonged hyperglycemia caused by type 2 diabetes mellitus (T2DM) can lead to liver injury and disrupt the community of the gut microbiota that pose significant risks to human health. As a food rich in a variety of active ingredients, Zingiber striolatum (Z. striolatum) exhibits hypoglycemic and hypolipidemic effects. However, the regulatory influence of Z. striolatum ethanol extract (ZSE) on the gut microbiota of T2DM mice or its potential relationship with T2DM pathology remains unexplored. Methods After a one-week acclimation period, 12 mice were randomly selected as the normal group. The remaining 48 mice were employed T2DM model, and then randomly assigned to four groups: the model group, a low-dose ZSE group (ZSE-L, 100 mg/kg/day), a high-dose ZSE group (ZSE-H, 300 mg/kg/day), and a positive control group treated with metformin hydrochloride (MET, 100 mg/kg/day). Results After a 4-week intervention, the results revealed that ZSE significantly ameliorated fasting blood glucose (FBG), area under the curve of oral glucose tolerance test (AUC of OGTT) and glycated serum protein (GSP) in T2DM mice. Moreover, the high-dose (ZSE-H) treatment increased the relative abundance of beneficial bacteria such as Faecalibaculum, while reducing harmful bacteria such as Bilophila, thereby alleviating insulin resistance. Additionally, ZSE-H demonstrated superior efficacy over low-dose (ZSE-L) in improving FBG, AUC of OGTT, and other hypoglycemic parameters. Predictive analysis of the correlation between gut microbiota and hypoglycemic parameters identified Dubosiella, Bacillus, and Mailhella as potential microbial biomarkers for further investigation into the pathogenesis of T2DM. Conclusion ZSE plays a pivotal role in mitigating hyperglycemia in T2DM mice through the modulation of intestinal microbiota communities.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Clinical Pharmacy, The Second People’s Hospital of Yancheng, Yancheng, China
| | - Xiaodong Ge
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, China
| | - Lu Song
- Department of Clinical Pharmacy, The First People’s Hospital of Yancheng, Yancheng, China
| | - Huanhuan Wu
- Department of Clinical Pharmacy, Suqian Hospital Affiliated to Xuzhou Medical University, Suqian, China
| | - Xue Qian
- Department of Clinical Pharmacy, The Second People’s Hospital of Yancheng, Yancheng, China
| | - Bowen Jia
- Department of Clinical Pharmacy, The Second People’s Hospital of Yancheng, Yancheng, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Zhuang
- Department of Clinical Pharmacy, The Second People’s Hospital of Yancheng, Yancheng, China
| |
Collapse
|
3
|
Ge X, Liu T, Wang Y, Wen H, Huang Z, Chen L, Xu J, Zhou H, Wu Q, Zhao C, Shao R, Xu W. Porous starch microspheres loaded with luteolin exhibit hypoglycemic activities and alter gut microbial communities in type 2 diabetes mellitus mice. Food Funct 2025; 16:54-70. [PMID: 39377562 DOI: 10.1039/d4fo02907k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Luteolin (LUT), a natural flavonoid known for its hypoglycemic properties, is primarily sourced from vegetables such as celery and broccoli. However, its poor stability and low bioavailability in the upper digestive tract hinder its application in the functional food industry. To address these challenges, this study employed porous starch (PS) as a carrier to develop PS microspheres loaded with luteolin (PSLUT), simulating its release in vitro. The research assessed the hypoglycemic effects of LUT in type 2 diabetes mellitus (T2DM) mice both before and after PS treatment. In vitro findings demonstrated that PS improved LUT's stability in simulated gastric fluids and enhanced its in vivo bioavailability, aligning with experimental outcomes. PSLUT administration significantly improved body weight, fasting blood glucose (FBG), oral glucose tolerance test (OGTT), pancreatic islet function, and other relevant indicators in T2DM mice. Moreover, PSLUT alleviated abnormal liver biochemical indicators and liver tissue injury caused by T2DM. The underlying hypoglycemic mechanism of PSLUT is thought to involve the regulation of protein kinase B (AKT-1) and glucose transporter 2 (GLUT-2). After four weeks of intervention, various PSLUT doses significantly reduced the Firmicutes to Bacteroidetes ratio at the phylum level and decreased the relative abundance of harmful bacteria at the genus level, including Acetatifactor, Candidatus-Arthromitus, and Turicibacter. This microbial shift was associated with improvements in hyperglycemia-related indicators such as FBG, the area under the curve (AUC) of OGTT, and homeostasis model assessment of insulin resistance (HOMA-IR), which are closely linked to these bacterial genera. Additionally, Lachnoclostridium, Parasutterella, Turicibacter, and Papillibacter were identified as key intestinal marker genera involved in T2DM progression through Spearman correlation analysis. In conclusion, PS enhanced LUT's hypoglycemic efficacy by modulating the transcription and protein expression levels of AKT-1 and GLUT-2, as well as the relative abundance of potential gut pathogens in T2DM mice. These results provide a theoretical foundation for advancing luteolin's application in the functional food industry and further investigating its hypoglycemic potential.
Collapse
Affiliation(s)
- Xiaodong Ge
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Tingting Liu
- Clinical Pharmacy Department, Yancheng Second People's Hospital, Yancheng, 224051, China
| | - Yaolin Wang
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Huanhuan Wen
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Zirui Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ligen Chen
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Jianda Xu
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, Changzhou, 213003, China
| | - Hongcheng Zhou
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, 224051, China
| | - Qin Wu
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, 224051, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rong Shao
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Wei Xu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
4
|
Arredondo-Damián JG, Martínez-Soto JM, Molina-Pelayo FA, Soto-Guzmán JA, Castro-Sánchez L, López-Soto LF, Candia-Plata MDC. Systematic review and bioinformatics analysis of plasma and serum extracellular vesicles proteome in type 2 diabetes. Heliyon 2024; 10:e25537. [PMID: 38356516 PMCID: PMC10865249 DOI: 10.1016/j.heliyon.2024.e25537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Background Type 2 diabetes (T2D) is a complex metabolic ailment marked by a global high prevalence and significant attention in primary healthcare settings due to its elevated morbidity and mortality rates. The pathophysiological mechanisms underlying the onset and progression of this disease remain subjects of ongoing investigation. Recent evidence underscores the pivotal role of the intricate intercellular communication network, wherein cell-derived vesicles, commonly referred to as extracellular vesicles (EVs), emerge as dynamic regulators of diabetes-related complications. Given that the protein cargo carried by EVs is contingent upon the metabolic conditions of the originating cells, particular proteins may serve as informative indicators for the risk of activating or inhibiting signaling pathways crucial to the progression of T2D complications. Methods In this study, we conducted a systematic review to analyze the published evidence on the proteome of EVs from the plasma or serum of patients with T2D, both with and without complications (PROSPERO: CRD42023431464). Results Nine eligible articles were systematically identified from the databases, and the proteins featured in these articles underwent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. We identified changes in the level of 426 proteins, with CST6, CD55, HBA1, S100A8, and S100A9 reported to have high levels, while FGL1 exhibited low levels. Conclusion These proteins are implicated in pathophysiological mechanisms such as inflammation, complement, and platelet activation, suggesting their potential as risk markers for T2D development and progression. Further studies are required to explore this topic in greater detail.
Collapse
Affiliation(s)
| | | | | | | | - Luis Castro-Sánchez
- University Center for Biomedical Research, University of Colima, Colima, Colima, Mexico
- CONAHCYT-University of Colima, Colima, Colima, Mexico
| | | | | |
Collapse
|
5
|
Kannan M, Ahmad F, Shankar EM. Editorial: Innate immunity: platelets and their interaction with other cellular elements in host defense and disease pathogenesis. Front Immunol 2023; 14:1292316. [PMID: 37841277 PMCID: PMC10569416 DOI: 10.3389/fimmu.2023.1292316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023] Open
Affiliation(s)
- Meganathan Kannan
- Blood and Vascular Biology Research Lab, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, India
| | - Firdos Ahmad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Esaki M. Shankar
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|
6
|
Ge X, Liu T, Chen Z, Zhang J, Yin X, Huang Z, Chen L, Zhao C, Shao R, Xu W. Fagopyrum tataricum ethanol extract ameliorates symptoms of hyperglycemia by regulating gut microbiota in type 2 diabetes mellitus mice. Food Funct 2023; 14:8487-8503. [PMID: 37655471 DOI: 10.1039/d3fo02385k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is typically accompanied by sudden weight loss, dyslipidemia-related indicators, decreased insulin sensitivity, and altered gut microbial communities. Fagopyrum tataricum possesses many biological activities, such as antioxidant, hypolipidemic, and hypotensive activities. However, only a few studies have attempted to elucidate the regulatory effects of F. tataricum ethanol extract (FTE) on intestinal microbial communities and its potential relationships with T2DM. In this study, we established a T2DM mouse model and investigated the regulatory effects of FTE on hyperglycemia symptoms and intestinal microbial communities. FTE intervention significantly improved the levels of fasting blood glucose, the area under the curve of oral glucose tolerance test (OGTT), and glycosylated serum protein, as well as pancreas islet function correlation index. In addition, FTE effectively improved hepatic and cecum injuries and insulin secretion due to T2DM. It was also revealed that the potential hypoglycemic mechanism of FTE was involved in the regulation of protein kinase B (AKT-1) and glucose transporter 2 (GLUT-2). Furthermore, compared with the Model group, the FTE-H intervention exhibited a significantly decreased ratio of Firmicutes to Bacteroidetes at the phylum level, reduced relative abundance of pernicious bacteria at the genus level, such as Desulfovibrio, Oscillibacter, Blautia, Parabacteroides, and Erysipelatoclostridium, and ameliorated inflammatory response and insulin resistance. Moreover, the correlation between gut microbiota and hypoglycemic indicators was predicted. The results showed that Lachnoclostridium, Lactobacillus, Oscillibacter, Bilophila, and Roseburia have the potential to be used as bacterial markers for T2DM. In conclusion, our research showed that FTE alleviates hyperglycemia symptoms by regulating the expression of AKT-1 and GLUT-2, as well as intestinal microbial communities in T2DM mice.
Collapse
Affiliation(s)
- Xiaodong Ge
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China.
| | - Tingting Liu
- Clinical Pharmacy Department, Yancheng Second People's Hospital, Yancheng, Jiangsu 224051, China
| | - Zhuo Chen
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Jiawei Zhang
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Xuemei Yin
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China.
| | - Zirui Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ligen Chen
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China.
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rong Shao
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China.
| | - Wei Xu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China.
| |
Collapse
|
7
|
Baraskar K, Thakur P, Shrivastava R, Shrivastava VK. Ameliorative effects of gallic acid on GLUT-4 expression and insulin resistance in high fat diet-induced obesity animal model mice, Mus musculus. J Diabetes Metab Disord 2023; 22:721-733. [PMID: 37255787 PMCID: PMC10225423 DOI: 10.1007/s40200-023-01194-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/01/2023] [Indexed: 06/01/2023]
Abstract
Reduced activity of glucose transporter type 4 isoform (GLUT-4), an insulin-sensitive glucose transporter distributed on the adipocytes, is associated with impaired insulin signaling. Insulin resistance resulting from alteration in glucose transport is responsible for exacerbating the emergence of metabolic abnormalities. The present study aimed to investigate the effects of the antidote gallic acid (GA) on expression-related changes in GLUT-4 and insulin receptor substrate-1 (IRS-1) in the visceral adipose tissue and on the subsequent development of insulin resistance in a high-fat diet (HFD)-induced obesity animal model. Methods: Twenty-four female Swiss albino mice were used and separated into the following four groups (six animals in each group): control group (standard pellet diet), HFD group, (60% HFD), HFD + GA group (60% HFD and GA 50 mg/kg body weight for 60 days), and GA group (GA 50 mg/kg body weight for 60 days). The effect of HFD on serum glucose, total cholesterol, triglycerides, high-density lipoprotein cholesterol (HDL), low-density lipoprotein (LDL) cholesterol, and insulin was evaluated. Additionally, homeostasis model assessment for insulin resistance (HOMA-IR) and glucose tolerance test (GTT) was performed. The serum antioxidative profile, which comprises oxidative parameters (superoxide dismutase [SOD], catalase [CAT], and glutathione peroxidase [GPx]) was measured. The effectiveness of GA against HFD-induced alteration in GLUT-4 and IRS-1 expression was also evaluated. Results: The experimental group that fed on GA + HFD had improved levels of serum triglycerides (p˂0.001), cholesterol (p˂0.05), and LDL cholesterol. GA administration also significantly improved hyperinsulinemia and HOMA-IR index (p˂0.001) in HFD mice. GA improved GTT results (p˂0.05); activity of SOD, CAT, and GPx (p˂0.05); and upregulated mRNA expression of GLUT-4 and IRS-1(p˂0.05) in the visceral adipose tissue in the HFD + GA experimental group. Conclusion: A link exists between insulin resistance, GLUT-4, and IRS-1 expression in the adipose tissue, and the initiation of metabolic syndrome, a condition characterized by obesity. GA may promote insulin signaling, glucose uptake, and lipid metabolism in the adipose tissues by mitigating oxidative stress. GA can also be used to manage obesity-related comorbidities including type 2 diabetes and dyslipidemia. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01194-5.
Collapse
Affiliation(s)
- Kirti Baraskar
- Endocrinology Unit, Biosciences Department, Barkatullah University, 462026 Bhopal, Madhya Pradesh India
| | - Pratibha Thakur
- Department of Medicine, Indira Gandhi Medical College, 171001 Shimla, Himachal Pradesh India
| | - Renu Shrivastava
- Zoology Department, Sri Sathya Sai, College for Women, 262024 Bhopal, Madhya Pradesh India
| | - Vinoy Kumar Shrivastava
- Endocrinology Unit, Biosciences Department, Barkatullah University, 462026 Bhopal, Madhya Pradesh India
| |
Collapse
|