1
|
Thy M, Magréault S, Zahar JR, Jullien V, Timsit JF. Improving pharmacokinetic/pharmacodynamic outcomes of antimicrobial therapy for pneumonia in the ICU. Expert Opin Pharmacother 2024; 25:2347-2365. [PMID: 39587056 DOI: 10.1080/14656566.2024.2432478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
INTRODUCTION Pneumonia remains a significant global health challenge due to its high prevalence and mortality rate, and challenging treatment. This review explores the best strategies to optimize the antibiotic therapy for pneumonia in critically ill patients, focusing on pharmacokinetics, pharmacodynamics, and therapeutic data. AREAS COVERED A review of scientific publications on severe pneumonia highlights the challenges of optimizing antibiotic use to improve lung diffusion, bacterial killing, and achieving PK/PD targets, emphasizing the need to understand microbiological epidemiology and MIC breakpoints. Key strategies like nebulization, therapeutic drug monitoring, and emerging technologies such as ELF TDM and nanomaterial-based drug delivery systems are essential for optimizing PK/PD outcomes and addressing antimicrobial resistance. EXPERT OPINION Improving our understanding of pulmonary pharmacokinetics and optimizing their tissue diffusion are instrumental for achieving precision antibiotic therapy for severe pneumonia. By addressing current limitations and embracing interdisciplinary collaboration, we can pave the way for more efficient personalized approaches in infectious disease management.
Collapse
Affiliation(s)
- Michael Thy
- Medical and infectious diseases ICU (MI2), AP-HP, Bichat Hospital, Université Paris Cité, Paris, France
- UMR 1137, IAME, INSERM, Université Paris Cité, Paris, France
- OUTCOME REA research network, Drancy, France
| | - Sophie Magréault
- UMR 1137, IAME, INSERM, Université Paris Cité, Paris, France
- Department of Pharmacology, AP-HP, Jean Verdier Hospital, Sorbonne Paris Nord, Bobigny, France
| | - Jean-Ralph Zahar
- UMR 1137, IAME, INSERM, Université Paris Cité, Paris, France
- OUTCOME REA research network, Drancy, France
- Clinical Microbiology Department, Avicenne Hospital, Bobigny, France
| | - Vincent Jullien
- UMR 1137, IAME, INSERM, Université Paris Cité, Paris, France
- Department of Pharmacology, AP-HP, Jean Verdier Hospital, Sorbonne Paris Nord, Bobigny, France
| | - Jean-François Timsit
- Medical and infectious diseases ICU (MI2), AP-HP, Bichat Hospital, Université Paris Cité, Paris, France
- UMR 1137, IAME, INSERM, Université Paris Cité, Paris, France
- OUTCOME REA research network, Drancy, France
| |
Collapse
|
2
|
Wang J, Zhao P, Zhao M, Zhang D, Chen S, Liu Y, Gao Y, Tie Y, Feng Z. Establishment and evaluation of a rapid method for the detection of bacterial pneumonia in hospitalized patients via multiplex PCR-capillary electrophoresis (MPCE). Microbiol Spectr 2024; 12:e0120224. [PMID: 39292009 PMCID: PMC11537078 DOI: 10.1128/spectrum.01202-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
Cost-effective molecular diagnostic techniques for bacterial pneumonia are limited. We designed primers for 13 bacteria, performed multiplex nucleic acid detection through fragment analysis to obtain pathogen identification results, and established a multiplex PCR-capillary electrophoresis (MPCE) method, which can simultaneously detect 13 pathogens associated with bacterial pneumonia. The sensitivity, specificity, and reproducibility of the MPCE assay were tested, and 420 clinical samples were used to assess the clinical detection ability of MPCE, with the culture method used as a reference. Samples with inconsistent results detected by the two methods were sent for Sanger sequencing. The minimum detection limit of MPCE for 13 bacteria was 6.0 × 103 cfu/mL~2.0 × 106 cfu/mL. No cross-reactivity was observed with other pathogens. The percentage of agreement for reproducibility analysis reached 100%. For the 420 sputum samples, when the culture method was used as the reference, the sensitivity of MPCE to 13 bacteria ranged from 80% to 100%. The specificity for 13 bacteria ranged from 67.1% to 100%. The percentage of agreement between the MPCE and the culture method ranged from 69.7% to 100%. There was no statistically significant difference (P > 0.05) in the detection of Escherichia coli, Enterobacter cloacae complex, Staphylococcus aureus, methicillin-resistant S. aureus, Streptococcus pyogenes, Moraxella catarrhalis, or Legionella pneumophila between the MPCE and the culture method. Clinical samples with negative cultures but positive MPCE results were validated by Sanger sequencing, and the results were consistent with those of MPCE. The MPCE method has high sensitivity and specificity for bacterial pneumonia, enabling the simultaneous and rapid detection of multiple pathogens. It is cost-effective and has potential for clinical application. IMPORTANCE This study successfully established a multiplex PCR-capillary electrophoresis detection system that can simultaneously detect 13 pathogens through a single detection method, significantly improving clinical efficiency. It is cost-effective and has potential for clinical application.
Collapse
Affiliation(s)
- Jie Wang
- Department of Laboratory Diagnosis, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Clinical Laboratory, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Pei Zhao
- Department of Clinical Laboratory, Hebei General Hospital, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Molecular Medicine, Hebei Clinical Research Center for Laboratory Medicine, Shijiazhuang, Hebei, China
| | - Mengchuan Zhao
- Department of Clinical Laboratory, Hebei General Hospital, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Molecular Medicine, Hebei Clinical Research Center for Laboratory Medicine, Shijiazhuang, Hebei, China
| | - Duoxiao Zhang
- Department of Clinical Laboratory, Hebei General Hospital, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Molecular Medicine, Hebei Clinical Research Center for Laboratory Medicine, Shijiazhuang, Hebei, China
| | - Shan Chen
- Department of Reagent Research and Development, Ningbo Health Gene Technologies Co., Ltd, Ningbo, Zhejiang, China
| | - Ying Liu
- Department of Reagent Research and Development, Ningbo Health Gene Technologies Co., Ltd, Ningbo, Zhejiang, China
| | - Yuan Gao
- Department of Clinical Laboratory, Hebei General Hospital, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Molecular Medicine, Hebei Clinical Research Center for Laboratory Medicine, Shijiazhuang, Hebei, China
| | - Yanqing Tie
- Department of Clinical Laboratory, Hebei General Hospital, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Molecular Medicine, Hebei Clinical Research Center for Laboratory Medicine, Shijiazhuang, Hebei, China
| | - Zhishan Feng
- Department of Laboratory Diagnosis, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Clinical Laboratory, Hebei General Hospital, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Molecular Medicine, Hebei Clinical Research Center for Laboratory Medicine, Shijiazhuang, Hebei, China
| |
Collapse
|
3
|
Martin-Loeches I, Restrepo MI. COVID-19 vs. non-COVID-19 related nosocomial pneumonias: any differences in etiology, prevalence, and mortality? Curr Opin Crit Care 2024; 30:463-469. [PMID: 39150059 DOI: 10.1097/mcc.0000000000001192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
PURPOSE OF REVIEW This review explores the similarities and differences between coronavirus disease 2019 (COVID-19)-related and non-COVID-related nosocomial pneumonia, particularly hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP). It critically assesses the etiology, prevalence, and mortality among hospitalized patients, emphasizing the burden of these infections during the period before and after the severe acute respiratory syndrome coronavirus 2 pandemic. RECENT FINDINGS Recent studies highlight an increase in nosocomial infections during the COVID-19 pandemic, with a significant rise in cases involving severe bacterial and fungal superinfections among mechanically ventilated patients. These infections include a higher incidence of multidrug-resistant organisms (MDROs), complicating treatment and recovery. Notably, COVID-19 patients have shown a higher prevalence of VAP than those with influenza or other respiratory viruses, influenced by extended mechanical ventilation and immunosuppressive treatments like corticosteroids. SUMMARY The findings suggest that COVID-19 has exacerbated the frequency and severity of nosocomial infections, particularly VAP. These complications not only extend hospital stays and increase healthcare costs but also lead to higher morbidity and mortality rates. Understanding these patterns is crucial for developing targeted preventive and therapeutic strategies to manage and mitigate nosocomial infections during regular or pandemic care.
Collapse
Affiliation(s)
- Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organisation (MICRO), St James's Hospital, Dublin, Ireland
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid
- Pulmonary Department, Hospital Clinic, Universitat de Barcelona, IDIBAPS, ICREA, Barcelona, Spain
| | - Marcos I Restrepo
- Section of Pulmonary & Critical Care Medicine, South Texas Veterans Healthcare System, GRECC and University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
4
|
Ding L, Yang Z, Sun B. Understanding blaNDM-1 gene regulation in CRKP infections: toward novel antimicrobial strategies for hospital-acquired pneumonia. Mol Med 2024; 30:29. [PMID: 38395744 PMCID: PMC10893750 DOI: 10.1186/s10020-024-00794-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The escalating challenge of Carbapenem-resistant Klebsiella pneumoniae (CRKP) in hospital-acquired pneumonia (HAP) is closely linked to the blaNDM-1 gene. This study explores the regulatory mechanisms of blaNDM-1 expression and aims to enhance antibacterial tactics to counteract the spread and infection of resistant bacteria. METHODS KP and CRKP strains were isolated from HAP patients' blood samples. Transcriptomic sequencing (RNA-seq) identified significant upregulation of blaNDM-1 gene expression in CRKP strains. Bioinformatics analysis revealed blaNDM-1 gene involvement in beta-lactam resistance pathways. CRISPR-Cas9 was used to delete the blaNDM-1 gene, restoring sensitivity. In vitro and in vivo experiments demonstrated enhanced efficacy with Imipenem and Thanatin or Subatan combination therapy. RESULTS KP and CRKP strains were isolated with significant upregulation of blaNDM-1 in CRKP strains identified by RNA-seq. The Beta-lactam resistance pathway was implicated in bioinformatics analysis. Knockout of blaNDM-1 reinstated sensitivity in CRKP strains. Further, co-treatment with Imipenem, Thanatin, or Subactam markedly improved antimicrobial effectiveness. CONCLUSION Silencing blaNDM-1 in CRKP strains from HAP patients weakens their Carbapenem resistance and optimizes antibacterial strategies. These results provide new theoretical insights and practical methods for treating resistant bacterial infections.
Collapse
Affiliation(s)
- Liang Ding
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, 226001, Jiangsu Province, China
| | - Zheng Yang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, 226001, Jiangsu Province, China
| | - Baier Sun
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
5
|
Galerneau LM, Bailly S, Terzi N, Ruckly S, Garrouste-Orgeas M, Oziel J, Hong Tuan Ha V, Gainnier M, Siami S, Dupuis C, Forel JM, Dartevel A, Dessajan J, Adrie C, Goldgran-Toledano D, Laurent V, Argaud L, Reignier J, Pepin JL, Darmon M, Timsit JF. Non-ventilator-associated ICU-acquired pneumonia (NV-ICU-AP) in patients with acute exacerbation of COPD: From the French OUTCOMEREA cohort. Crit Care 2023; 27:359. [PMID: 37726796 PMCID: PMC10508006 DOI: 10.1186/s13054-023-04631-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Non-ventilator-associated ICU-acquired pneumonia (NV-ICU-AP), a nosocomial pneumonia that is not related to invasive mechanical ventilation (IMV), has been less studied than ventilator-associated pneumonia, and never in the context of patients in an ICU for severe acute exacerbation of chronic obstructive pulmonary disease (AECOPD), a common cause of ICU admission. This study aimed to determine the factors associated with NV-ICU-AP occurrence and assess the association between NV-ICU-AP and the outcomes of these patients. METHODS Data were extracted from the French ICU database, OutcomeRea™. Using survival analyses with competing risk management, we sought the factors associated with the occurrence of NV-ICU-AP. Then we assessed the association between NV-ICU-AP and mortality, intubation rates, and length of stay in the ICU. RESULTS Of the 844 COPD exacerbations managed in ICUs without immediate IMV, NV-ICU-AP occurred in 42 patients (5%) with an incidence density of 10.8 per 1,000 patient-days. In multivariate analysis, prescription of antibiotics at ICU admission (sHR, 0.45 [0.23; 0.86], p = 0.02) and no decrease in consciousness (sHR, 0.35 [0.16; 0.76]; p < 0.01) were associated with a lower risk of NV-ICU-AP. After adjusting for confounders, NV-ICU-AP was associated with increased 28-day mortality (HR = 3.03 [1.36; 6.73]; p < 0.01), an increased risk of intubation (csHR, 5.00 [2.54; 9.85]; p < 0.01) and with a 10-day increase in ICU length of stay (p < 0.01). CONCLUSION We found that NV-ICU-AP incidence reached 10.8/1000 patient-days and was associated with increased risks of intubation, 28-day mortality, and longer stay for patients admitted with AECOPD.
Collapse
Affiliation(s)
- Louis-Marie Galerneau
- Medical Intensive Care Unit, University Hospital of Grenoble Alpes, 10217 38043, Grenoble, CS, France.
- Grenoble Alpes University, INSERM 1300, HP2, Grenoble, France.
| | | | - Nicolas Terzi
- Medical Intensive Care Unit, University Hospital of Grenoble Alpes, 10217 38043, Grenoble, CS, France
- Grenoble Alpes University, INSERM 1300, HP2, Grenoble, France
| | | | - Maité Garrouste-Orgeas
- Medical Unit, French and British Hospital Cognacq-Jay Fondation, Levallois-Perret, France
| | - Johanna Oziel
- Intensive Care Unit, Avicenne Hospital, AP-HP, Paris, France
| | | | - Marc Gainnier
- Medical Intensive Care Unit, La Timone Hospital, Marseille, France
| | - Shidasp Siami
- Critical Care Medicine Unit, Etampes-Dourdan Hospital, Etampes, France
| | - Claire Dupuis
- Medical Intensive Care Unit, Gabriel Montpied University Hospital, Clermont-Ferrand, France
| | - Jean-Marie Forel
- Medical Intensive Care Unit, Nord University Hospital, Marseille, France
| | - Anaïs Dartevel
- Medical Intensive Care Unit, University Hospital of Grenoble Alpes, 10217 38043, Grenoble, CS, France
| | - Julien Dessajan
- Medical and Infectious Diseases Intensive Care Unit (MI2), Bichat Hospital, AP-HP, Paris, France
| | - Christophe Adrie
- Polyvalent Intensive Care Unit, Delafontaine Hospital, Saint-Denis, France
| | | | | | - Laurent Argaud
- Medical Intensive Care Unit, Edouard Herriot Hospital, Lyon Civil Hospices, Lyon, France
| | - Jean Reignier
- Medical Intensive Care Unit, Nantes University Hospital, Nantes, France
| | | | - Michael Darmon
- Intensive Care Unit, Saint-Louis Hospital, AP-HP, Paris, France
| | - Jean-François Timsit
- Medical and Infectious Diseases Intensive Care Unit (MI2), Bichat Hospital, AP-HP, Paris, France
| |
Collapse
|
6
|
Nosokomiale Pneumonie und beatmungsassoziierte Krankenhauserreger. ANÄSTHESIE NACHRICHTEN 2022. [PMCID: PMC9411841 DOI: 10.1007/s44179-022-00078-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|