1
|
Masaki A, Miyamoto N, Harshavardhini S, Nagata N, Tsuchikane Y, Sekimoto H, Kodama Y, Suzuki T, Shinomura T. Light promotes asexual reproduction and mediates transcriptomic changes in Pediastrum duplex. JOURNAL OF PLANT RESEARCH 2024; 137:1127-1135. [PMID: 39162971 DOI: 10.1007/s10265-024-01567-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/28/2024] [Indexed: 08/21/2024]
Abstract
The green alga Pediastrum duplex forms colonies through asexual reproduction and has a unique life cycle. To elucidate the mechanisms that regulate the asexual reproductive cycle in P. duplex, we analyzed the effects of light on the processes and gene expression involved in each step of the asexual reproductive cycle, revealing light irradiation to be essential for increasing the number of colonies. Among the processes in the asexual reproductive cycle, the transition from cell hypertrophy to zoospore formation could proceed even in the dark if glucose was added to the medium. Transcriptome analysis revealed that the expression of different groups of genes was significantly promoted or suppressed before and after the number of colonies increased. Our findings indicate that the asexual reproductive cycle of P. duplex includes a process promoted by photosynthesis. This study enhances our understanding of the growth characteristics of P. duplex and other microalgae.
Collapse
Affiliation(s)
- Akari Masaki
- Department of Biosciences, Plant Molecular and Cellular Biology Laboratory, Faculty of Science and Engineering School of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, Japan
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, Utsunomiya, Tochigi, Japan
| | - Narumi Miyamoto
- Plant Molecular and Cellular Biology Laboratory, Graduate School of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, Japan
| | - Sridharan Harshavardhini
- Plant Molecular and Cellular Biology Laboratory, Graduate School of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, Japan
| | - Noriko Nagata
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo, Japan
| | - Yuki Tsuchikane
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Hiroyuki Sekimoto
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, Utsunomiya, Tochigi, Japan
| | - Tomohiro Suzuki
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, Utsunomiya, Tochigi, Japan
| | - Tomoko Shinomura
- Department of Biosciences, Plant Molecular and Cellular Biology Laboratory, Faculty of Science and Engineering School of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, Japan.
- Plant Molecular and Cellular Biology Laboratory, Graduate School of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, Japan.
| |
Collapse
|
2
|
Tayebati H, Pajoum Shariati F, Soltani N, Sepasi Tehrani H. Effect of various light spectra on amino acids and pigment production of Arthrospira platensis using flat-plate photobioreactor. Prep Biochem Biotechnol 2024; 54:1028-1039. [PMID: 34289777 DOI: 10.1080/10826068.2021.1941102] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Today, the use of nutrients derived from natural bioactive compounds application in the food, pharmaceutical, and cosmetic industries is on the increase. This paper aimed to evaluate the amino acids profile (essential and non-essential) and pigments composition (chlorophyll a, carotenoids, and phycocyanin) of Arthrospira platensis (a blue-green microalga) cultivation in a flat-plate photobioreactor under various types of light-emitting diodes (red: 620-680 nm, white: 380-780 nm, yellow: 570-600nm, blue: 445-480 nm). The maximum biomass concentration (604.96 mg L-1) occurred when the red LED was applied for cultivation, and the minimum biomass concentration (279.39 mg L-1) was obtained under blue LED. The sequence of pigments and amino acids concentrations (mg L-1culture volume) was approximately in accordance with the biomass productivity. It means the red light produces the maximum concentration of pigments (chlorophyll a: 5.42, carotenoids: 2.92, phycocyanin: 67.54 mg L-1) and amino acids (essential amino acids: 110.47, nonessential amino acids: 179.10 mg L-1). Nevertheless, when these values were measured in mg per g of dry weight, the utmost contents were observed in microalgal products cultivated under blue LED. These consequences are due to the highest cell productivity and the most extended length of cells that occurred under red and blue LEDs, respectively.
Collapse
Affiliation(s)
- Hanieh Tayebati
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farshid Pajoum Shariati
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Neda Soltani
- Department of Petroleum Microbiology, Institute of Applied Science, ACECR, Tehran, Iran
| | - Hessam Sepasi Tehrani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Mohebi Najafabadi M, Naeimpoor F. Boosting β-carotene and storage materials productivities by two-stage mixed and monochromatic exposure stresses on Dunaliella salina. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:609-620. [PMID: 35815399 DOI: 10.1080/15226514.2022.2095976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Growth and product formation of Dunaliella salina, a potent β-carotene source, were investigated under single and two-stage monochromic and mixed illuminations using two LEDs, each emitting red (R), blue (B), or white (W) light. Targeting cell growth in single-stage, WW, RR, and BB, as well as RB illumination, were compared and mixed RB illumination was found most supportive showing the highest cell growth of 1.81 ± 0.008 g/L. Subsequently, new two-stage illuminations (RB-BB and RB-RR) were designed to investigate growth and bio-product formation using RB illumination similarly in the 1st stage followed by separate BB and RR illuminations within the 2nd stage. RB-BB strategy resulted in enhanced productivities of lipid (7.6 mg/L/day), starch (20 mg/L/day), and β-carotene (0.4 mg/L/day) which were respectively higher by 80, 70, and 81% compared to single-stage control (WW). RB-RR strategy stimulated cell growth while it resulted in decreased productivities of products (other than chlorophyll). The highest biomass level of 2.2 g/L and nitrate removal of 80% were obtained in RB-RR while RB-BB resulted in the lowest values of 1.2 g/L and 48%, respectively. Appropriate selection of illuminations in two-stage strategies, therefore, functions to enhance the productivity of important metabolites or cell growth which can have generic applications in other microalgae.NOVELTY STATEMENTAlthough the effects of a variety of stressful conditions on microalgae product lines have been investigated so far, the effects of two-stage mixed and monochromatic exposure as a light management strategy have not yet been considered. This strategy was inspired by the fact that cell mass alongside the cell content of a product contributes to product productivity. Accordingly, the growth of Dunaliella salina was first examined under single-stage mixed and monochromatic exposure where mixed red-blue light led to the highest biomass formation. Shifting from mixed to different monochromatic exposures was then examined as a stress factor to stimulate product formation. Higher cell factories obtained under mixed exposure in the 1st stage escalated product productivities within the 2nd stage when exposed to monochromatic light.
Collapse
Affiliation(s)
- Mojgan Mohebi Najafabadi
- Biotechnology Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Fereshteh Naeimpoor
- Biotechnology Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| |
Collapse
|
4
|
A Preliminary Study on the Mechanisms of Growth and Physiological Changes in Response to Different Temperatures in Neopyropia yezoensis (Rhodophyta). WATER 2022. [DOI: 10.3390/w14142175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As an economically valuable red seaweed, Neopyropia yezoensis (Rhodophyta) is cultivated in intertidal areas, and its growth and development are greatly influenced by environmental factors such as temperature. Although much effort has been devoted to delineating the influence, the underlying cellular and molecular mechanisms remain elusive. In this study, the gametophyte blades and protoplasts were cultured at different temperatures (13 °C, 17 °C, 21 °C, 25 °C). Only blades cultured at 13 °C maintained a normal growth state (the relative growth rate of thalli was positive, and the content of phycobiliprotein and pigments changed little); the survival and division rates of protoplasts were high at 13 °C, but greatly decreased with the increase in temperature, suggesting that 13 °C is suitable for the growth of N. yezoensis. In our efforts to delineate the underlying mechanism, a partial coding sequence (CDS) of Cyclin B and the complete CDS of cyclin-dependent-kinase B (CDKB) in N. yezoensis were cloned. Since Cyclin B controls G2/M phase transition by activating CDK and regulates the progression of cell division, we then analyzed how Cyclin B expression in the gametophyte blades might change with temperatures by qPCR and Western blotting. The results showed that the expression of Cyclin B first increased and then decreased after transfer from 13 °C to higher temperatures, and the downregulation of Cyclin B was more obvious with the increase in temperature. The phosphorylation of extracellular signal-regulated kinase (ERK) decreased with the increase in temperature, suggesting inactivation of ERK at higher temperatures; inhibition of ERK by FR180204 significantly decreased the survival and division rates of protoplasts cultured at 13 °C. These results suggest that downregulation of Cyclin B and inactivation of ERK might be involved in negatively regulating the survival and division of protoplasts and the growth of gametophyte blades of N. yezoensis at high temperatures.
Collapse
|
5
|
Zhao K, Li Y, Yan H, Hu Q, Han D. Regulation of Light Spectra on Cell Division of the Unicellular Green Alga Haematococcus pluvialis: Insights from Physiological and Lipidomic Analysis. Cells 2022; 11:cells11121956. [PMID: 35741084 PMCID: PMC9221946 DOI: 10.3390/cells11121956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Commercial scale production of natural astaxanthin is currently conducted through cultivation of the green alga Haematococcus pluvialis. This study comprehensively investigated the impact of seven different light spectra on the growth, morphology and photosynthesis of H. pluvialis vegetative cells. Further, the lipidomes of vegetative H. pluvialis grown under various light spectra were qualitatively and quantitatively analyzed using liquid chromatography/mass spectrometry (LC/MS). The results showed the existence of blue light—alone or with red light—promoted cell division, while pure red light or white light enabled increased cell sizes, cellular pigment, starch and lipid contents, and biomass production. Although the photosynthetic performance of H. pluvialis measured as chlorophyll a fluorescence was not significantly affected by light spectra, the lipid profiles, particularly chloroplast membrane lipids, showed remarkable changes with light spectra. The contents of most lipid species in the blue/red light 1/2 group, which showed the fastest cell division, remained at a moderate level compared with those under other light spectra, indicating the fastest dividing cells were featured by a fine-tuned lipid profile. From biotechnical perspective, this comprehensive study can provide insights into the development of appropriate light regimes to promote the cell density or biomass of H. pluvialis mass culture.
Collapse
Affiliation(s)
- Kuo Zhao
- Center for Microalgal Biofuels and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (K.Z.); (Y.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100086, China
| | - Yanhua Li
- Center for Microalgal Biofuels and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (K.Z.); (Y.L.)
| | - Hailong Yan
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (H.Y.); (Q.H.)
| | - Qiang Hu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (H.Y.); (Q.H.)
| | - Danxiang Han
- Center for Microalgal Biofuels and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (K.Z.); (Y.L.)
- Correspondence:
| |
Collapse
|
6
|
Supra-Optimal Temperature: An Efficient Approach for Overaccumulation of Starch in the Green Alga Parachlorella kessleri. Cells 2021; 10:cells10071806. [PMID: 34359975 PMCID: PMC8306380 DOI: 10.3390/cells10071806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 11/25/2022] Open
Abstract
Green algae are fast-growing microorganisms that are considered promising for the production of starch and neutral lipids, and the chlorococcal green alga Parachlorella kessleri is a favorable model, as it can produce both starch and neutral lipids. P. kessleri commonly divides into more than two daughter cells by a specific mechanism—multiple fission. Here, we used synchronized cultures of the alga to study the effects of supra-optimal temperature. Synchronized cultures were grown at optimal (30 °C) and supra-optimal (40 °C) temperatures and incident light intensities of 110 and 500 μmol photons m−2 s−1. The time course of cell reproduction (DNA replication, cellular division), growth (total RNA, protein, cell dry matter, cell size), and synthesis of energy reserves (net starch, neutral lipid) was studied. At 40 °C, cell reproduction was arrested, but growth and accumulation of energy reserves continued; this led to the production of giant cells enriched in protein, starch, and neutral lipids. Furthermore, we examined whether the increased temperature could alleviate the effects of deuterated water on Parachlorella kessleri growth and division; results show that supra-optimal temperature can be used in algal biotechnology for the production of protein, (deuterated) starch, and neutral lipids.
Collapse
|
7
|
Sanchez-Tarre V, Kiparissides A. The effects of illumination and trophic strategy on gene expression in Chlamydomonas reinhardtii. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Effect of light spectrum on isolation of microalgae from urban wastewater and growth characteristics of subsequent cultivation of the isolated species. ALGAL RES 2018. [DOI: 10.1016/j.algal.2017.11.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Shelton DE, Leslie MP, Michod RE. Models of cell division initiation in Chlamydomonas: A challenge to the consensus view. J Theor Biol 2017; 412:186-197. [PMID: 27816674 DOI: 10.1016/j.jtbi.2016.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/19/2016] [Accepted: 10/25/2016] [Indexed: 11/28/2022]
Abstract
We develop and compare two models for division initiation in cells of the unicellular green alga Chlamydomonas reinhardtii, a topic that has remained controversial in spite of years of empirical work. Achieving a better understanding of C. reinhardtii cell cycle regulation is important because this species is used in studies of fundamental eukaryotic cell features and in studies of the evolution of multicellularity. C. reinhardtii proliferates asexually by multiple fission, interspersing rapid rounds of symmetric division with prolonged periods of growth. Our Model 1 reflects major elements of the current consensus view on C. reinhardtii division initiation, with cells first growing to a specific size, then waiting for a particular time prior to division initiation. In Model 2, our proposed alternative, growing cells divide when they have reached a growth-rate-dependent target size. The two models imply a number of different empirical patterns. We highlight these differences alongside published data, which currently fall short of unequivocally distinguishing these differences in predicted cell behavior. Nevertheless, several lines of evidence are suggestive of more Model 2-like behavior than Model 1-like behavior. Our specification of these models adds rigor to issues that have too often been worked out in relation to loose, verbal models and is directly relevant to future development of informative experiments.
Collapse
Affiliation(s)
- Deborah E Shelton
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E. Lowell St. Tucson, AZ 85721, United States.
| | - Martin P Leslie
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E. Lowell St. Tucson, AZ 85721, United States
| | - Richard E Michod
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E. Lowell St. Tucson, AZ 85721, United States; Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA 93106, United States
| |
Collapse
|
10
|
Wagner I, Steinweg C, Posten C. Mono- and dichromatic LED illumination leads to enhanced growth and energy conversion for high-efficiency cultivation of microalgae for application in space. Biotechnol J 2016; 11:1060-71. [DOI: 10.1002/biot.201500357] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/08/2016] [Accepted: 04/26/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Ines Wagner
- Dept. of Bioprocess Engineering; KIT, Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Christian Steinweg
- Dept. of Bioprocess Engineering; KIT, Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Clemens Posten
- Dept. of Bioprocess Engineering; KIT, Karlsruhe Institute of Technology; Karlsruhe Germany
| |
Collapse
|
11
|
Kianianmomeni A, Hallmann A. Algal Photobiology: A Rich Source of Unusual Light Sensitive Proteins for Synthetic Biology and Optogenetics. Methods Mol Biol 2016; 1408:37-54. [PMID: 26965114 DOI: 10.1007/978-1-4939-3512-3_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The light absorption system in eukaryotic (micro)algae includes highly sensitive photoreceptors, which change their conformation in response to different light qualities on a subsecond time scale and induce physiological and behavioral responses. Some of the light sensitive modules are already in use to engineer and design photoswitchable tools for control of cellular and physiological activities in living organisms with various degrees of complexity. Thus, identification of new light sensitive modules will not only extend the source material for the generation of optogenetic tools but also foster the development of new light-based strategies in cell signaling research. Apart from searching for new proteins with suitable light-sensitive modules, smaller variants of existing light-sensitive modules would be helpful to simplify the construction of hybrid genes and facilitate the generation of mutated and chimerized modules. Advances in genome and transcriptome sequencing as well as functional analysis of photoreceptors and their interaction partners will help to discover new light sensitive modules.
Collapse
Affiliation(s)
- Arash Kianianmomeni
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany.
| | - Armin Hallmann
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
| |
Collapse
|
12
|
Choi YK, Kumaran RS, Jeon HJ, Song HJ, Yang YH, Lee SH, Song KG, Kim KJ, Singh V, Kim HJ. LED light stress induced biomass and fatty acid production in microalgal biosystem, Acutodesmus obliquus. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 145:245-253. [PMID: 25791881 DOI: 10.1016/j.saa.2015.03.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/29/2015] [Accepted: 03/01/2015] [Indexed: 06/04/2023]
Abstract
Microbial algal system can serve as a potential source for the production of much high value bioproducts and biofuels. The quality and intensity of light are the key elements to optimize the production of algal biomass and fatty acid contents. This study presents the effect of differential LED flashing light conditions on the growth of microalgae, Acutodesmus obliquus. The induced light stress was optimized for its biomass and fatty acid content. The microalgae are exposed to various frequency of intermittent LED flashing light (blue and red lights) at three different phases in the 18 day cell growth (log, lag and stationary phase). The frequency of light flashing rate was adjusted to 120, 10, 5, 3.75, and 1 times per min. The effect of light stress on growth and fatty acids composition of A. obliquus induced an increase in algae growth and fatty acid production. Different optimal timing for light stress was subjected to elucidate the effect of light stress on algae growth and fatty acid production. The results showed an increase in the algae growth (1.2mg/L of chl a content) under light stress condition at FT10 (flashing time, 10 times per min) from the initial day (log phase) compared with the control experiment (0.4 mg/L of chl a content). However, the total fatty acids (71 mg/g) and volumetric FAME production (9.4 ml/l) level was found to be significant under FT5 (flashing time, 5 times per min), adopting flashing light from day 10 (stationary phase). TEM studies also revealed the deposition of lipid to be largest in the 18 day old cells under flashing light (FT5) condition, representing maximum accumulation of lipids bodies (up to 770 nm diameter in particle size) occupying approximately 42% of the total area of the cell.
Collapse
Affiliation(s)
- Yong-Keun Choi
- Department of Biological Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Rangarajulu Senthil Kumaran
- Department of Biological Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea.
| | - Hyeon Jin Jeon
- Department of Biological Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Hak-Jin Song
- Department of Biological Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Sang Hyun Lee
- Department of Biological Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Kyung-Guen Song
- Water Environment Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang-Gu, Seoul 130-650, Republic of Korea
| | - Kwang Jin Kim
- Urban Agriculture Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon 441-440, Republic of Korea
| | - Vijay Singh
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Hyung Joo Kim
- Department of Biological Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| |
Collapse
|
13
|
Cross FR, Umen JG. The Chlamydomonas cell cycle. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:370-392. [PMID: 25690512 PMCID: PMC4409525 DOI: 10.1111/tpj.12795] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 05/18/2023]
Abstract
The position of Chlamydomonas within the eukaryotic phylogeny makes it a unique model in at least two important ways: as a representative of the critically important, early-diverging lineage leading to plants; and as a microbe retaining important features of the last eukaryotic common ancestor (LECA) that has been lost in the highly studied yeast lineages. Its cell biology has been studied for many decades and it has well-developed experimental genetic tools, both classical (Mendelian) and molecular. Unlike land plants, it is a haploid with very few gene duplicates, making it ideal for loss-of-function genetic studies. The Chlamydomonas cell cycle has a striking temporal and functional separation between cell growth and rapid cell division, probably connected to the interplay between diurnal cycles that drive photosynthetic cell growth and the cell division cycle; it also exhibits a highly choreographed interaction between the cell cycle and its centriole-basal body-flagellar cycle. Here, we review the current status of studies of the Chlamydomonas cell cycle. We begin with an overview of cell-cycle control in the well-studied yeast and animal systems, which has yielded a canonical, well-supported model. We discuss briefly what is known about similarities and differences in plant cell-cycle control, compared with this model. We next review the cytology and cell biology of the multiple-fission cell cycle of Chlamydomonas. Lastly, we review recent genetic approaches and insights into Chlamydomonas cell-cycle regulation that have been enabled by a new generation of genomics-based tools.
Collapse
Affiliation(s)
| | - James G Umen
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| |
Collapse
|
14
|
Wagner I, Braun M, Slenzka K, Posten C. Photobioreactors in Life Support Systems. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015. [PMID: 26206570 DOI: 10.1007/10_2015_327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Life support systems for long-term space missions or extraterrestrial installations have to fulfill major functions such as purification of water and regeneration of atmosphere as well as the generation of food and energy. For almost 60 years ideas for biological life support systems have been collected and various concepts have been developed and tested. Microalgae as photosynthetic organisms have played a major role in most of these concepts. This review deals with the potentials of using eukaryotic microalgae for life support systems and highlights special requirements and frame conditions for designing space photobioreactors especially regarding illumination and aeration. Mono- and dichromatic illumination based on LEDs is a promising alternative for conventional systems and preliminary results yielded higher photoconversion efficiencies (PCE) for dichromatic red/blue illumination than white illumination. Aeration for microgravity conditions should be realized in a bubble-free manner, for example, via membranes. Finally, a novel photobioreactor concept for space application is introduced being parameterized and tested with the microalga Chlamydomonas reinhardtii. This system has already been tested during two parabolic flight campaigns.
Collapse
Affiliation(s)
- Ines Wagner
- Department Bioprocess Engineering, KIT, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, Karlsruhe, Germany
| | - Markus Braun
- OHB Ag Life Sciences, Universitätsallee 27-29, Bremen, Germany
| | - Klaus Slenzka
- Gravitational Biology, DLR, Königswinterer Str. 522-524, Bonn, Germany.
| | - Clemens Posten
- Department Bioprocess Engineering, KIT, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, Karlsruhe, Germany
| |
Collapse
|
15
|
Kianianmomeni A. Cell-type specific light-mediated transcript regulation in the multicellular alga Volvox carteri. BMC Genomics 2014; 15:764. [PMID: 25194509 PMCID: PMC4167131 DOI: 10.1186/1471-2164-15-764] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 09/03/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The multicellular green alga Volvox carteri makes use of none less than 13 photoreceptors, which are mostly expressed in a cell-type specific manner. This gives reason to believe that trasncriptome pattern of each cell type could change differentially in response to environmental light. Here, the cell-type specific changes of various transcripts from different pathways in response to blue, red and far-red light were analyzed. RESULTS In response to different light qualities, distinct changes in transcript accumulation of genes encoding proteins involved in chlorophyll and carotenoid biosynthesis, light-harvesting complexes, circadian clock and cell cycle control were observed. Namely, blue light tends to be effective to accumulate transcripts in the somatic cells; while red light leads to accumulate transcripts predominantly in the reproductive cells. Blue light also induced marked accumulation of two components of circadian rhythms only in the somatic cells, indicating that these clock-relevant components are affected by blue light in a cell-type specific manner. Further, we show that photosynthetic associated genes are regulated distinctly among cell types by different light qualities. CONCLUSION Our results suggest that Volvox uses different sophisticated cell-type specific light signaling pathways to modulate expression of genes involved in various cellular and metabolic pathways including circadian rhythms and photosynthesis in response to environmental light.
Collapse
Affiliation(s)
- Arash Kianianmomeni
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr, 25, D-33615 Bielefeld, Germany.
| |
Collapse
|
16
|
Bišová K, Zachleder V. Cell-cycle regulation in green algae dividing by multiple fission. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2585-602. [PMID: 24441762 DOI: 10.1093/jxb/ert466] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Green algae dividing by multiple fission comprise unrelated genera but are connected by one common feature: under optimal growth conditions, they can divide into more than two daughter cells. The number of daughter cells, also known as the division number, is relatively stable for most species and usually ranges from 4 to 16. The number of daughter cells is dictated by growth rate and is modulated by light and temperature. Green algae dividing by multiple fission can thus be used to study coordination of growth and progression of the cell cycle. Algal cultures can be synchronized naturally by alternating light/dark periods so that growth occurs in the light and DNA replication(s) and nuclear and cellular division(s) occur in the dark; synchrony in such cultures is almost 100% and can be maintained indefinitely. Moreover, the pattern of cell-cycle progression can be easily altered by differing growth conditions, allowing for detailed studies of coordination between individual cell-cycle events. Since the 1950s, green algae dividing by multiple fission have been studied as a unique model for cell-cycle regulation. Future sequencing of algal genomes will provide additional, high precision tools for physiological, taxonomic, structural, and molecular studies in these organisms.
Collapse
Affiliation(s)
- Kateřina Bišová
- Laboratory of Cell Cycles of Algae, Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| | - Vilém Zachleder
- Laboratory of Cell Cycles of Algae, Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| |
Collapse
|
17
|
Kim DG, Lee C, Park SM, Choi YE. Manipulation of light wavelength at appropriate growth stage to enhance biomass productivity and fatty acid methyl ester yield using Chlorella vulgaris. BIORESOURCE TECHNOLOGY 2014; 159:240-248. [PMID: 24657754 DOI: 10.1016/j.biortech.2014.02.078] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/21/2014] [Accepted: 02/22/2014] [Indexed: 06/03/2023]
Abstract
LEDs light offer several advantages over the conventional lamps, thereby being considered as the optimal light sources for microalgal cultivation. In this study, various light-emitting diodes (LEDs) especially red and blue color with different light wavelengths were employed to explore the effects of light source on phototrophic cultivation of Chlorella vulgaris. Blue light illumination led to significantly increased cell size, whereas red light resulted in small-sized cell with active divisions. Based on the discovery of the effect of light wavelengths on microalgal biology, we then applied appropriate wavelength at different growth stages; blue light was illuminated first and then shifted to red light. By doing so, biomass and lipid productivity of C. vulgaris could be significantly increased, compared to that in the control. These results will shed light on a novel approach using LED light for microalgal biotechnology.
Collapse
Affiliation(s)
- Dae Geun Kim
- Department of Bioprocess Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 561-756, Republic of Korea
| | - Changsu Lee
- Department of Bioprocess Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 561-756, Republic of Korea
| | - Seung-Moon Park
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan-si, Jeollabuk-do 570-752, Republic of Korea
| | - Yoon-E Choi
- LED Agri-bio Fusion Technology Research Center, Chonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do 570-752, Republic of Korea; Department of Bioactive Material Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 561-756, Republic of Korea.
| |
Collapse
|
18
|
Kianianmomeni A, Hallmann A. Algal photoreceptors: in vivo functions and potential applications. PLANTA 2014; 239:1-26. [PMID: 24081482 DOI: 10.1007/s00425-013-1962-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/09/2013] [Indexed: 06/02/2023]
Abstract
Many algae, particularly microalgae, possess a sophisticated light-sensing system including photoreceptors and light-modulated signaling pathways to sense environmental information and secure the survival in a rapidly changing environment. Over the last couple of years, the multifaceted world of algal photobiology has enriched our understanding of the light absorption mechanisms and in vivo function of photoreceptors. Moreover, specific light-sensitive modules have already paved the way for the development of optogenetic tools to generate light switches for precise and spatial control of signaling pathways in individual cells and even in complex biological systems.
Collapse
Affiliation(s)
- Arash Kianianmomeni
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany,
| | | |
Collapse
|
19
|
Oldenhof H, Zachleder V, Van den Ende H. The cell cycle of Chlamydomonas reinhardtii: the role of the commitment point. Folia Microbiol (Praha) 2007; 52:53-60. [PMID: 17571796 DOI: 10.1007/bf02932138] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Chlamydomonas reinhardtii cells can double their size several times during the light period before they enter the division phase. To explain the role of the commitment point (defined as the moment in the cell cycle after which cells can complete the cell cycle independently of light) and the moment of initiation of cell division we investigated whether the timing of commitment to cell division and cell division itself are dependent upon cell size or if they are under control of a timer mechanism that measures a period of constant duration. The time point at which cells attain commitment to cell division was dependent on the growth rate and coincided with the moment at which cells have approximately doubled in size. The timing of cell division was temperature-dependent and took place after a period of constant duration from the onset of the light period, irrespective of the light intensity and timing of the commitment point. We concluded that at the commitment point all the prerequisites are checked, which is required for progression through the cell cycle; the commitment point is not the moment at which cell division is initiated but it functions as a checkpoint, which ensures that cells have passed the minimum cell size required for the cell division.
Collapse
Affiliation(s)
- H Oldenhof
- Laboratory of Plant Physiology, Swammerdam Institute for Life Sciences, University ofAmsterdam, 1098 SM Amsterdam, The Netherlands.
| | | | | |
Collapse
|
20
|
Cepák V, Pribyl P, Vítová M. The effect of light color on the nucleocytoplasmic and chloroplast cycle of the green chlorococcal alga Scenedesmus obliquus. Folia Microbiol (Praha) 2006; 51:342-8. [PMID: 17007440 DOI: 10.1007/bf02931828] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The color of light (white, red, blue, and green) had a significant effect on the growth and reproductive processes (both in the nucleocytoplasmic and chloroplast compartment of the cells) in synchronous cultures of Scenedesmus obliquus. This effect decreased in the order red > white > blue > green. In the same order, the light phase of the cell cycle (time when first autospores started to be released) was prolonged. The length of dark phase (time when 100 % of daughters were allowed to release from mothers) was not influenced and was the same for all colors. Critical cell size for cell division in green light was shifted to a smaller size (compared with cells grown in other lights) and so was the size of released daughters. The nuclear cycle was slowed in blue and even in green light, contrary to cells grown in red and white light. At the beginning of the cell cycle, one-nucleus daughters possess approximately 10 nucleoids; during the cell cycle their number doubled in all variants before the division of nuclei. Both events were delayed in cultures grown more slowly most markedly in green light. Smaller daughters in the green variant possessed a lower number of nucleoids. Motile cells released in continuous green or blue lights but not in red one were rarely observed.
Collapse
Affiliation(s)
- V Cepák
- Center of Phycology, Institute of Botany, Academy of Sciences of the Czech Republic, Trebon, Czechia.
| | | | | |
Collapse
|