1
|
Gudi S, M P, Alagappan P, Raigar OP, Halladakeri P, Gowda RSR, Kumar P, Singh G, Tamta M, Susmitha P, Amandeep, Saini DK. Fashion meets science: how advanced breeding approaches could revolutionize the textile industry. Crit Rev Biotechnol 2024; 44:1653-1679. [PMID: 38453184 DOI: 10.1080/07388551.2024.2314309] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 03/09/2024]
Abstract
Natural fibers have garnered considerable attention owing to their desirable textile properties and advantageous effects on human health. Nevertheless, natural fibers lag behind synthetic fibers in terms of both quality and yield, as these attributes are largely genetically determined. In this article, a comprehensive overview of the natural and synthetic fiber production landscape over the last 10 years is presented, with a particular focus on the role of scientific breeding techniques in improving fiber quality traits in key crops like cotton, hemp, ramie, and flax. Additionally, the article delves into cutting-edge genomics-assisted breeding techniques, including QTL mapping, genome-wide association studies, transgenesis, and genome editing, and their potential role in enhancing fiber quality traits in these crops. A user-friendly compendium of 11226 available QTLs and significant marker-trait associations derived from 136 studies, associated with diverse fiber quality traits in these crops is furnished. Furthermore, the potential applications of transcriptomics in these pivotal crops, elucidating the distinct genes implicated in augmenting fiber quality attributes are investigated. Additionally, information on 11257 candidate/characterized or cloned genes sourced from various studies, emphasizing their key role in the development of high-quality fiber crops is collated. Additionally, the review sheds light on the current progress of marker-assisted selection for fiber quality traits in each crop, providing detailed insights into improved cultivars released for different fiber crops. In conclusion, it is asserted that the application of modern breeding tools holds tremendous potential in catalyzing a transformative shift in the textile industry.
Collapse
Affiliation(s)
- Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- Department of Plant Pathology, ND State University, Fargo, ND, USA
| | - Pavan M
- Department of Apparel and Textile Science, Punjab Agricultural University, Ludhiana, India
| | - Praveenkumar Alagappan
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Om Prakash Raigar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Priyanka Halladakeri
- Department of Genetics and Plant Breeding, Anand Agricultural University, Anand, India
- VNR Seeds, Pvt. Ltd, Raipur, India
| | - Rakshith S R Gowda
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- Centre for Crop and Food Innovation, Murdoch University, Perth, Australia
| | - Pradeep Kumar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- Department of Agronomy, Horticulture, and Plant Science, SD State University, Brookings, SD, USA
| | - Gurjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- AgriLife Research Center at Beaumont, TX A&M University, College Station, TX, USA
| | - Meenakshi Tamta
- Department of Apparel and Textile Science, Punjab Agricultural University, Ludhiana, India
| | - Pusarla Susmitha
- Regional Agricultural Research Station, Acharya N.G. Ranga Agricultural University, Anakapalle, India
| | - Amandeep
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- Department of Plant and Soil Science, TX Tech University, Lubbock, TX, USA
| |
Collapse
|
2
|
Galinousky D, Mokshina N, Padvitski T, Ageeva M, Bogdan V, Kilchevsky A, Gorshkova T. The Toolbox for Fiber Flax Breeding: A Pipeline From Gene Expression to Fiber Quality. Front Genet 2020; 11:589881. [PMID: 33281880 PMCID: PMC7690631 DOI: 10.3389/fgene.2020.589881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/22/2020] [Indexed: 01/22/2023] Open
Abstract
The goal of any plant breeding program is to improve quality of a target crop. Crop quality is a comprehensive feature largely determined by biological background. To improve the quality parameters of crops grown for the production of fiber, a functional approach was used to search for genes suitable for the effective manipulation of technical fiber quality. A key step was to identify genes with tissue and stage-specific pattern of expression in the developing fibers. In the current study, we investigated the relationship between gene expression evaluated in bast fibers of developing flax plants and the quality parameters of technical fibers measured after plant harvesting. Based on previously published transcriptomic data, two sets of genes that are upregulated in fibers during intrusive growth and tertiary cell wall deposition were selected. The expression level of the selected genes and fiber quality parameters were measured in fiber flax, linseed (oil flax) cultivars, and wild species that differ in type of yield and fiber quality parameters. Based on gene expression data, linear regression models for technical stem length, fiber tensile strength, and fiber flexibility were constructed, resulting in the identification of genes that have high potential for manipulating fiber quality. Chromosomal localization and single nucleotide polymorphism distribution in the selected genes were characterized for the efficacy of their use in conventional breeding and genome editing programs. Transcriptome-based selection is a highly targeted functional approach that could be used during the development of new cultivars of various crops.
Collapse
Affiliation(s)
- Dmitry Galinousky
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
- Laboratory of Ecological Genetics and Biotechnology, Institute of Genetics and Cytology, The National Academy of Sciences of Belarus, Minsk, Belarus
| | - Natalia Mokshina
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Tsimafei Padvitski
- Cellular Network and Systems Biology Group, University of Cologne, CECAD, Cologne, Germany
| | - Marina Ageeva
- Laboratory of Microscopy, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Victor Bogdan
- Laboratory of Fiber Flax Breeding, Institute of Flax, Ustie, Belarus
| | - Alexander Kilchevsky
- Laboratory of Ecological Genetics and Biotechnology, Institute of Genetics and Cytology, The National Academy of Sciences of Belarus, Minsk, Belarus
| | - Tatyana Gorshkova
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| |
Collapse
|
3
|
Chabi M, Goulas E, Leclercq CC, de Waele I, Rihouey C, Cenci U, Day A, Blervacq AS, Neutelings G, Duponchel L, Lerouge P, Hausman JF, Renaut J, Hawkins S. A Cell Wall Proteome and Targeted Cell Wall Analyses Provide Novel Information on Hemicellulose Metabolism in Flax. Mol Cell Proteomics 2017; 16:1634-1651. [PMID: 28706005 PMCID: PMC5587863 DOI: 10.1074/mcp.m116.063727] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 07/10/2017] [Indexed: 12/20/2022] Open
Abstract
Experimentally-generated (nanoLC-MS/MS) proteomic analyses of four different flax organs/tissues (inner-stem, outer-stem, leaves and roots) enriched in proteins from 3 different sub-compartments (soluble-, membrane-, and cell wall-proteins) was combined with publically available data on flax seed and whole-stem proteins to generate a flax protein database containing 2996 nonredundant total proteins. Subsequent multiple analyses (MapMan, CAZy, WallProtDB and expert curation) of this database were then used to identify a flax cell wall proteome consisting of 456 nonredundant proteins localized in the cell wall and/or associated with cell wall biosynthesis, remodeling and other cell wall related processes. Examination of the proteins present in different flax organs/tissues provided a detailed overview of cell wall metabolism and highlighted the importance of hemicellulose and pectin remodeling in stem tissues. Phylogenetic analyses of proteins in the cell wall proteome revealed an important paralogy in the class IIIA xyloglucan endo-transglycosylase/hydrolase (XTH) family associated with xyloglucan endo-hydrolase activity.Immunolocalisation, FT-IR microspectroscopy, and enzymatic fingerprinting indicated that flax fiber primary/S1 cell walls contained xyloglucans with typical substituted side chains as well as glucuronoxylans in much lower quantities. These results suggest a likely central role of xyloglucans and endotransglucosylase/hydrolase activity in flax fiber formation and cell wall remodeling processes.
Collapse
Affiliation(s)
- Malika Chabi
- From the ‡Université Lille, CNRS, UMR 8576, UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Estelle Goulas
- From the ‡Université Lille, CNRS, UMR 8576, UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Celine C Leclercq
- §Department Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), L-4422 Belvaux, Luxembourg
| | - Isabelle de Waele
- **Université Lille, CNRS, UMR 8516, Laboratoire de Spectrochimie Infrarouge et Raman, F 59655 Villeneuve d'Ascq, France
| | - Christophe Rihouey
- ‖Laboratoire Polymère Biopolymère Surface, UMR6270 CNRS, Institut de Recherche et d'Innovation Biomédicale, Normandie Université, Mont-Saint-Aignan, France
| | - Ugo Cenci
- ‡‡Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics Dalhousie University, Halifax, Canada
| | - Arnaud Day
- From the ‡Université Lille, CNRS, UMR 8576, UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Anne-Sophie Blervacq
- From the ‡Université Lille, CNRS, UMR 8576, UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Godfrey Neutelings
- From the ‡Université Lille, CNRS, UMR 8576, UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Ludovic Duponchel
- **Université Lille, CNRS, UMR 8516, Laboratoire de Spectrochimie Infrarouge et Raman, F 59655 Villeneuve d'Ascq, France
| | - Patrice Lerouge
- ¶Laboratoire Glyco-MEV EA 4358, Institut de Recherche et d'Innovation Biomédicale, Normandie Université, Mont-Saint-Aignan, France
| | - Jean-François Hausman
- §Department Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), L-4422 Belvaux, Luxembourg
| | - Jenny Renaut
- §Department Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), L-4422 Belvaux, Luxembourg
| | - Simon Hawkins
- From the ‡Université Lille, CNRS, UMR 8576, UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France;
| |
Collapse
|
4
|
Le Roy J, Blervacq AS, Créach A, Huss B, Hawkins S, Neutelings G. Spatial regulation of monolignol biosynthesis and laccase genes control developmental and stress-related lignin in flax. BMC PLANT BIOLOGY 2017; 17:124. [PMID: 28705193 PMCID: PMC5513022 DOI: 10.1186/s12870-017-1072-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/02/2017] [Indexed: 05/26/2023]
Abstract
BACKGROUND Bast fibres are characterized by very thick secondary cell walls containing high amounts of cellulose and low lignin contents in contrast to the heavily lignified cell walls typically found in the xylem tissues. To improve the quality of the fiber-based products in the future, a thorough understanding of the main cell wall polymer biosynthetic pathways is required. In this study we have carried out a characterization of the genes involved in lignin biosynthesis in flax along with some of their regulation mechanisms. RESULTS We have first identified the members of the phenylpropanoid gene families through a combination of in silico approaches. The more specific lignin genes were further characterized by high throughput transcriptomic approaches in different organs and physiological conditions and their cell/tissue expression was localized in the stems, roots and leaves. Laccases play an important role in the polymerization of monolignols. This multigenic family was determined and a miRNA was identified to play a role in the posttranscriptional regulation by cleaving the transcripts of some specific genes shown to be expressed in lignified tissues. In situ hybridization also showed that the miRNA precursor was expressed in the young xylem cells located near the vascular cambium. The results obtained in this work also allowed us to determine that most of the genes involved in lignin biosynthesis are included in a unique co-expression cluster and that MYB transcription factors are potentially good candidates for regulating these genes. CONCLUSIONS Target engineering of cell walls to improve plant product quality requires good knowledge of the genes responsible for the production of the main polymers. For bast fiber plants such as flax, it is important to target the correct genes from the beginning since the difficulty to produce transgenic material does not make possible to test a large number of genes. Our work determined which of these genes could be potentially modified and showed that it was possible to target different regulatory pathways to modify lignification.
Collapse
Affiliation(s)
- Julien Le Roy
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Anne-Sophie Blervacq
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Anne Créach
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Brigitte Huss
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Simon Hawkins
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Godfrey Neutelings
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
| |
Collapse
|
5
|
Guo Y, Qiu C, Long S, Chen P, Hao D, Preisner M, Wang H, Wang Y. Digital gene expression profiling of flax (Linum usitatissimum L.) stem peel identifies genes enriched in fiber-bearing phloem tissue. Gene 2017; 626:32-40. [PMID: 28479385 DOI: 10.1016/j.gene.2017.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/11/2017] [Accepted: 05/02/2017] [Indexed: 10/19/2022]
Abstract
To better understand the molecular mechanisms and gene expression characteristics associated with development of bast fiber cell within flax stem phloem, the gene expression profiling of flax stem peels and leaves were screened, using Illumina's Digital Gene Expression (DGE) analysis. Four DGE libraries (2 for stem peel and 2 for leaf), ranging from 6.7 to 9.2 million clean reads were obtained, which produced 7.0 million and 6.8 million mapped reads for flax stem peel and leave, respectively. By differential gene expression analysis, a total of 975 genes, of which 708 (73%) genes have protein-coding annotation, were identified as phloem enriched genes putatively involved in the processes of polysaccharide and cell wall metabolism. Differential expression genes (DEGs) was validated using quantitative RT-PCR, the expression pattern of all nine genes determined by qRT-PCR fitted in well with that obtained by sequencing analysis. Cluster and Gene Ontology (GO) analysis revealed that a large number of genes related to metabolic process, catalytic activity and binding category were expressed predominantly in the stem peels. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the phloem enriched genes suggested approximately 111 biological pathways. The large number of genes and pathways produced from DGE sequencing will expand our understanding of the complex molecular and cellular events in flax bast fiber development and provide a foundation for future studies on fiber development in other bast fiber crops.
Collapse
Affiliation(s)
- Yuan Guo
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Caisheng Qiu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Songhua Long
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Ping Chen
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Dongmei Hao
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Marta Preisner
- Faculty of Biotechnology, University of Wrocław, Wrocław 51-148, Poland
| | - Hui Wang
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Yufu Wang
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| |
Collapse
|
6
|
Gorshkov O, Mokshina N, Gorshkov V, Chemikosova S, Gogolev Y, Gorshkova T. Transcriptome portrait of cellulose-enriched flax fibres at advanced stage of specialization. PLANT MOLECULAR BIOLOGY 2017; 93:431-449. [PMID: 27981388 DOI: 10.1007/s11103-016-0571-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 12/02/2016] [Indexed: 05/13/2023]
Abstract
Functional specialization of cells is among the most fundamental processes of higher organism ontogenesis. The major obstacle to studying this phenomenon in plants is the difficulty of isolating certain types of cells at defined stages of in planta development for in-depth analysis. A rare opportunity is given by the developed model system of flax (Linum usitatissimum L.) phloem fibres that can be purified from the surrounding tissues at the stage of the tertiary cell wall deposition. The performed comparison of the whole transcriptome profile in isolated fibres and other portions of the flax stem, together with fibre metabolism characterization, helped to elucidate the general picture of the advanced stage of plant cell specialization and to reveal novel participants potentially involved in fibre metabolism regulation and cell wall formation. Down-regulation of all genes encoding proteins involved in xylan and lignin synthesis and up-regulation of genes for the specific set of transcription factors transcribed during tertiary cell wall formation were revealed. The increased abundance of transcripts for several glycosyltransferases indicated the enzymes that may be involved in synthesis of fibre-specific version of rhamnogalacturonan I.
Collapse
Affiliation(s)
- Oleg Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Centre, Russian Academy of Science, Lobachevsky str., 2/31, Kazan, 420111, Russia
| | - Natalia Mokshina
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Centre, Russian Academy of Science, Lobachevsky str., 2/31, Kazan, 420111, Russia
| | - Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Centre, Russian Academy of Science, Lobachevsky str., 2/31, Kazan, 420111, Russia
| | - Svetlana Chemikosova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Centre, Russian Academy of Science, Lobachevsky str., 2/31, Kazan, 420111, Russia
| | - Yuri Gogolev
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Centre, Russian Academy of Science, Lobachevsky str., 2/31, Kazan, 420111, Russia
| | - Tatyana Gorshkova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Centre, Russian Academy of Science, Lobachevsky str., 2/31, Kazan, 420111, Russia.
| |
Collapse
|
7
|
Dmitriev AA, Krasnov GS, Rozhmina TA, Kishlyan NV, Zyablitsin AV, Sadritdinova AF, Snezhkina AV, Fedorova MS, Yurkevich OY, Muravenko OV, Bolsheva NL, Kudryavtseva AV, Melnikova NV. Glutathione S-transferases and UDP-glycosyltransferases Are Involved in Response to Aluminum Stress in Flax. FRONTIERS IN PLANT SCIENCE 2016; 7:1920. [PMID: 28066475 PMCID: PMC5174120 DOI: 10.3389/fpls.2016.01920] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/02/2016] [Indexed: 05/19/2023]
Abstract
About 30% of the world's ice-free land area is occupied by acid soils. In soils with pH below 5, aluminum (Al) releases to the soil solution, and becomes highly toxic for plants. Therefore, breeding of varieties that are resistant to Al is needed. Flax (Linum usitatissimum L.) is grown worldwide for fiber and seed production. Al toxicity in acid soils is a serious problem for flax cultivation. However, very little is known about mechanisms of flax resistance to Al and the genetics of this resistance. In the present work, we sequenced 16 transcriptomes of flax cultivars resistant (Hermes and TMP1919) and sensitive (Lira and Orshanskiy) to Al, which were exposed to control conditions and aluminum treatment for 4, 12, and 24 h. In total, 44.9-63.3 million paired-end 100-nucleotide reads were generated for each sequencing library. Based on the obtained high-throughput sequencing data, genes with differential expression under aluminum exposure were revealed in flax. The majority of the top 50 up-regulated genes were involved in transmembrane transport and transporter activity in both the Al-resistant and Al-sensitive cultivars. However, genes encoding proteins with glutathione transferase and UDP-glycosyltransferase activity were in the top 50 up-regulated genes only in the flax cultivars resistant to aluminum. For qPCR analysis in extended sampling, two UDP-glycosyltransferases (UGTs), and three glutathione S-transferases (GSTs) were selected. The general trend of alterations in the expression of the examined genes was the up-regulation under Al stress, especially after 4 h of Al exposure. Moreover, in the flax cultivars resistant to aluminum, the increase in expression was more pronounced than that in the sensitive cultivars. We speculate that the defense against the Al toxicity via GST antioxidant activity is the probable mechanism of the response of flax plants to aluminum stress. We also suggest that UGTs could be involved in cell wall modification and protection from reactive oxygen species (ROS) in response to Al stress in L. usitatissimum. Thus, GSTs and UGTs, probably, play an important role in the response of flax to Al via detoxification of ROS and cell wall modification.
Collapse
Affiliation(s)
- Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Tatiana A. Rozhmina
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
- All-Russian Research Institute for FlaxTorzhok, Russia
| | | | | | - Asiya F. Sadritdinova
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | | | - Maria S. Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Olga Y. Yurkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| |
Collapse
|
8
|
Zhang N, Deyholos MK. RNASeq Analysis of the Shoot Apex of Flax (Linum usitatissimum) to Identify Phloem Fiber Specification Genes. FRONTIERS IN PLANT SCIENCE 2016; 7:950. [PMID: 27446177 PMCID: PMC4923117 DOI: 10.3389/fpls.2016.00950] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/15/2016] [Indexed: 05/25/2023]
Affiliation(s)
- Ningyu Zhang
- Department of Biological Sciences, University of AlbertaEdmonton, AB, Canada
| | | |
Collapse
|
9
|
Chantreau M, Chabbert B, Billiard S, Hawkins S, Neutelings G. Functional analyses of cellulose synthase genes in flax (Linum usitatissimum) by virus-induced gene silencing. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1312-24. [PMID: 25688574 DOI: 10.1111/pbi.12350] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 01/05/2015] [Accepted: 01/08/2015] [Indexed: 05/08/2023]
Abstract
Flax (Linum usitatissimum) bast fibres are located in the stem cortex where they play an important role in mechanical support. They contain high amounts of cellulose and so are used for linen textiles and in the composite industry. In this study, we screened the annotated flax genome and identified 14 distinct cellulose synthase (CESA) genes using orthologous sequences previously identified. Transcriptomics of 'primary cell wall' and 'secondary cell wall' flax CESA genes showed that some were preferentially expressed in different organs and stem tissues providing clues as to their biological role(s) in planta. The development for the first time in flax of a virus-induced gene silencing (VIGS) approach was used to functionally evaluate the biological role of different CESA genes in stem tissues. Quantification of transcript accumulation showed that in many cases, silencing not only affected targeted CESA clades, but also had an impact on other CESA genes. Whatever the targeted clade, inactivation by VIGS affected plant growth. In contrast, only clade 1- and clade 6-targeted plants showed modifications in outer-stem tissue organization and secondary cell wall formation. In these plants, bast fibre number and structure were severely impacted, suggesting that the targeted genes may play an important role in the establishment of the fibre cell wall. Our results provide new fundamental information about cellulose biosynthesis in flax that should facilitate future plant improvement/engineering.
Collapse
Affiliation(s)
- Maxime Chantreau
- UMR INRA 1281 Stress Abiotiques et Différenciation des Végétaux Cultivés, Université Lille Nord de France Lille 1, Villeneuve d'Ascq, France
| | - Brigitte Chabbert
- INRA, UMR 614 Fractionnement des AgroRessources et Environnement, Reims, France
- UMR 614 Fractionnement des AgroRessources et Environnement, Université de Reims Champagne-Ardenne, Reims, France
| | - Sylvain Billiard
- UMR CNRS 8198 Laboratoire de Génétique & Evolution des Populations Végétales, Université Lille Nord de France Lille 1, Villeneuve d'Ascq, France
| | - Simon Hawkins
- UMR INRA 1281 Stress Abiotiques et Différenciation des Végétaux Cultivés, Université Lille Nord de France Lille 1, Villeneuve d'Ascq, France
| | - Godfrey Neutelings
- UMR INRA 1281 Stress Abiotiques et Différenciation des Végétaux Cultivés, Université Lille Nord de France Lille 1, Villeneuve d'Ascq, France
| |
Collapse
|
10
|
Samanta P, Sadhukhan S, Basu A. Identification of differentially expressed transcripts associated with bast fibre development in Corchorus capsularis by suppression subtractive hybridization. PLANTA 2015; 241:371-385. [PMID: 25319611 DOI: 10.1007/s00425-014-2187-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/30/2014] [Indexed: 06/04/2023]
Abstract
The present study documented the predominant role of WRKY transcription factor in controlling genes of different pathways related to fibre formation in jute and could be a candidate gene for the improvement of jute fiber. Understanding of molecular mechanism associated with bast fibre development is of immense significance to achieve desired improvement in jute (Corchorus sp.). Therefore, suppression subtractive hybridization was successfully applied to identify genes involved in fibre developmental process in jute. The subtracted library of normal Corchorus capsularis as tester with respect to its fibre-deficient mutant as driver resulted in 2,685 expressed sequence tags which were assumed to represent the differentially expressed genes between two genotypes. The identified expressed sequence tags were assembled and clustered into 225 contigs and 231 singletons. Among these 456 unigenes, 377 were classified into 15 different functional categories while others were of unknown functional category. Reverse Northern analysis of the unigenes showed distinct variation in hybridization intensity of 11 transcripts between two genotypes tested. The findings were also documented by Northern and real-time PCR analysis. Varied expression level of these transcripts suggested their crucial involvement in fibre development in this species. Among these transcripts, WRKY transcription factor was documented to be a most important transcript which was in agreement with its known role in other plant species in possible regulation related to cell wall biosynthesis, expansion and lignification. This report constitutes first systematic analysis of genes involved in fibre development process in jute. It may be suggested that the information generated in this study would be useful for genetic improvement of fibre traits in this plant species.
Collapse
Affiliation(s)
- Pradipta Samanta
- Advanced Laboratory for Plant Genetic Engineering, Indian Institute of Technology, Kharagpur, 721302, India
| | | | | |
Collapse
|
11
|
Gea G, Kjell S, Jean-François H. Integrated -omics: a powerful approach to understanding the heterogeneous lignification of fibre crops. Int J Mol Sci 2013; 14:10958-78. [PMID: 23708098 PMCID: PMC3709712 DOI: 10.3390/ijms140610958] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/15/2013] [Accepted: 05/17/2013] [Indexed: 12/15/2022] Open
Abstract
Lignin and cellulose represent the two main components of plant secondary walls and the most abundant polymers on Earth. Quantitatively one of the principal products of the phenylpropanoid pathway, lignin confers high mechanical strength and hydrophobicity to plant walls, thus enabling erect growth and high-pressure water transport in the vessels. Lignin is characterized by a high natural heterogeneity in its composition and abundance in plant secondary cell walls, even in the different tissues of the same plant. A typical example is the stem of fibre crops, which shows a lignified core enveloped by a cellulosic, lignin-poor cortex. Despite the great value of fibre crops for humanity, however, still little is known on the mechanisms controlling their cell wall biogenesis, and particularly, what regulates their spatially-defined lignification pattern. Given the chemical complexity and the heterogeneous composition of fibre crops' secondary walls, only the use of multidisciplinary approaches can convey an integrated picture and provide exhaustive information covering different levels of biological complexity. The present review highlights the importance of combining high throughput -omics approaches to get a complete understanding of the factors regulating the lignification heterogeneity typical of fibre crops.
Collapse
Affiliation(s)
- Guerriero Gea
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg; E-Mails: (G.G.); (S.K.)
| | - Sergeant Kjell
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg; E-Mails: (G.G.); (S.K.)
| | - Hausman Jean-François
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg; E-Mails: (G.G.); (S.K.)
| |
Collapse
|
12
|
Day A, Fénart S, Neutelings G, Hawkins S, Rolando C, Tokarski C. Identification of cell wall proteins in the flax (Linum usitatissimum
) stem. Proteomics 2013; 13:812-25. [DOI: 10.1002/pmic.201200257] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 10/08/2012] [Accepted: 11/14/2012] [Indexed: 11/12/2022]
Affiliation(s)
- Arnaud Day
- Université de Lille 1 Sciences et Technologies and Protéomique; Modifications Post-traductionnelles et Glycobiologie IFR 147, Villeneuve d'Ascq France
- Stress Abiotiques et Différenciation des Végétaux Cultivés (SADV); INRA UMR 1281, Villeneuve d'Ascq France
| | - Stéphane Fénart
- Université de Lille 1 Sciences et Technologies and Protéomique; Modifications Post-traductionnelles et Glycobiologie IFR 147, Villeneuve d'Ascq France
- Stress Abiotiques et Différenciation des Végétaux Cultivés (SADV); INRA UMR 1281, Villeneuve d'Ascq France
| | - Godfrey Neutelings
- Université de Lille 1 Sciences et Technologies and Protéomique; Modifications Post-traductionnelles et Glycobiologie IFR 147, Villeneuve d'Ascq France
- Stress Abiotiques et Différenciation des Végétaux Cultivés (SADV); INRA UMR 1281, Villeneuve d'Ascq France
| | - Simon Hawkins
- Université de Lille 1 Sciences et Technologies and Protéomique; Modifications Post-traductionnelles et Glycobiologie IFR 147, Villeneuve d'Ascq France
- Stress Abiotiques et Différenciation des Végétaux Cultivés (SADV); INRA UMR 1281, Villeneuve d'Ascq France
| | - Christian Rolando
- Université de Lille 1 Sciences et Technologies and Protéomique; Modifications Post-traductionnelles et Glycobiologie IFR 147, Villeneuve d'Ascq France
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP); USR CNRS 3290; Villeneuve d'Ascq; France
| | - Caroline Tokarski
- Université de Lille 1 Sciences et Technologies and Protéomique; Modifications Post-traductionnelles et Glycobiologie IFR 147, Villeneuve d'Ascq France
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP); USR CNRS 3290; Villeneuve d'Ascq; France
| |
Collapse
|
13
|
Long SH, Deng X, Wang YF, Li X, Qiao RQ, Qiu CS, Guo Y, Hao DM, Jia WQ, Chen XB. Analysis of 2,297 expressed sequence tags (ESTs) from a cDNA library of flax (Linum ustitatissimum L.) bark tissue. Mol Biol Rep 2012; 39:6289-96. [PMID: 22294104 DOI: 10.1007/s11033-012-1450-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/23/2012] [Indexed: 10/14/2022]
Abstract
Bast fibre crops are the second most important natural fibre crops following cotton. Of these, flax (Linum ustitatissimum L.) is the most widely planted in the world, with its fibre used for high quality linen textile. A cDNA library of flax bark tissues was constructed with the purpose of identifying genes involved in the Bast fibre development. A total of 2,297 unigene sequences were obtained from 3,200 randomly selected clones of the cDNA library. These sequences were grouped into 155 clusters and 2,142 singletons, which have been submitted to the GenBank databases. By putative functional annotation, 23.3% of these sequences were similar to known proteins in GenBank, 44.0% of these sequences were similar to unknown proteins, and 32.7% of these sequences showed no significant similarity to any other protein sequences in existing databases. Classified by the Gene Ontology, 24.8, 23.1 and 14.3% were assigned to molecular function, biological process, and cellular component GO terms, respectively. By further bioinformatics approaches, about 110 ESTs matched cell wall related genes in the MAIZEWALL database, representing 16 functional categories of all 19 categories, of which, the most abundant category was protein synthesis. Based on the PlantTFDB database, 39 of the 64 transcription factor families in the Arabidopsis thaliana genome were identified as being involved in flax cell wall formation. The sequences and bioinformatics analysis data generated in this paper will be useful for gene expression, cloning and genetic engineering studies to characterize bast fibre development and improve the properties of the bast fibres.
Collapse
Affiliation(s)
- Song-Hua Long
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348 Xianjia Lake West Road, Changsha, 410205, Hunan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Huis R, Morreel K, Fliniaux O, Lucau-Danila A, Fénart S, Grec S, Neutelings G, Chabbert B, Mesnard F, Boerjan W, Hawkins S. Natural hypolignification is associated with extensive oligolignol accumulation in flax stems. PLANT PHYSIOLOGY 2012; 158:1893-915. [PMID: 22331411 PMCID: PMC3320194 DOI: 10.1104/pp.111.192328] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/09/2012] [Indexed: 05/02/2023]
Abstract
Flax (Linum usitatissimum) stems contain cells showing contrasting cell wall structure: lignified in inner stem xylem tissue and hypolignified in outer stem bast fibers. We hypothesized that stem hypolignification should be associated with extensive phenolic accumulation and used metabolomics and transcriptomics to characterize these two tissues. (1)H nuclear magnetic resonance clearly distinguished inner and outer stem tissues and identified different primary and secondary metabolites, including coniferin and p-coumaryl alcohol glucoside. Ultrahigh-performance liquid chromatography-Fourier transform ion cyclotron resonance-mass spectrometry aromatic profiling (lignomics) identified 81 phenolic compounds, of which 65 were identified, to our knowledge, for the first time in flax and 11 for the first time in higher plants. Both aglycone forms and glycosides of monolignols, lignin oligomers, and (neo)lignans were identified in both inner and outer stem tissues, with a preponderance of glycosides in the hypolignified outer stem, indicating the existence of a complex monolignol metabolism. The presence of coniferin-containing secondary metabolites suggested that coniferyl alcohol, in addition to being used in lignin and (neo)lignan formation, was also utilized in a third, partially uncharacterized metabolic pathway. Hypolignification of bast fibers in outer stem tissues was correlated with the low transcript abundance of monolignol biosynthetic genes, laccase genes, and certain peroxidase genes, suggesting that flax hypolignification is transcriptionally regulated. Transcripts of the key lignan genes Pinoresinol-Lariciresinol Reductase and Phenylcoumaran Benzylic Ether Reductase were also highly abundant in flax inner stem tissues. Expression profiling allowed the identification of NAC (NAM, ATAF1/2, CUC2) and MYB transcription factors that are likely involved in regulating both monolignol production and polymerization as well as (neo)lignan production.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Simon Hawkins
- Université Lille Nord de France, Lille 1 UMR 1281, F–59650 Villeneuve d’Ascq cedex, France (R.H., A.L., S.F., S.G., G.N., S.H.); INRA, UMR 1281 Stress Abiotiques et Différenciation des Végétaux Cultivés, F–59650 Villeneuve d’Ascq, France (R.H., A.L., S.F., S.G., G.N., S.H.); Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (K.M., W.B.); Department of Plant Biotechnology and Bioinformatics, University of Ghent, 9052 Ghent, Belgium (K.M., W.B.); Université de Picardie Jules Verne, EA 3900, Biologie des Plantes et Innovation, Laboratoire de Phytotechnologie, F–80037 Amiens cedex 1, France (O.F., F.M.); INRA, UMR 614 Fractionnement des AgroRessources et Environnement, F–51100 Reims, France (B.C.); and Université de Reims Champagne-Ardenne, UMR 614 Fractionnement des AgroRessources et Environnement, F–51100 Reims, France (B.C.)
| |
Collapse
|
15
|
Roach MJ, Mokshina NY, Badhan A, Snegireva AV, Hobson N, Deyholos MK, Gorshkova TA. Development of cellulosic secondary walls in flax fibers requires beta-galactosidase. PLANT PHYSIOLOGY 2011; 156:1351-63. [PMID: 21596948 PMCID: PMC3135967 DOI: 10.1104/pp.111.172676] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 05/17/2011] [Indexed: 05/21/2023]
Abstract
Bast (phloem) fibers, tension wood fibers, and other cells with gelatinous-type secondary walls are rich in crystalline cellulose. In developing bast fibers of flax (Linum usitatissimum), a galactan-enriched matrix (Gn-layer) is gradually modified into a mature cellulosic gelatinous-layer (G-layer), which ultimately comprises most of the secondary cell wall. Previous studies have correlated this maturation process with expression of a putative β-galactosidase. Here, we demonstrate that β-galactosidase activity is in fact necessary for the dynamic remodeling of polysaccharides that occurs during normal secondary wall development in flax fibers. We found that developing stems of transgenic (LuBGAL-RNAi) flax with reduced β-galactosidase activity had lower concentrations of free Gal and had significant reductions in the thickness of mature cellulosic G-layers compared with controls. Conversely, Gn-layers, labeled intensively by the galactan-specific LM5 antibody, were greatly expanded in LuBGAL-RNAi transgenic plants. Gross morphology and stem anatomy, including the thickness of bast fiber walls, were otherwise unaffected by silencing of β-galactosidase transcripts. These results demonstrate a specific requirement for β-galactosidase in hydrolysis of galactans during formation of cellulosic G-layers. Transgenic lines with reduced β-galactosidase activity also had biochemical and spectroscopic properties consistent with a reduction in cellulose crystallinity. We further demonstrated that the tensile strength of normal flax stems is dependent on β-galactosidase-mediated development of the phloem fiber G-layer. Thus, the mechanical strength that typifies flax stems is dependent on a thick, cellulosic G-layer, which itself depends on β-galactosidase activity within the precursor Gn-layer. These observations demonstrate a novel role for matrix polysaccharides in cellulose deposition; the relevance of these observations to the development of cell walls in other species is also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael K. Deyholos
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 (M.J.R., A.B., N.H., M.K.D.); Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan 420111, Russia (N.Y.M., A.V.S., T.A.G.)
| | | |
Collapse
|
16
|
Venglat P, Xiang D, Qiu S, Stone SL, Tibiche C, Cram D, Alting-Mees M, Nowak J, Cloutier S, Deyholos M, Bekkaoui F, Sharpe A, Wang E, Rowland G, Selvaraj G, Datla R. Gene expression analysis of flax seed development. BMC PLANT BIOLOGY 2011; 11:74. [PMID: 21529361 PMCID: PMC3107784 DOI: 10.1186/1471-2229-11-74] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 04/29/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. RESULTS We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. CONCLUSIONS We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise even low-expressed genes such as those encoding transcription factors. This has allowed us to delineate the spatio-temporal aspects of gene expression underlying the biosynthesis of a number of important seed constituents in flax. Flax belongs to a taxonomic group of diverse plants and the large sequence database will allow for evolutionary studies as well.
Collapse
Affiliation(s)
- Prakash Venglat
- Plant Biotechnology Institute, NRC, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Daoquan Xiang
- Plant Biotechnology Institute, NRC, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Shuqing Qiu
- Plant Biotechnology Institute, NRC, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Sandra L Stone
- Plant Biotechnology Institute, NRC, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Chabane Tibiche
- Computational Chemistry and Bioinformatics Group, Biotechnology Research Institute, NRC, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Dustin Cram
- Plant Biotechnology Institute, NRC, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Michelle Alting-Mees
- Plant Biotechnology Institute, NRC, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Jacek Nowak
- Plant Biotechnology Institute, NRC, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Sylvie Cloutier
- Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg, MB, R3T 2M9, Canada
| | - Michael Deyholos
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Faouzi Bekkaoui
- Plant Biotechnology Institute, NRC, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Andrew Sharpe
- Plant Biotechnology Institute, NRC, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Edwin Wang
- Computational Chemistry and Bioinformatics Group, Biotechnology Research Institute, NRC, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Gordon Rowland
- Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Gopalan Selvaraj
- Plant Biotechnology Institute, NRC, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Raju Datla
- Plant Biotechnology Institute, NRC, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| |
Collapse
|
17
|
Fenart S, Ndong YPA, Duarte J, Rivière N, Wilmer J, van Wuytswinkel O, Lucau A, Cariou E, Neutelings G, Gutierrez L, Chabbert B, Guillot X, Tavernier R, Hawkins S, Thomasset B. Development and validation of a flax (Linum usitatissimum L.) gene expression oligo microarray. BMC Genomics 2010; 11:592. [PMID: 20964859 PMCID: PMC3091737 DOI: 10.1186/1471-2164-11-592] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 10/21/2010] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Flax (Linum usitatissimum L.) has been cultivated for around 9,000 years and is therefore one of the oldest cultivated species. Today, flax is still grown for its oil (oil-flax or linseed cultivars) and its cellulose-rich fibres (fibre-flax cultivars) used for high-value linen garments and composite materials. Despite the wide industrial use of flax-derived products, and our actual understanding of the regulation of both wood fibre production and oil biosynthesis more information must be acquired in both domains. Recent advances in genomics are now providing opportunities to improve our fundamental knowledge of these complex processes. In this paper we report the development and validation of a high-density oligo microarray platform dedicated to gene expression analyses in flax. RESULTS Nine different RNA samples obtained from flax inner- and outer-stems, seeds, leaves and roots were used to generate a collection of 1,066,481 ESTs by massive parallel pyrosequencing. Sequences were assembled into 59,626 unigenes and 48,021 sequences were selected for oligo design and high-density microarray (Nimblegen 385K) fabrication with eight, non-overlapping 25-mers oligos per unigene. 18 independent experiments were used to evaluate the hybridization quality, precision, specificity and accuracy and all results confirmed the high technical quality of our microarray platform. Cross-validation of microarray data was carried out using quantitative qRT-PCR. Nine target genes were selected on the basis of microarray results and reflected the whole range of fold change (both up-regulated and down-regulated genes in different samples). A statistically significant positive correlation was obtained comparing expression levels for each target gene across all biological replicates both in qRT-PCR and microarray results. Further experiments illustrated the capacity of our arrays to detect differential gene expression in a variety of flax tissues as well as between two contrasted flax varieties. CONCLUSION All results suggest that our high-density flax oligo-microarray platform can be used as a very sensitive tool for analyzing gene expression in a large variety of tissues as well as in different cultivars. Moreover, this highly reliable platform can also be used for the quantification of mRNA transcriptional profiling in different flax tissues.
Collapse
Affiliation(s)
- Stéphane Fenart
- Université Lille Nord de France, Lille 1 UMR INRA 1281, SADV, F- 59650 Villeneuve d'Ascq cedex, France
| | | | - Jorge Duarte
- BIOGEMMA, Z.I. du Brezet, 8 rue des Frères Lumières, 63028 Clermont-Ferrand cedex 2, France
| | - Nathalie Rivière
- BIOGEMMA, Z.I. du Brezet, 8 rue des Frères Lumières, 63028 Clermont-Ferrand cedex 2, France
| | - Jeroen Wilmer
- BIOGEMMA, domaine de Sandreau, Chemin de Panedautes, 31700 Mondonville, France
| | | | - Anca Lucau
- Université Lille Nord de France, Lille 1 UMR INRA 1281, SADV, F- 59650 Villeneuve d'Ascq cedex, France
| | | | - Godfrey Neutelings
- Université Lille Nord de France, Lille 1 UMR INRA 1281, SADV, F- 59650 Villeneuve d'Ascq cedex, France
| | - Laurent Gutierrez
- CRRBM, UFR des Sciences, UPJV, 33 rue Saint Leu, 80039 Amiens cedex, France
| | - Brigitte Chabbert
- UMR- INRA, UMR614, URCA, FARE, 2 Esplanade R. Garros, CREA, BP 224, 51686 Reims, France
| | | | | | - Simon Hawkins
- Université Lille Nord de France, Lille 1 UMR INRA 1281, SADV, F- 59650 Villeneuve d'Ascq cedex, France
| | - Brigitte Thomasset
- UMR CNRS 6022, GEC, Université de Technologie de Compiègne, BP 20529, 60205 Compiègne cedex, France
| |
Collapse
|
18
|
Huis R, Hawkins S, Neutelings G. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC PLANT BIOLOGY 2010; 10:71. [PMID: 20403198 PMCID: PMC3095345 DOI: 10.1186/1471-2229-10-71] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 04/19/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND Quantitative real-time PCR (qRT-PCR) is currently the most accurate method for detecting differential gene expression. Such an approach depends on the identification of uniformly expressed 'housekeeping genes' (HKGs). Extensive transcriptomic data mining and experimental validation in different model plants have shown that the reliability of these endogenous controls can be influenced by the plant species, growth conditions and organs/tissues examined. It is therefore important to identify the best reference genes to use in each biological system before using qRT-PCR to investigate differential gene expression. In this paper we evaluate different candidate HKGs for developmental transcriptomic studies in the economically-important flax fiber- and oil-crop (Linum usitatissimum L). RESULTS Specific primers were designed in order to quantify the expression levels of 20 different potential housekeeping genes in flax roots, internal- and external-stem tissues, leaves and flowers at different developmental stages. After calculations of PCR efficiencies, 13 HKGs were retained and their expression stabilities evaluated by the computer algorithms geNorm and NormFinder. According to geNorm, 2 Transcriptional Elongation Factors (TEFs) and 1 Ubiquitin gene are necessary for normalizing gene expression when all studied samples are considered. However, only 2 TEFs are required for normalizing expression in stem tissues. In contrast, NormFinder identified glyceraldehyde-3-phosphate dehydrogenase (GADPH) as the most stably expressed gene when all samples were grouped together, as well as when samples were classed into different sub-groups.qRT-PCR was then used to investigate the relative expression levels of two splice variants of the flax LuMYB1 gene (homologue of AtMYB59). LuMYB1-1 and LuMYB1-2 were highly expressed in the internal stem tissues as compared to outer stem tissues and other samples. This result was confirmed with both geNorm-designated- and NormFinder-designated-reference genes. CONCLUSIONS The use of 2 different statistical algorithms results in the identification of different combinations of flax HKGs for expression data normalization. Despite such differences, the use of geNorm-designated- and NormFinder-designated-reference genes enabled us to accurately compare the expression levels of a flax MYB gene in different organs and tissues. Our identification and validation of suitable flax HKGs will facilitate future developmental transcriptomic studies in this economically-important plant.
Collapse
Affiliation(s)
- Rudy Huis
- UMR INRA-USTL 1281 Stress Abiotiques et Différenciation des Végétaux Cultivés, Bât. SN2, Université Lille 1, F-59655 Villeneuve d'Ascq, France
| | - Simon Hawkins
- UMR INRA-USTL 1281 Stress Abiotiques et Différenciation des Végétaux Cultivés, Bât. SN2, Université Lille 1, F-59655 Villeneuve d'Ascq, France
| | - Godfrey Neutelings
- UMR INRA-USTL 1281 Stress Abiotiques et Différenciation des Végétaux Cultivés, Bât. SN2, Université Lille 1, F-59655 Villeneuve d'Ascq, France
| |
Collapse
|
19
|
Wurdack KJ, Davis CC. Malpighiales phylogenetics: Gaining ground on one of the most recalcitrant clades in the angiosperm tree of life. AMERICAN JOURNAL OF BOTANY 2009; 96:1551-1570. [PMID: 21628300 DOI: 10.3732/ajb.0800207] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The eudicot order Malpighiales contains ∼16000 species and is the most poorly resolved large rosid clade. To clarify phylogenetic relationships in the order, we used maximum likelihood, Bayesian, and parsimony analyses of DNA sequence data from 13 gene regions, totaling 15604 bp, and representing all three genomic compartments (i.e., plastid: atpB, matK, ndhF, and rbcL; mitochondrial: ccmB, cob, matR, nad1B-C, nad6, and rps3; and nuclear: 18S rDNA, PHYC, and newly developed low-copy EMB2765). Our sampling of 190 taxa includes representatives from all families of Malpighiales. These data provide greatly increased support for the recent additions of Aneulophus, Bhesa, Centroplacus, Ploiarium, and Rafflesiaceae to Malpighiales; sister relations of Phyllanthaceae + Picrodendraceae, monophyly of Hypericaceae, and polyphyly of Clusiaceae. Oxalidales + Huaceae, followed by Celastrales are successive sisters to Malpighiales. Parasitic Rafflesiaceae, which produce the world's largest flowers, are confirmed as embedded within a paraphyletic Euphorbiaceae. Novel findings show a well-supported placement of Ctenolophonaceae with Erythroxylaceae + Rhizophoraceae, sister-group relationships of Bhesa + Centroplacus, and the exclusion of Medusandra from Malpighiales. New taxonomic circumscriptions include the addition of Bhesa to Centroplacaceae, Medusandra to Peridiscaceae (Saxifragales), Calophyllaceae applied to Clusiaceae subfamily Kielmeyeroideae, Peraceae applied to Euphorbiaceae subfamily Peroideae, and Huaceae included in Oxalidales.
Collapse
Affiliation(s)
- Kenneth J Wurdack
- Department of Botany, Smithsonian Institution, P.O. Box 37012 NMNH MRC-166, Washington, District of Columbia 20013-7012 USA
| | | |
Collapse
|
20
|
Caillot S, Rosiau E, Laplace C, Thomasset B. Influence of light intensity and selection scheme on regeneration time of transgenic flax plants. PLANT CELL REPORTS 2009; 28:359-71. [PMID: 19011860 DOI: 10.1007/s00299-008-0638-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 10/11/2008] [Accepted: 10/30/2008] [Indexed: 05/10/2023]
Abstract
This study aimed at establishing a protocol to increase the number of regenerated shoots and to limit the recovery of "escapes" during the regeneration of transgenic flax plants (cv Barbara). Here, we describe how light, adapted media and selection scheme could stimulate the transformation process, the organogenic potentiality of calli (by a factor of 3.2) and accelerate the transgenic shoot regeneration (by a factor of about 2). On comparison of the transformation rate observed while using low light (LL) and high light (HL) a considerable enhancement from 0.12 to 5.7% was evident. The promotive effect of light might also had a direct beneficial effect on transgenic plant production time leading to a reduction of more than 4 months in the time need to obtain transgenic seeds. All data indicate that HL plays a role on growth and on protein, rubisco and pigment contents by stimulating the gene implicated in photosynthetic and Calvin cycle processes.
Collapse
Affiliation(s)
- Sébastien Caillot
- Laboratoire de Génie Enzymatique et Cellulaire, UMR 6022 du CNRS, Université de Technologie de Compiègne, Compiègne Cedex, France
| | | | | | | |
Collapse
|
21
|
Day A, Neutelings G, Nolin F, Grec S, Habrant A, Crônier D, Maher B, Rolando C, David H, Chabbert B, Hawkins S. Caffeoyl coenzyme A O-methyltransferase down-regulation is associated with modifications in lignin and cell-wall architecture in flax secondary xylem. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:9-19. [PMID: 19004632 DOI: 10.1016/j.plaphy.2008.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Indexed: 05/08/2023]
Abstract
Caffeoyl coenzyme A O-methyltransferase (CCoAOMT, EC 2.1.1.104) down-regulated-flax (Linum usitatissimum) plants were generated using an antisense strategy and functionally characterized. Chemical analyses (acetyl bromide and thioacidolysis) revealed that the lignin quantity was reduced and that the Syringyl/Guaïacyl (S/G) lignin monomer ratio was modified in the non-condensed lignin fraction of two independent down-regulated lines. These modifications were associated with altered xylem organization (both lines), reduced cell-wall thickness (one line) and the appearance of an irregular xylem (irx) phenotype (both lines). In addition UV microspectroscopy also indicated that CCoAOMT down-regulation induced changes in xylem cell-wall structure and the lignin fractions. Microscopic examination also suggested that CCoAOMT down-regulation could influence individual xylem cell size and identity. As a first step towards investigating the cellular mechanisms responsible for the unusual structure of flax lignin (G-rich, condensed), recombinant flax CCoAOMT protein was produced and its affinity for different potential substrates evaluated. Results indicated that the preferred substrate was caffeoyl coenzyme A, followed by 5-hydroxyconiferaldehyde suggesting that flax CCoAOMT possesses a small, but probably significant 5' methylating activity, in addition to a more usual 3' methylating activity.
Collapse
Affiliation(s)
- Arnaud Day
- Université Lille 1, F-59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Roach MJ, Deyholos MK. Microarray analysis of developing flax hypocotyls identifies novel transcripts correlated with specific stages of phloem fibre differentiation. ANNALS OF BOTANY 2008; 102:317-30. [PMID: 18593690 PMCID: PMC2701801 DOI: 10.1093/aob/mcn110] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2007] [Revised: 04/23/2008] [Accepted: 06/06/2008] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Hypocotyls are a commonly used model to study primary growth in plants, since post-germinative hypocotyls increase in size by cell elongation rather than cell division. Flax hypocotyls produce phloem fibres in bundles one to two cell layers thick, parallel to the protoxylem poles of the stele. Cell wall deposition within these cells occurs rapidly at a well-defined stage of development. The aim was to identify transcripts associated with distinct stages of hypocotyl and phloem fibre development. METHODS Stages of flax hypocotyl development were defined by analysing hypocotyl length in relation to fibre secondary wall deposition. Selected stages of development were used in microarray analyses to identify transcripts involved in the transition from elongation to secondary cell wall deposition in fibres. Expression of specific genes was confirmed by qRT-PCR and by enzymatic assays. KEY RESULTS Genes enriched in the elongation phase included transcripts related to cell-wall modification or primary-wall deposition. Transcripts specifically enriched at the transition between elongation and secondary wall deposition included beta-galactosidase and arabinogalactan proteins. Later stages of wall development showed an increase in secondary metabolism-related transcripts, chitinases and glycosyl hydrolases including KORRIGAN. Microarray analysis also identified groups of transcription factors enriched at one or more stages of fibre development. Subsequent analysis of a differentially expressed beta-galactosidase confirmed that the post-elongation increase in beta-galactosidase enzyme activity was localized to phloem fibres. CONCLUSIONS Transcripts were identified associated with specific stages of hypocotyl development, in which phloem fibre cells were undergoing thickening of secondary walls. Temporal and spatial regulation of beta-galactosidase activity suggests a role for this enzyme in remodelling of flax bast fibre cell walls during secondary cell wall deposition.
Collapse
Affiliation(s)
| | - Michael K. Deyholos
- Department of Biological Sciences, University of Alberta, Edmonton, CanadaT6G 2E9
| |
Collapse
|
23
|
Hotte NSC, Deyholos MK. A flax fibre proteome: identification of proteins enriched in bast fibres. BMC PLANT BIOLOGY 2008; 8:52. [PMID: 18447950 PMCID: PMC2408578 DOI: 10.1186/1471-2229-8-52] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 04/30/2008] [Indexed: 05/21/2023]
Abstract
BACKGROUND Bast fibres from the phloem tissues of flax are scientifically interesting and economically useful due in part to a dynamic system of secondary cell wall deposition. To better understand the molecular mechanisms underlying the process of cell wall development in flax, we extracted proteins from individually dissected phloem fibres (i.e. individual cells) at an early stage of secondary cell wall development, and compared these extracts to protein extracts from surrounding, non-fibre cells of the cortex, using fluorescent (DiGE) labels and 2D-gel electrophoresis, with identities assigned to some proteins by mass spectrometry. RESULTS The abundance of many proteins in fibres was notably different from the surrounding non-fibre cells of the cortex, with approximately 13% of the 1,850 detectable spots being significantly (> 1.5 fold, p < or = 0.05) enriched in fibres. Following mass spectrometry, we assigned identity to 114 spots, of which 51 were significantly enriched in fibres. We observed that a K+ channel subunit, annexins, porins, secretory pathway components, beta-amylase, beta-galactosidase and pectin and galactan biosynthetic enzymes were among the most highly enriched proteins detected in developing flax fibres, with many of these proteins showing electrophoretic patterns consistent with post-translational modifications. CONCLUSION The fibre-enriched proteins we identified are consistent with the dynamic process of secondary wall deposition previously suggested by histological and biochemical analyses, and particularly the importance of galactans and the secretory pathway in this process. The apparent abundance of beta-amylase suggests that starch may be an unappreciated source of materials for cell wall biogenesis in flax bast fibres. Furthermore, our observations confirm previous reports that correlate accumulation proteins such as annexins, and specific heat shock proteins with secondary cell wall deposition.
Collapse
Affiliation(s)
- Naomi SC Hotte
- Department of Biological Sciences, Edmonton, T6G 2E9, Canada
| | | |
Collapse
|
24
|
De Pauw MA, Vidmar JJ, Collins J, Bennett RA, Deyholos MK. Microarray analysis of bast fibre producing tissues of Cannabis sativa identifies transcripts associated with conserved and specialised processes of secondary wall development. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:737-749. [PMID: 32689402 DOI: 10.1071/fp07014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Accepted: 05/02/2007] [Indexed: 06/11/2023]
Abstract
The mechanisms underlying bast fibre differentiation in hemp (Cannabis sativa L.) are largely unknown. We hybridised a cDNA microarray with RNA from fibre enriched tissues extracted at three different positions along the stem axis. Accordingly, we identified transcripts that were enriched in tissues in which phloem fibres were elongating or undergoing secondary wall thickening. These results were consistent with a dynamic pattern of cell wall deposition involving tissue specific expression of a large set of distinct glycosyltransferases and glycosylhydrolases apparently acting on polymers containing galactans, mannans, xylans, and glucans, as well as raffinose-series disaccharides. Putative arabinogalactan proteins and lipid transfer proteins were among the most highly enriched transcripts in various stem segments, with different complements of each expressed at each stage of development. We also detected stage-specific expression of brassinosteroid-related transcripts, various transporters, polyamine and phenylpropanoid related genes, and seven putative transcription factors. Finally, we observed enrichment of many transcripts with unknown biochemical function, some of which had been previously implicated in fibre development in poplar or cotton. Together these data complement and extend existing biochemical models of bast fibre development and secondary wall deposition and highlight uncharacterised, but conserved, components of these processes.
Collapse
Affiliation(s)
- Mary A De Pauw
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2E9 Canada
| | - John J Vidmar
- Alberta Research Council, Vegreville, T9C 1T4 Canada
| | - JoAnn Collins
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2E9 Canada
| | - Rick A Bennett
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2E9 Canada
| | - Michael K Deyholos
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2E9 Canada
| |
Collapse
|
25
|
|
26
|
Roach MJ, Deyholos MK. Microarray analysis of flax (Linum usitatissimum L.) stems identifies transcripts enriched in fibre-bearing phloem tissues. Mol Genet Genomics 2007; 278:149-65. [PMID: 17503083 DOI: 10.1007/s00438-007-0241-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 04/19/2007] [Indexed: 11/29/2022]
Abstract
To better understand the molecular processes associated with the development of the unusually long (> 30 mm) and strong bast fibre cells within the phloem of flax stems, we conducted a gene discovery experiment to identify transcripts enriched in fibre-bearing tissues, with the intention that these transcripts would serve as future targets for crop improvement and research in phloem development and cell wall deposition. We produced a library of 9,600 cDNA clones from the peels of flax stems, and selected tissue-specific cDNAs for sequencing based on two series of microarray experiments. In the first microarray series, we compared transcript abundance in stem-peels and leaves, and identified stem-enriched transcripts putatively involved in the processes of polysaccharide and cell wall metabolism. In the second microarray series, we compared gene expression in three segments of the vertical stem axis, which constituted a developmental series for phloem fibres and other cell types. The expression of specific LTP and AGP transcripts was particularly well-correlated with stem segments during either the elongation phase or cell-wall thickening phase of phloem fibre development, and the phloem-specific enrichment of these transcripts was confirmed by qRT-PCR. Transcripts representing multiple, distinct chitinases, beta-galactosidases, arabinogalactan proteins (AGP), and lipid transfer proteins (LTPs) were among the interesting transcripts enriched in specific stages of the developing stem. Considered together, the results of our analyses suggest similarity between the molecular mechanisms underlying phloem fibre development and the gelatinous fibres of tension wood in trees.
Collapse
Affiliation(s)
- Melissa J Roach
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
27
|
Day A, Ruel K, Neutelings G, Crônier D, David H, Hawkins S, Chabbert B. Lignification in the flax stem: evidence for an unusual lignin in bast fibers. PLANTA 2005; 222:234-45. [PMID: 15968509 DOI: 10.1007/s00425-005-1537-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Accepted: 01/29/2005] [Indexed: 05/03/2023]
Abstract
In the context of our research on cell wall formation and maturation in flax (Linum usitatissimum L) bast fibers, we (1) confirmed the presence of lignin in bast fibers and (2) quantified and characterized the chemical nature of this lignin at two developmental stages. Histochemical methods (Weisner and Maüle reagents and KMnO(4)-staining) indicating the presence of lignin in bast fibers at the light and electron microscope levels were confirmed by chemical analyses (acetyl bromide). In general, the lignin content in flax bast fibers varied between 1.5% and 4.2% of the dry cell wall residues (CWRs) as compared to values varying between 23.7% and 31.4% in flax xylem tissues. Immunological and chemical analyses (thioacidolysis and nitrobenzene oxidation) indicated that both flax xylem- and bast fiber-lignins were rich in guaiacyl (G) units with S/G values inferior to 0.5. In bast fibers, the highly sensitive immunological probes allowed the detection of condensed guaiacyl-type (G) lignins in the middle lamella, cell wall junctions, and in the S1 layer of the secondary wall. In addition, lower quantities of mixed guaiacyl-syringyl (GS) lignins could be detected throughout the secondary cell wall. Chemical analyses suggested that flax bast-fiber lignin is more condensed than the corresponding xylem lignin. In addition, H units represented up to 25% of the monomers released from bast-fiber lignin as opposed to a value of 1% for the corresponding xylem tissue. Such an observation indicates that the structure of flax bast-fiber lignin is significantly different from that of the more typical 'woody plant lignin', thereby suggesting that flax bast fibers represent an interesting system for studying an unusual lignification process.
Collapse
Affiliation(s)
- Arnaud Day
- Laboratoire de Physiologie des Parois Végétales, UPRES EA 3568-USC-INRA, UFR de Biologie, USTL, 59655, Villeneuve d'Ascq cedex, France
| | | | | | | | | | | | | |
Collapse
|