1
|
Mohanasundaram B, Rajmane VB, Jogdand SV, Bhide AJ, Banerjee AK. Agrobacterium-mediated Tnt1 mutagenesis of moss protonemal filaments and generation of stable mutants with impaired gametophyte. Mol Genet Genomics 2019; 294:583-596. [PMID: 30689096 DOI: 10.1007/s00438-019-01532-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/17/2019] [Indexed: 11/30/2022]
Abstract
The gametophyte of moss exhibits a simple body plan, yet its growth is regulated by complex developmental phenomena similar to angiosperms. Because moss can be easily maintained under laboratory conditions, amenable for gene targeting and the availability of genome sequence, P. patens has become an attractive model system for studying evolutionary traits. Until date, there has been no Agrobacterium-mediated Tnt1 mutagenesis protocol for haploid protonemal filaments of moss. Hence, we attempted to use the intact tobacco Tnt1 retrotransposon as a mutagen for P. patens. Bioinformatic analysis of initiator methionyl-tRNA (Met-tRNAi), a critical host factor for Tnt1 transposition process, suggested that it can be explored as a mutagen for bryophytes. Using protonemal filaments and Agrobacterium-mediated transformation, 75 Tnt1 mutants have been generated and cryopreserved. SSAP analysis and TAIL-PCR revealed that Tnt1 is functional in P. patens and has a high-preference for gene and GC-rich regions. In addition, LTR::GUS lines exhibited a basal but tissue-specific inducible expression pattern. Forward genetic screen resulted in 5 novel phenotypes related to hormonal and gravity response, phyllid, and gamete development. SSAP analysis suggests that the Tnt1 insertion pattern is stable under normal growth conditions and the high-frequency phenotypic deviations are possibly due to the combination of haploid explant (protonema) and the choice of mutagen (Tnt1). We demonstrate that Agrobacterium-mediated Tnt1 insertional mutagenesis could generate stable P. patens mutant populations for future forward genetic studies.
Collapse
MESH Headings
- Agrobacterium/genetics
- Base Sequence
- Bryopsida/genetics
- Chromosomes, Plant/genetics
- DNA, Plant/classification
- DNA, Plant/genetics
- Genome, Plant/genetics
- Germ Cells, Plant/metabolism
- Mutagenesis, Insertional
- Phylogeny
- Plants, Genetically Modified
- RNA, Transfer, Met/classification
- RNA, Transfer, Met/genetics
- Retroelements/genetics
- Sequence Homology, Nucleic Acid
- Nicotiana/genetics
- Transformation, Genetic
Collapse
Affiliation(s)
- Boominathan Mohanasundaram
- Indian Institute of Science Education and Research (IISER, Pune), Dr. Homi Bhabha Road, Pune, Maharashtra, 411 008, India
| | - Vyankatesh B Rajmane
- Indian Institute of Science Education and Research (IISER, Pune), Dr. Homi Bhabha Road, Pune, Maharashtra, 411 008, India
| | - Sukanya V Jogdand
- Indian Institute of Science Education and Research (IISER, Pune), Dr. Homi Bhabha Road, Pune, Maharashtra, 411 008, India
| | - Amey J Bhide
- Indian Institute of Science Education and Research (IISER, Pune), Dr. Homi Bhabha Road, Pune, Maharashtra, 411 008, India
| | - Anjan K Banerjee
- Indian Institute of Science Education and Research (IISER, Pune), Dr. Homi Bhabha Road, Pune, Maharashtra, 411 008, India.
| |
Collapse
|
2
|
Mozgová I, Muñoz-Viana R, Hennig L. PRC2 Represses Hormone-Induced Somatic Embryogenesis in Vegetative Tissue of Arabidopsis thaliana. PLoS Genet 2017; 13:e1006562. [PMID: 28095419 PMCID: PMC5283764 DOI: 10.1371/journal.pgen.1006562] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 01/31/2017] [Accepted: 01/02/2017] [Indexed: 01/18/2023] Open
Abstract
Many plant cells can be reprogrammed into a pluripotent state that allows ectopic organ development. Inducing totipotent states to stimulate somatic embryo (SE) development is, however, challenging due to insufficient understanding of molecular barriers that prevent somatic cell dedifferentiation. Here we show that Polycomb repressive complex 2 (PRC2)-activity imposes a barrier to hormone-mediated transcriptional reprogramming towards somatic embryogenesis in vegetative tissue of Arabidopsis thaliana. We identify factors that enable SE development in PRC2-depleted shoot and root tissue and demonstrate that the establishment of embryogenic potential is marked by ectopic co-activation of crucial developmental regulators that specify shoot, root and embryo identity. Using inducible activation of PRC2 in PRC2-depleted cells, we demonstrate that transient reduction of PRC2 activity is sufficient for SE formation. We suggest that modulation of PRC2 activity in plant vegetative tissue combined with targeted activation of developmental pathways will open possibilities for novel approaches to cell reprogramming. Somatic embryogenesis provides the strongest support for plant cell totipotency but reprogramming of non-reproductive tissue is problematic or even impossible in many plant species. Here we show that the activity of Polycomb Repressive Complex 2 (PRC2) constitutes a major barrier to hormone-mediated establishment of embryogenic competence in plant vegetative tissue. We identify a conservative set of transcription factors whose expression coincides with the establishment of embryogenic competence in vegetative tissue, among which are key developmental regulators of root, shoot and embryo development. We show that lowering the PRC2-imposed barrier combined with activating hormone treatments establishes embryogenic competence in different tissue types, which opens possibilities for novel strategies to plant cell identity reprogramming.
Collapse
Affiliation(s)
- Iva Mozgová
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
- Institute of Microbiology, Centre Algatech, Opatovický mlýn, Třeboň, Czech Republic
- * E-mail: (IM); (LH)
| | - Rafael Muñoz-Viana
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Lars Hennig
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
- * E-mail: (IM); (LH)
| |
Collapse
|
3
|
Vives C, Charlot F, Mhiri C, Contreras B, Daniel J, Epert A, Voytas DF, Grandbastien MA, Nogué F, Casacuberta JM. Highly efficient gene tagging in the bryophyte Physcomitrella patens using the tobacco (Nicotiana tabacum) Tnt1 retrotransposon. THE NEW PHYTOLOGIST 2016; 212:759-769. [PMID: 27548747 DOI: 10.1111/nph.14152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/13/2016] [Indexed: 05/23/2023]
Abstract
Because of its highly efficient homologous recombination, the moss Physcomitrella patens is a model organism particularly suited for reverse genetics, but this inherent characteristic limits forward genetic approaches. Here, we show that the tobacco (Nicotiana tabacum) retrotransposon Tnt1 efficiently transposes in P. patens, being the first retrotransposon from a vascular plant reported to transpose in a bryophyte. Tnt1 has a remarkable preference for insertion into genic regions, which makes it particularly suited for gene mutation. In order to stabilize Tnt1 insertions and make it easier to select for insertional mutants, we have developed a two-component system where a mini-Tnt1 with a retrotransposition selectable marker can only transpose when Tnt1 proteins are co-expressed from a separate expression unit. We present a new tool with which to produce insertional mutants in P. patens in a rapid and straightforward manner that complements the existing molecular and genetic toolkit for this model species.
Collapse
Affiliation(s)
- Cristina Vives
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Florence Charlot
- INRA AgroParisTech, IJPB, UMR 1318, INRA centre de Versailles, route de Saint Cyr, 78026, Versailles Cedex, France
| | - Corinne Mhiri
- INRA AgroParisTech, IJPB, UMR 1318, INRA centre de Versailles, route de Saint Cyr, 78026, Versailles Cedex, France
| | - Beatriz Contreras
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Julien Daniel
- INRA AgroParisTech, IJPB, UMR 1318, INRA centre de Versailles, route de Saint Cyr, 78026, Versailles Cedex, France
| | - Aline Epert
- INRA AgroParisTech, IJPB, UMR 1318, INRA centre de Versailles, route de Saint Cyr, 78026, Versailles Cedex, France
| | - Daniel F Voytas
- Department of Genetics, Cell Biology & Development and Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Marie-Angèle Grandbastien
- INRA AgroParisTech, IJPB, UMR 1318, INRA centre de Versailles, route de Saint Cyr, 78026, Versailles Cedex, France
| | - Fabien Nogué
- INRA AgroParisTech, IJPB, UMR 1318, INRA centre de Versailles, route de Saint Cyr, 78026, Versailles Cedex, France.
| | - Josep M Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193, Barcelona, Spain.
| |
Collapse
|
4
|
Kamau PK, Sano S, Takami T, Matsushima R, Maekawa M, Sakamoto W. A Mutation in GIANT CHLOROPLAST Encoding a PARC6 Homolog Affects Spikelet Fertility in Rice. ACTA ACUST UNITED AC 2015; 56:977-91. [DOI: 10.1093/pcp/pcv024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/04/2015] [Indexed: 01/07/2023]
|
5
|
Kubínová Z, Janáček J, Lhotáková Z, Kubínová L, Albrechtová J. Unbiased estimation of chloroplast number in mesophyll cells: advantage of a genuine three-dimensional approach. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:609-20. [PMID: 24336344 PMCID: PMC3904715 DOI: 10.1093/jxb/ert407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Chloroplast number per cell is a frequently examined quantitative anatomical parameter, often estimated by counting chloroplast profiles in two-dimensional (2D) sections of mesophyll cells. However, a mesophyll cell is a three-dimensional (3D) structure and this has to be taken into account when quantifying its internal structure. We compared 2D and 3D approaches to chloroplast counting from different points of view: (i) in practical measurements of mesophyll cells of Norway spruce needles, (ii) in a 3D model of a mesophyll cell with chloroplasts, and (iii) using a theoretical analysis. We applied, for the first time, the stereological method of an optical disector based on counting chloroplasts in stacks of spruce needle optical cross-sections acquired by confocal laser-scanning microscopy. This estimate was compared with counting chloroplast profiles in 2D sections from the same stacks of sections. Comparing practical measurements of mesophyll cells, calculations performed in a 3D model of a cell with chloroplasts as well as a theoretical analysis showed that the 2D approach yielded biased results, while the underestimation could be up to 10-fold. We proved that the frequently used method for counting chloroplasts in a mesophyll cell by counting their profiles in 2D sections did not give correct results. We concluded that the present disector method can be efficiently used for unbiased estimation of chloroplast number per mesophyll cell. This should be the method of choice, especially in coniferous needles and leaves with mesophyll cells with lignified cell walls where maceration methods are difficult or impossible to use.
Collapse
Affiliation(s)
- Zuzana Kubínová
- Charles University in Prague, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Jiří Janáček
- Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Zuzana Lhotáková
- Charles University in Prague, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Lucie Kubínová
- Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Jana Albrechtová
- Charles University in Prague, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, 128 44 Prague 2, Czech Republic
| |
Collapse
|
6
|
Cove DJ, Perroud PF, Charron AJ, McDaniel SF, Khandelwal A, Quatrano RS. The moss Physcomitrella patens: a novel model system for plant development and genomic studies. Cold Spring Harb Protoc 2010; 2009:pdb.emo115. [PMID: 20147063 DOI: 10.1101/pdb.emo115] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- David J Cove
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | | | | | | | | |
Collapse
|
7
|
Fujiwara MT, Hashimoto H, Kazama Y, Abe T, Yoshida S, Sato N, Itoh RD. The Assembly of the FtsZ Ring at the Mid-Chloroplast Division Site Depends on a Balance Between the Activities of AtMinE1 and ARC11/AtMinD1. ACTA ACUST UNITED AC 2008; 49:345-61. [DOI: 10.1093/pcp/pcn012] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Itoh RD, Takechi K, Hayashida A, Katsura SI, Takano H. Cytogenetic and Hematological Effects of the Antibiotic Chloramphenicol on Calves. CYTOLOGIA 2005. [DOI: 10.1508/cytologia.70.87] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ryuuichi D. Itoh
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus
| | | | | | - Shin-ichiro Katsura
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus
| | | |
Collapse
|