1
|
Wen S, Wang M, Qian X, Li Y, Wang K, Choi J, Pennesi ME, Yang P, Marra M, Koenekoop RK, Lopez I, Matynia A, Gorin M, Sui R, Yao F, Goetz K, Porto FBO, Chen R. Systematic assessment of the contribution of structural variants to inherited retinal diseases. Hum Mol Genet 2023; 32:2005-2015. [PMID: 36811936 PMCID: PMC10244226 DOI: 10.1093/hmg/ddad032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/03/2023] [Accepted: 02/11/2023] [Indexed: 02/24/2023] Open
Abstract
Despite increasing success in determining genetic diagnosis for patients with inherited retinal diseases (IRDs), mutations in about 30% of the IRD cases remain unclear or unsettled after targeted gene panel or whole exome sequencing. In this study, we aimed to investigate the contributions of structural variants (SVs) to settling the molecular diagnosis of IRD with whole-genome sequencing (WGS). A cohort of 755 IRD patients whose pathogenic mutations remain undefined were subjected to WGS. Four SV calling algorithms including include MANTA, DELLY, LUMPY and CNVnator were used to detect SVs throughout the genome. All SVs identified by any one of these four algorithms were included for further analysis. AnnotSV was used to annotate these SVs. SVs that overlap with known IRD-associated genes were examined with sequencing coverage, junction reads and discordant read pairs. Polymerase Chain Reaction (PCR) followed by Sanger sequencing was used to further confirm the SVs and identify the breakpoints. Segregation of the candidate pathogenic alleles with the disease was performed when possible. A total of 16 candidate pathogenic SVs were identified in 16 families, including deletions and inversions, representing 2.1% of patients with previously unsolved IRDs. Autosomal dominant, autosomal recessive and X-linked inheritance of disease-causing SVs were observed in 12 different genes. Among these, SVs in CLN3, EYS and PRPF31 were found in multiple families. Our study suggests that the contribution of SVs detected by short-read WGS is about 0.25% of our IRD patient cohort and is significantly lower than that of single nucleotide changes and small insertions and deletions.
Collapse
Affiliation(s)
- Shu Wen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xinye Qian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Keqing Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jongsu Choi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Paul Yang
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Molly Marra
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Robert K Koenekoop
- McGill Ocular Genetics Laboratory and Centre, Department of Paediatric Surgery, Human Genetics, and Ophthalmology, McGill University Health Centre, Montreal, Quebec, H4A 3S5, Canada
| | - Irma Lopez
- McGill Ocular Genetics Laboratory and Centre, Department of Paediatric Surgery, Human Genetics, and Ophthalmology, McGill University Health Centre, Montreal, Quebec, H4A 3S5, Canada
| | - Anna Matynia
- Jules Stein Eye Institute, Los Angeles, CA 90095, USA
- Ophthalmology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Michael Gorin
- Jules Stein Eye Institute, Los Angeles, CA 90095, USA
- Ophthalmology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Fengxia Yao
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Kerry Goetz
- Office of the Director, National Eye Institute/National Institutes of Health, Bethesda, MD 20892, USA
| | - Fernanda Belga Ottoni Porto
- INRET Clínica e Centro de Pesquisa, Belo Horizonte, Minas Gerais, 30150270, Brazil
- Department of Ophthalmology, Santa Casa de Misericórdia de Belo Horizonte, Belo Horizonte, Minas Gerais, 30150221, Brazil
- Centro Oftalmológico de Minas Gerais, Belo Horizonte, Minas Gerais, 30180070, Brazil
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Wen S, Wang M, Qian X, Li Y, Wang K, Choi J, Pennesi ME, Yang P, Marra M, Koenekoop RK, Lopez I, Matynia A, Gorin M, Sui R, Yao F, Goetz K, Porto FBO, Chen R. Systematic assessment of the contribution of structural variants to inherited retinal diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.02.522522. [PMID: 36789417 PMCID: PMC9928032 DOI: 10.1101/2023.01.02.522522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Despite increasing success in determining genetic diagnosis for patients with inherited retinal diseases (IRDs), mutations in about 30% of the IRD cases remain unclear or unsettled after targeted gene panel or whole exome sequencing. In this study, we aimed to investigate the contributions of structural variants (SVs) to settling the molecular diagnosis of IRD with whole-genome sequencing (WGS). A cohort of 755 IRD patients whose pathogenic mutations remain undefined was subjected to WGS. Four SV calling algorithms including include MANTA, DELLY, LUMPY, and CNVnator were used to detect SVs throughout the genome. All SVs identified by any one of these four algorithms were included for further analysis. AnnotSV was used to annotate these SVs. SVs that overlap with known IRD-associated genes were examined with sequencing coverage, junction reads, and discordant read pairs. PCR followed by Sanger sequencing was used to further confirm the SVs and identify the breakpoints. Segregation of the candidate pathogenic alleles with the disease was performed when possible. In total, sixteen candidate pathogenic SVs were identified in sixteen families, including deletions and inversions, representing 2.1% of patients with previously unsolved IRDs. Autosomal dominant, autosomal recessive, and X-linked inheritance of disease-causing SVs were observed in 12 different genes. Among these, SVs in CLN3, EYS, PRPF31 were found in multiple families. Our study suggests that the contribution of SVs detected by short-read WGS is about 0.25% of our IRD patient cohort and is significantly lower than that of single nucleotide changes and small insertions and deletions.
Collapse
|
3
|
Langin L, Johnson TB, Kovács AD, Pearce DA, Weimer JM. A tailored Cln3 Q352X mouse model for testing therapeutic interventions in CLN3 Batten disease. Sci Rep 2020; 10:10591. [PMID: 32601357 PMCID: PMC7324379 DOI: 10.1038/s41598-020-67478-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
CLN3 Batten disease (CLN3 disease) is a pediatric lysosomal storage disorder that presents with progressive blindness, motor and cognitive decline, seizures, and premature death. CLN3 disease results from mutations in CLN3 with the most prevalent mutation, a 966 bp deletion spanning exons 7-8, affecting ~ 75% of patients. Mouse models with complete Cln3 deletion or Cln3Δex7/8 mutation have been invaluable for learning about both the basic biology of CLN3 and the underlying pathological changes associated with CLN3 disease. These models, however, vary in their disease presentation and are limited in their utility for studying the role of nonsense mediated decay, and as a consequence, in testing nonsense suppression therapies and read-through compounds. In order to develop a model containing a disease-causing nonsense point mutation, here we describe a first-of-its-kind Cln3Q352X mouse model containing a c.1054C > T (p.Gln352Ter) point mutation. Similar to previously characterized Cln3 mutant mouse lines, this novel model shows pathological deficits throughout the CNS including accumulation of lysosomal storage material and glial activation, and has limited perturbation in behavioral measures. Thus, at the molecular and cellular level, this mouse line provides a valuable tool for testing nonsense suppression therapies or read through compounds in CLN3 disease in the future.
Collapse
Affiliation(s)
- Logan Langin
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th N, Sioux Falls, SD, 57104, USA
| | - Tyler B Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th N, Sioux Falls, SD, 57104, USA
| | - Attila D Kovács
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th N, Sioux Falls, SD, 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - David A Pearce
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th N, Sioux Falls, SD, 57104, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th N, Sioux Falls, SD, 57104, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
4
|
Wong CO, Palmieri M, Li J, Akhmedov D, Chao Y, Broadhead GT, Zhu MX, Berdeaux R, Collins CA, Sardiello M, Venkatachalam K. Diminished MTORC1-Dependent JNK Activation Underlies the Neurodevelopmental Defects Associated with Lysosomal Dysfunction. Cell Rep 2015; 12:2009-20. [PMID: 26387958 DOI: 10.1016/j.celrep.2015.08.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/20/2015] [Accepted: 08/14/2015] [Indexed: 12/12/2022] Open
Abstract
Here, we evaluate the mechanisms underlying the neurodevelopmental deficits in Drosophila and mouse models of lysosomal storage diseases (LSDs). We find that lysosomes promote the growth of neuromuscular junctions (NMJs) via Rag GTPases and mechanistic target of rapamycin complex 1 (MTORC1). However, rather than employing S6K/4E-BP1, MTORC1 stimulates NMJ growth via JNK, a determinant of axonal growth in Drosophila and mammals. This role of lysosomal function in regulating JNK phosphorylation is conserved in mammals. Despite requiring the amino-acid-responsive kinase MTORC1, NMJ development is insensitive to dietary protein. We attribute this paradox to anaplastic lymphoma kinase (ALK), which restricts neuronal amino acid uptake, and the administration of an ALK inhibitor couples NMJ development to dietary protein. Our findings provide an explanation for the neurodevelopmental deficits in LSDs and suggest an actionable target for treatment.
Collapse
Affiliation(s)
- Ching-On Wong
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, TX 77030, USA
| | - Michela Palmieri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, TX 77030, USA
| | - Jiaxing Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dmitry Akhmedov
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, TX 77030, USA
| | - Yufang Chao
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, TX 77030, USA
| | - Geoffrey T Broadhead
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, TX 77030, USA
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, TX 77030, USA; Program in Cell and Regulatory Biology (CRB), Graduate School of Biomedical Sciences, University of Texas School of Medicine, Houston, TX 77030, USA
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, TX 77030, USA; Program in Cell and Regulatory Biology (CRB), Graduate School of Biomedical Sciences, University of Texas School of Medicine, Houston, TX 77030, USA
| | - Catherine A Collins
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, TX 77030, USA
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, TX 77030, USA; Program in Cell and Regulatory Biology (CRB), Graduate School of Biomedical Sciences, University of Texas School of Medicine, Houston, TX 77030, USA; Program in Neuroscience, Graduate School of Biomedical Sciences, University of Texas School of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Gourfinkel-An I, Baulac S, Brice A, Leguern E, Baulac M. Genetics of inherited human epilepsies. DIALOGUES IN CLINICAL NEUROSCIENCE 2012. [PMID: 22034131 PMCID: PMC3181638 DOI: 10.31887/dcns.2001.3.1/igourfinkelan] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Major advances have recently been made in our understanding of the genetic basis of monogenic inherited epilepsies. Progress has been particularly spectacular with respect to idiopathic epilepsies, with the discovery that mutations in ion channel subunits are implicated. However, important advances have also been made in many inherited symptomatic epilepsies, for which direct molecular diagnosis is now possible, simplifying previously complex investigations, it is expected that identification of the genes implicated in familial forms of epilepsies will lead to a better understanding of the underlying pathophysiological mechanisms of these disorders and to the development of experimental models and new therapeutic strategies, in this article, we review the clinical and genetic data concerning most of the inherited human epilepsies.
Collapse
Affiliation(s)
- I Gourfinkel-An
- Unité d'Epileptologie, Hôpital Pitié-Salpêtrière, Paris, France; Service d'Electrophysiologie, Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | | | | |
Collapse
|
6
|
Muzaffar NE, Pearce DA. Analysis of NCL Proteins from an Evolutionary Standpoint. Curr Genomics 2011; 9:115-36. [PMID: 19440452 PMCID: PMC2674804 DOI: 10.2174/138920208784139573] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 02/18/2008] [Accepted: 02/27/2008] [Indexed: 11/22/2022] Open
Abstract
The Neuronal Ceroid Lipofuscinoses (NCLs) are the most common group of neurodegenerative disorders of childhood. While mutations in eight different genes have been shown to be responsible for these clinically distinct types of NCL, the NCLs share many clinical and pathological similarities. We have conducted an exhaustive Basic Local Alignment Search Tool (BLAST) analysis of the human protein sequences for each of the eight known NCL proteins- CLN1, CLN2, CLN3, CLN5, CLN6, CLN7, CLN8 and CLN10. The number of homologous species per CLN-protein identified by BLAST searches varies depending on the parameters set for the BLAST search. For example, a lower threshold is able to pull up more homologous sequences whereas a higher threshold decreases this number. Nevertheless, the clade confines are consistent despite this variation in BLAST searching parameters. Further phylogenetic analyses on the appearance of NCL proteins through evolution reveals a different time line for the appearance of the CLN-proteins. Moreover, divergence of each protein shows a different pattern, providing important clues on the evolving role of these proteins. We present and review in-depth bioinformatic analysis of the NCL proteins and classify the CLN-proteins into families based on their structures and evolutionary relationships, respectively. Based on these analyses, we have grouped the CLN-proteins into common clades indicating a common evolving pathway within the evolutionary tree of life. CLN2 is grouped in Eubacteria, CLN1 and CLN10 in Viridiplantae, CLN3 in Fungi/ Metazoa, CLN7 in Bilateria and CLN5, CLN6 and CLN8 in Euteleostomi.
Collapse
Affiliation(s)
- Neda E Muzaffar
- Center for Neural Development and Disease, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | |
Collapse
|
7
|
Katz ML, Johnson GS, Tullis GE, Lei B. Phenotypic characterization of a mouse model of juvenile neuronal ceroid lipofuscinosis. Neurobiol Dis 2007; 29:242-53. [PMID: 17962032 DOI: 10.1016/j.nbd.2007.08.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 08/07/2007] [Accepted: 08/24/2007] [Indexed: 10/22/2022] Open
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL) is an autosomal recessively inherited neurodegenerative disorder that results from mutations in the CLN3 gene. JNCL is characterized by accumulation of autofluorescent lysosomal storage bodies, vision loss, seizures, progressive cognitive and motor decline, and premature death. Studies were undertaken to characterize the neuronal ceroid lipofuscinosis phenotype in a Cln3 knockout mouse model. Progressive accumulation of autofluorescent storage material was observed in brain and retina of affected mice. The Cln3(-/-) mice exhibited progressively impaired inner retinal function, altered pupillary light reflexes, losses of inner retinal neurons, and reduced brain mass. Behavioral changes included reduced spontaneous activity levels and impaired learning and memory. In addition, Cln3(-/-) mice had significantly shortened life spans. These phenotypic features indicate that the mouse model will be useful for investigating the mechanisms underlying the disease pathology in JNCL and provide quantitative markers of disease pathology that can be used for evaluating the efficacies of therapeutic interventions.
Collapse
Affiliation(s)
- Martin L Katz
- Mason Eye Institute, University of Missouri, Columbia, MO 65212, USA.
| | | | | | | |
Collapse
|
8
|
Vitiello SP, Wolfe DM, Pearce DA. Absence of Btn1p in the yeast model for juvenile Batten disease may cause arginine to become toxic to yeast cells. Hum Mol Genet 2007; 16:1007-16. [PMID: 17341489 DOI: 10.1093/hmg/ddm046] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Lymphoblast cell lines established from individuals with juvenile Batten disease (JNCL) bearing mutations in CLN3 and yeast strains lacking Btn1p (btn1-Delta), the homolog to CLN3, have decreased intracellular levels of arginine and defective lysosomal/vacuolar transport of arginine. It is important to establish the basis for this decrease in arginine levels and whether restoration of arginine levels would be of therapeutic value for Batten disease. Previous studies have suggested that synthesis and degradation of arginine are unaltered in btn1-Delta. Using the yeast model for the Batten disease, we have determined that although btn1-Delta results in decreased intracellular arginine levels, it does not result from altered arginine uptake, arginine efflux or differences in arginine incorporation into peptides. However, expression of BTN1 is dependent on arginine and Gcn4p, the master regulator of amino acid biosynthesis. Moreover, deletion of GCN4 (gcn4-Delta), in combination with btn1-Delta, results in a very specific growth requirement for arginine. In addition, increasing the intracellular levels of arginine through overexpression of Can1p, the plasma membrane basic amino acid permease, results in increased cell volume and a severe growth defect specific to basic amino acid availability for btn1-Delta, but not wild-type cells. Therefore, elevation of intracellular levels of arginine in btn1-Delta cells is detrimental and is suggestive that btn1-Delta and perhaps mutation of CLN3 predispose cells to keep arginine levels lower than normal.
Collapse
Affiliation(s)
- Seasson Phillips Vitiello
- Center for Aging and Developmental Biology, Aab Institute of Biomedical Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | |
Collapse
|
9
|
Phillips SN, Muzaffar N, Codlin S, Korey CA, Taschner PEM, de Voer G, Mole SE, Pearce DA. Characterizing pathogenic processes in Batten disease: Use of small eukaryotic model systems. Biochim Biophys Acta Mol Basis Dis 2006; 1762:906-19. [PMID: 17049819 DOI: 10.1016/j.bbadis.2006.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 08/08/2006] [Accepted: 08/27/2006] [Indexed: 10/24/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are neurodegenerative disorders. Nevertheless, small model organisms, including those lacking a nervous system, have proven invaluable in the study of mechanisms that underlie the disease and in studying the functions of the conserved proteins associated to each disease. From the single-celled yeast, Saccharomyces cerevisiae and Schizosaccharomyces pombe, to the worm, Caenorhabditis elegans and the fruitfly, Drosophila melanogaster, biochemical and, in particular, genetic studies on these organisms have provided insight into the NCLs.
Collapse
Affiliation(s)
- Seasson N Phillips
- Center for Aging and Developmental Biology, Aab Institute of Biomedical Science, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kwon JM, Rothberg PG, Leman AR, Weimer JM, Mink JW, Pearce DA. Novel CLN3 mutation predicted to cause complete loss of protein function does not modify the classical JNCL phenotype. Neurosci Lett 2005; 387:111-4. [PMID: 16087292 DOI: 10.1016/j.neulet.2005.07.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 06/30/2005] [Accepted: 07/13/2005] [Indexed: 11/22/2022]
Abstract
Juvenile Neuronal Ceroid Lipofuscinosis (JNCL), or Batten disease, is a childhood neurodegenerative disease that is characterized clinically by progressive visual loss, seizures, dementia, and motor incoordination. Children affected with this disease tend to develop normally for the first 5 years of life. However, once disease onset occurs, they decline rapidly and die in their late 20s to early 30s. Though this represents the typical disease course, the onset and severity of disease symptoms can vary. This variability is presumed to be the result of both differences in the causative genetic mutation in the CLN3 gene as well as environmental influences. Most cases of JNCL are caused by a 1 kb deletion in the CLN3 gene, resulting in a frameshift mutation predicted to leave the first 153 amino acids of the CLN3 protein intact, followed by the addition of 28 novel amino acids. Here we report the discovery of a novel mutation identified as a G to T transversion at nucleotide 49 (G49T) in exon 2 of CLN3, introducing a premature stop codon (E17X) near the N-terminus. This mutation represents the most 5' mutation described to date. The patient examined in this study was heterozygous for the common 1 kb deletion and E17X. She had classical disease progression, suggesting that this mutation in CLN3 mimics the more prevalent 1 kb deletion and that progression of JNCL is predominantly the result of loss of CLN3 function.
Collapse
Affiliation(s)
- Jennifer M Kwon
- Department of Neurology, 601 Elmwood Avenue, Box 631, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Hermansson M, Käkelä R, Berghäll M, Lehesjoki AE, Somerharju P, Lahtinen U. Mass spectrometric analysis reveals changes in phospholipid, neutral sphingolipid and sulfatide molecular species in progressive epilepsy with mental retardation, EPMR, brain: a case study. J Neurochem 2005; 95:609-17. [PMID: 16086686 DOI: 10.1111/j.1471-4159.2005.03376.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Progressive epilepsy with mental retardation, EPMR, belongs to a group of inherited neurodegenerative disorders, the neuronal ceroid lipofuscinoses. The CLN8 gene that underlies EPMR encodes a novel transmembrane protein that localizes to the endoplasmic reticulum (ER) and ER-Golgi intermediate compartment. Recently, CLN8 was linked to a large eukaryotic protein family of TLC (TRAM, Lag1, CLN8) domain homologues with postulated functions in lipid synthesis, transport or sensing. By using liquid chromatography/mass spectrometry we analysed molecular species of major phosholipid and simple sphingolipid classes from cerebral samples of two EPMR patients representing a progressive and advanced state of the disease. The progressive state brain showed reduced levels of ceramide, galactosyl- and lactosylceramide and sulfatide as well as a decrease in long fatty acyl chain containing molecular species within these classes. Among glycerophospholipid classes, an increase in species containing polyunsaturated acyl chains was detected especially in phosphatidylserines and phosphatidylethanolamines. By contrast, saturated and monounsaturated species were overrepresented among phosphatidylserine, phosphatidylethanolamine and phosphatidylinositol classes in the advanced state sample. The observed changes in brain sphingo- and phospholipid molecular profiles may result in altered membrane stability, lipid peroxidation, vesicular trafficking or neurotransmission and thus may contribute to the progression of the molecular pathogenesis of EPMR.
Collapse
Affiliation(s)
- Martin Hermansson
- Institute of Biomedicine, Department of Biochemistry, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
12
|
Phillips SN, Benedict JW, Weimer JM, Pearce DA. CLN3, the protein associated with batten disease: structure, function and localization. J Neurosci Res 2005; 79:573-83. [PMID: 15657902 DOI: 10.1002/jnr.20367] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Batten disease, an inherited neurodegenerative storage disease affecting children, results from the autosomal recessive inheritance of mutations in Cln3. The function of the CLN3 protein remains unknown. A key to understanding the pathology of this devastating disease will be to elucidate the function of CLN3 at the cellular level. CLN3 has proven difficult to study as it is predicted to be a membrane protein expressed at relatively low levels. This article is a critical review of various approaches used in examining the structure, trafficking, and localization of CLN3. We conclude that CLN3 is likely resident in the lysosomal/endosomal membrane. Different groups have postulated conflicting orientations for CLN3 within this membrane. In addition, CLN3 undergoes several posttranslational modifications and is trafficked through the endoplasmic reticulum and Golgi. Recent evidence also suggests that CLN3 traffics via the plasma membrane. Although the function of this protein remains elusive, it is apparent that genetic alterations in Cln3 may have a direct affect on lysosomal function.
Collapse
Affiliation(s)
- Seasson N Phillips
- Center for Aging and Developmental Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
13
|
Affiliation(s)
- R Robinson
- Department of Paediatrics, Royal Free and University College Medical School, University College London, Rayne Institute, University Street, London WC1E 6JJ, UK.
| | | |
Collapse
|
14
|
Margraf LR, Boriack RL, Routheut AA, Cuppen I, Alhilali L, Bennett CJ, Bennett MJ. Tissue expression and subcellular localization of CLN3, the Batten disease protein. Mol Genet Metab 1999; 66:283-9. [PMID: 10191116 DOI: 10.1006/mgme.1999.2830] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Juvenile neuronal ceroid lipofuscinosis (Batten disease) is a progressive neurologic disorder which results from mutations in the CLN3 gene, which normally produces a 48-kDa polypeptide of unknown function. To help characterize the CLN3 protein, we have studied its tissue distribution and subcellular localization in human tissues using three epitope-specific polyclonal antibodies to human CLN3 by immunoblot, immunocytochemical, and immunoelectron microscopic analysis. The most abundant CLN3 protein expression was in the gray matter of the brain, where it was localized to astrocytes, capillary endothelium, and neurons. CLN3 was also evident in peripheral nerve, in pancreatic islet cells, and within the seminiferous tubules in the testis. Staining was generally diffuse within the cytoplasm with some nuclear reactivity. Subcellular localization identified the CLN3 protein within the nucleus and along cell membranes. These results were contrasted with the cellular distribution of palmitoyl-protein thioesterase (PPT), the enzyme whose deficiency is responsible for infantile neuronal ceroid lipofuscinosis (CLN1). PPT was most abundant in brain and visceral macrophages where it displayed a coarse granular staining pattern typical of lysosomal distribution. Immunoelectron microscopy confirmed that PPT immunoreactivity was limited to lysosomes.
Collapse
Affiliation(s)
- L R Margraf
- Department of Pathology, University of Texas Southwestern Medical Center and Children's Medical Center of Dallas, Dallas, Texas 75235, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Chapter 11 The Neuronal Ceroid-lipofuscinoses (Batten Disease). ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1566-3124(08)60031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|