1
|
Li J, Cheng P, Li S, Zhao P, Han B, Ren X, Zhong JL, Lloyd MD, Pourzand C, Holmgren A, Lu J. Selenium Status in Diet Affects Acetaminophen-Induced Hepatotoxicity via Interruption of Redox Environment. Antioxid Redox Signal 2021; 34:1355-1367. [PMID: 32517496 DOI: 10.1089/ars.2019.7909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aims: Drug-induced liver injury, especially acetaminophen (APAP)-induced liver injury, is a leading cause of liver failure worldwide. Mouse models were used to evaluate the effect of microelement selenium levels on the cellular redox environment and consequent hepatotoxicity of APAP. Results: APAP treatment affected mouse liver selenoprotein thioredoxin reductase (TrxR) activity and glutathione (GSH) level in a dose- and time-dependent manner. Decrease of mouse liver TrxR activity and glutathione level was an early event, and occurred concurrently with liver damage. The decreases in the GSH/glutathione disulfide form (GSSG) ratio and TrxR activity, and the increase of protein S-glutathionylation were correlated with the APAP-induced hepatotoxicity. Moreover, in APAP-treated mice both mild deprivation and excess supplementation with selenium increased the severity of liver injury compared with those observed in mice with normal dietary selenium levels. An increase in the oxidation state of the TrxR-mediated system, including cytosolic thioredoxin1 (Trx1) and peroxiredoxin1/2 (Prx1/2), and mitochondrial Trx2 and Prx3, was found in the livers from mice reared on selenium-deficient and excess selenium-supplemented diets upon APAP treatment. Innovation: This work demonstrates that both Trx and GSH systems are susceptible to APAP toxicity in vivo, and that the thiol-dependent redox environment is a key factor in determining the extent of APAP-induced hepatotoxicity. Dietary selenium and selenoproteins play critical roles in protecting mice against APAP overdose. Conclusion: APAP treatment in mice interrupts the function of the Trx and GSH systems, which are the main enzymatic antioxidant systems, in both the cytosol and mitochondria. Dietary selenium deficiency and excess supplementation both increase the risk of APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Ping Cheng
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Shoufeng Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Pengfei Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Bing Han
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xiaoyuan Ren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Julia Li Zhong
- College of Bioengineering & School of Life Sciences, Chongqing University, Chongqing, China
| | - Matthew D Lloyd
- Drug & Target Discovery, Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom
| | - Charareh Pourzand
- Medicines Design, Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Jun Lu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Tan HH, Chang CY, Martin P. Acetaminophen hepatotoxicity: current management. ACTA ACUST UNITED AC 2009; 76:75-83. [PMID: 19170221 DOI: 10.1002/msj.20065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hui-Hui Tan
- Division of Liver Diseases, Recanati-Miller Transplantation Institute, Mount Sinai School of Medicine, New York, NY, USA.
| | | | | |
Collapse
|
4
|
Davis RR, Kuo MW, Stanton SG, Canlon B, Krieg E, Alagramam KN. N-Acetyl l-cysteine does not protect against premature age-related hearing loss in C57BL/6J mice: A pilot study. Hear Res 2007; 226:203-8. [PMID: 16930891 DOI: 10.1016/j.heares.2006.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 06/30/2006] [Accepted: 07/03/2006] [Indexed: 10/24/2022]
Abstract
A compound capable of preventing age-related hearing loss would be very useful in an aging population. N-acetyl-L-cysteine (L-NAC) has been shown to be protective against noise exposure, a condition that leads to increased oxidative stress. Not withstanding environmental factors, there is evidence that age-related hearing loss (AHL) in the mouse is linked to more than one genetic loci and, by extension, in humans. Our hypothesis is that AHL defect results in increased sensitivity to oxidative stress and L-NAC would be able to protect the hearing of a mouse model of pre-mature AHL, the C57BL/6J (B6) mouse strain. L-NAC was added to the regular water bottle of B6 mice (experimental group) and available ad lib. The other group received normal tap water. Hearing was tested monthly by the ability to generate the auditory brainstem response (ABR). After the final ABR test, mice were sacrificed by an overdose of Avertin, ears were harvested and hair cell loss was quantified. There was no difference in ABR thresholds or in histopathology between the control group and the group receiving L-NAC in their drinking water. In contrast to the protective effects of L-NAC against noise-induced hearing loss, the lack of protective effect in this study may be due to (i) the dosage level; (ii) the duration of treatment; (iii) the biochemical mechanisms underlying age-induced hearing loss; or (iv) how the mouse metabolizes L-NAC.
Collapse
MESH Headings
- Acetylcysteine/pharmacology
- Aging/pathology
- Aging/physiology
- Animals
- Antioxidants/pharmacology
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Female
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/pathology
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/pathology
- Mice
- Mice, Inbred C57BL
- Pilot Projects
- Presbycusis/pathology
- Presbycusis/physiopathology
- Presbycusis/prevention & control
Collapse
Affiliation(s)
- Rickie R Davis
- Hearing Loss Prevention Team, Engineering and Physical Hazards Branch, Division of Applied Research and Technology, National Institute for Occupational Safety and Health, C-27, 4676 Columbia Parkway, Cincinnati, OH 45226, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
Paracetamol poisoning caused by intentional overdose remains a common cause of morbidity. In this article the mechanism of toxicity and the clinical effects and treatment of poisoning, including specific antidotal therapy, are reviewed. Areas for further research directed at reducing morbidity and mortality from paracetamol poisoning are considered.
Collapse
Affiliation(s)
- S H Thomas
- Wolfson Department of Clinical Pharmacology, University of Newcastle upon Tyne, U.K
| |
Collapse
|