1
|
Nithun RV, Yao YM, Harel O, Habiballah S, Afek A, Jbara M. Site-Specific Acetylation of the Transcription Factor Protein Max Modulates Its DNA Binding Activity. ACS CENTRAL SCIENCE 2024; 10:1295-1303. [PMID: 38947213 PMCID: PMC11212134 DOI: 10.1021/acscentsci.4c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024]
Abstract
Chemical protein synthesis provides a powerful means to prepare novel modified proteins with precision down to the atomic level, enabling an unprecedented opportunity to understand fundamental biological processes. Of particular interest is the process of gene expression, orchestrated through the interactions between transcription factors (TFs) and DNA. Here, we combined chemical protein synthesis and high-throughput screening technology to decipher the role of post-translational modifications (PTMs), e.g., Lys-acetylation on the DNA binding activity of Max TF. We synthesized a focused library of singly, doubly, and triply modified Max variants including site-specifically acetylated and fluorescently tagged analogs. The resulting synthetic analogs were employed to decipher the molecular role of Lys-acetylation on the DNA binding activity and sequence specificity of Max. We provide evidence that the acetylation sites at Lys-31 and Lys-57 significantly inhibit the DNA binding activity of Max. Furthermore, by utilizing high-throughput binding measurements, we assessed the binding activities of the modified Max variants across diverse DNA sequences. Our results indicate that acetylation marks can alter the binding specificities of Max toward certain sequences flanking its consensus binding sites. Our work provides insight into the hidden molecular code of PTM-TFs and DNA interactions, paving the way to interpret gene expression regulation programs.
Collapse
Affiliation(s)
- Raj V. Nithun
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Yumi Minyi Yao
- Department
of Chemical and Structural Biology, Weizmann
Institute of Science, Rehovot, 7610001, Israel
| | - Omer Harel
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Shaimaa Habiballah
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Ariel Afek
- Department
of Chemical and Structural Biology, Weizmann
Institute of Science, Rehovot, 7610001, Israel
| | - Muhammad Jbara
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| |
Collapse
|
2
|
Tsuruta A, Kanetani D, Shiiba Y, Inoki T, Yoshida Y, Matsunaga N, Koyanagi S, Ohdo S. Modulation of cell physiology by bispecific nanobodies enabling changes in the intracellular localization of organelle proteins. Biochem Pharmacol 2023; 215:115708. [PMID: 37506923 DOI: 10.1016/j.bcp.2023.115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/08/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Proteins localize to their respective organelles in cells. This localization is changed by activation or repression in response to signal transduction. Therefore, the appropriate intracellular localization of proteins is important for their functions to be exerted. However, difficulties are associated with controlling the localization of endogenous proteins. In the present study, we developed a conceptually new method of controlling the intracellular localization of endogenous proteins using bispecific nanobodies (BiNbs). BiNbs recognize proteins expressed in the inner membrane, cytoskeleton, nucleus, and peroxisomes, but not in mitochondria or endoplasmic reticulum. BiNbs designed to recognize β-CATENIN and the intrinsic cytosolic protein VIMENTIN (3 × Flag β-CAT-VIM BiNbs) decreased the β-CATENIN-mediated transactivation of target genes by preventing its nuclear localization. Furthermore, 3 × Flag β-CAT-VIM BiNbs suppressed the proliferation and invasion of the VIMENTIN-expressing breast cancer cell line MDA-MB-231, but not MDA-MB-468, in which the expression of VIMENTIN was defective. The present results revealed that changes in the intracellular localization of specific proteins by BiNbs modulated the physiology and functions of cells. The development of BiNbs to recognize proteins specifically expressed in target cells may be a useful approach for eliciting cell-selective effects.
Collapse
Affiliation(s)
- Akito Tsuruta
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Glocal Healthcare, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Daiki Kanetani
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuki Shiiba
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takuto Inoki
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuya Yoshida
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Naoya Matsunaga
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Satoru Koyanagi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Glocal Healthcare, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shigehiro Ohdo
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
3
|
Vaseghi-Shanjani M, Yousefi P, Sharma M, Samra S, Sifuentes E, Turvey SE, Biggs CM. Transcription factor defects in inborn errors of immunity with atopy. FRONTIERS IN ALLERGY 2023; 4:1237852. [PMID: 37727514 PMCID: PMC10505736 DOI: 10.3389/falgy.2023.1237852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/08/2023] [Indexed: 09/21/2023] Open
Abstract
Transcription factors (TFs) are critical components involved in regulating immune system development, maintenance, and function. Monogenic defects in certain TFs can therefore give rise to inborn errors of immunity (IEIs) with profound clinical implications ranging from infections, malignancy, and in some cases severe allergic inflammation. This review examines TF defects underlying IEIs with severe atopy as a defining clinical phenotype, including STAT3 loss-of-function, STAT6 gain-of-function, FOXP3 deficiency, and T-bet deficiency. These disorders offer valuable insights into the pathophysiology of allergic inflammation, expanding our understanding of both rare monogenic and common polygenic allergic diseases. Advances in genetic testing will likely uncover new IEIs associated with atopy, enriching our understanding of molecular pathways involved in allergic inflammation. Identification of monogenic disorders profoundly influences patient prognosis, treatment planning, and genetic counseling. Hence, the consideration of IEIs is essential for patients with severe, early-onset atopy. This review highlights the need for continued investigation into TF defects to enhance our understanding and management of allergic diseases.
Collapse
Affiliation(s)
- Maryam Vaseghi-Shanjani
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
- Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Pariya Yousefi
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| | - Mehul Sharma
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| | - Simran Samra
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
- Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Erika Sifuentes
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| | - Stuart E. Turvey
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| | - Catherine M. Biggs
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Adeyemi RO. Transcription and DNA repair collide after UV exposure. Proc Natl Acad Sci U S A 2023; 120:e2303201120. [PMID: 37036973 PMCID: PMC10120015 DOI: 10.1073/pnas.2303201120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Affiliation(s)
- Richard O. Adeyemi
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| |
Collapse
|
5
|
Mistriotis A. Mathematical and physical considerations indicating that the cell genome is a read-write memory. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:50-56. [PMID: 36736433 DOI: 10.1016/j.pbiomolbio.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/15/2023] [Accepted: 01/30/2023] [Indexed: 02/03/2023]
Abstract
The molecular mechanisms that govern biological evolution have not been fully elucidated so far. Recent studies indicate that regulatory proteins, acting as decision-making complex devices, can accelerate or retard the evolution of cells. Such biochemically controlled evolution may be considered as an optimization process of logical nature aimed at developing fitter species that can better survive in a specific environment. Therefore, we may assume that new genetic information can be stored in the cell memory (i.e., genome) by a sophisticated biomolecular process that resembles writing in computer memory. Such a hypothesis is theoretically supported by a recent work showing that logic is a necessary component of life, so living systems process information in the same way as computers. The current study summarizes existing evidence showing that cells can intentionally modify their stored data by biochemical processes resembling stochastic algorithms to avoid environmental stress and increase their chances of survival. Furthermore, the mathematical and physical considerations that render a read-write memory a necessary component of biological systems are presented.
Collapse
Affiliation(s)
- Antonis Mistriotis
- Agricultural University of Athens, Dept. of Natural Resources and Agricultural Engineering, Iera Odos 75, Athens, Greece.
| |
Collapse
|
6
|
The role of transcription factors in the acquisition of the four latest proposed hallmarks of cancer and corresponding enabling characteristics. Semin Cancer Biol 2022; 86:1203-1215. [PMID: 36244529 DOI: 10.1016/j.semcancer.2022.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 01/27/2023]
Abstract
With the recent description of the molecular and cellular characteristics that enable acquisition of both core and new hallmarks of cancer, the consequences of transcription factor dysregulation in the hallmarks scheme has become increasingly evident. Dysregulation or mutation of transcription factors has long been recognized in the development of cancer where alterations in these key regulatory molecules can result in aberrant gene expression and consequential blockade of normal cellular differentiation. Here, we provide an up-to-date review of involvement of dysregulated transcription factor networks with the most recently reported cancer hallmarks and enabling characteristic properties. We present some illustrative examples of the impact of dysregulated transcription factors, specifically focusing on the characteristics of phenotypic plasticity, non-mutational epigenetic reprogramming, polymorphic microbiomes, and senescence. We also discuss how new insights into transcription factor dysregulation in cancer is contributing to addressing current therapeutic challenges.
Collapse
|
7
|
Deitas TFH, Gaspary JFP. Efeitos biopsicos sociais e psiconeuroimunológicos do câncer sobre o paciente e familiares. REVISTA BRASILEIRA DE CANCEROLOGIA 2022. [DOI: 10.32635/2176-9745.rbc.1997v43n2.2844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Durante as duas últimas décadas, têm sido ressaltados os problemas somáticos, psíquicos e sociais de pacientes com câncer, bem como têm sido focalizadas, no âmbito do estudo oncolágico, as teorias hiopsicossociais e psiconeuroimunológicas. O presente trabalho apresenta considerações clínicas sobre esses aspectos, ressaltando-se o impacto que o câncer provoca sobre os pacientes e seus familiares. O câncer e seus tratamentos constituem uma fonte de estresse, capaz de desencadear desordens de ajustamento nestes indivíduos. A mensuração da qualidade de vida deve ser incorporada aos estudos clínicos, porque a sua inclusão tende a melhorar as indicações terapêuticas. Os relatos de pacientes sobre sintomas somáticos são associados, principalmente, às suas preocupações emocionais e sociais mais do que ao seu estado geral de saúde. A equipe responsável pelos pacientes deve compreender a dinâmica envolvida no binômio família-paciente e conhecer a influência que os fatores psicossociais exercem sobre ele. A falha do reconhecimento dessa influência e, conseqüentemente, o prejuízo provocado no suporte psicossocial da família irão privar os pacientes do conforto, amor, suporte e companheirismo de que eles precisarão através do curso da sua doença. Os médicos devem ser capazes de identificar e estimular circunstâncias que facilitem o processo de adaptação de seus pacientes. O tratamento psicológico, em pelo menos alguma extensão, sempre é benéfico.
Collapse
|
8
|
González-López O, Muñoz-González JI, Orfao A, Álvarez-Twose I, García-Montero AC. Comprehensive Analysis of Acquired Genetic Variants and Their Prognostic Impact in Systemic Mastocytosis. Cancers (Basel) 2022; 14:cancers14102487. [PMID: 35626091 PMCID: PMC9139197 DOI: 10.3390/cancers14102487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 01/27/2023] Open
Abstract
Systemic mastocytosis (SM) is a rare clonal haematopoietic stem cell disease in which activating KIT mutations (most commonly KIT D816V) are present in virtually every (>90%) adult patient at similar frequencies among non-advanced and advanced forms of SM. The KIT D816V mutation is considered the most common pathogenic driver of SM. Acquisition of this mutation early during haematopoiesis may cause multilineage involvement of haematopoiesis by KIT D816V, which has been associated with higher tumour burden and additional mutations in other genes, leading to an increased rate of transformation to advanced SM. Thus, among other mutations, alterations in around 30 genes that are also frequently mutated in other myeloid neoplasms have been reported in SM cases. From these genes, 12 (i.e., ASXL1, CBL, DNMT3A, EZH2, JAK2, KRAS, NRAS, SF3B1, RUNX1, SF3B1, SRSF2, TET2) have been recurrently reported to be mutated in SM. Because of all the above, assessment of multilineage involvement of haematopoiesis by the KIT D816V mutation, in the setting of multi-mutated haematopoiesis as revealed by a limited panel of genes (i.e., ASXL1, CBL, DNMT3A, EZH2, NRAS, RUNX1 and SRSF2) and associated with a poorer patient outcome, has become of great help to identify SM patients at higher risk of disease progression and/or poor survival who could benefit from closer follow-up and eventually also early cytoreductive treatment.
Collapse
Affiliation(s)
- Oscar González-López
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Javier I. Muñoz-González
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Alberto Orfao
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Iván Álvarez-Twose
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast, Virgen del Valle Hospital) and REMA, 45071 Toledo, Spain
| | - Andrés C. García-Montero
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Correspondence:
| |
Collapse
|
9
|
The properties of human disease mutations at protein interfaces. PLoS Comput Biol 2022; 18:e1009858. [PMID: 35120134 PMCID: PMC8849535 DOI: 10.1371/journal.pcbi.1009858] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/16/2022] [Accepted: 01/24/2022] [Indexed: 12/27/2022] Open
Abstract
The assembly of proteins into complexes and their interactions with other biomolecules are often vital for their biological function. While it is known that mutations at protein interfaces have a high potential to be damaging and cause human genetic disease, there has been relatively little consideration for how this varies between different types of interfaces. Here we investigate the properties of human pathogenic and putatively benign missense variants at homomeric (isologous and heterologous), heteromeric, DNA, RNA and other ligand interfaces, and at different regions in proteins with respect to those interfaces. We find that different types of interfaces vary greatly in their propensity to be associated with pathogenic mutations, with homomeric heterologous and DNA interfaces being particularly enriched in disease. We also find that residues that do not directly participate in an interface, but are close in three-dimensional space, show a significant disease enrichment. Finally, we observe that mutations at different types of interfaces tend to have distinct property changes when undergoing amino acid substitutions associated with disease, and that this is linked to substantial variability in their identification by computational variant effect predictors. Nearly all proteins interact with other molecules as part of their biological function. For example, proteins can interact with other copies of the same type of protein, with different proteins, with DNA, or with small ligand molecules. Many mutations at protein interfaces, the regions of proteins that interact with other molecules, are known to cause human genetic disease. In this study, we first investigate how different types of protein interfaces have different tendencies to be associated with disease. We also show that the closer a mutation is to an interface, the more likely it is to cause disease. Finally, we study how mutations at different types of interfaces tend to be associated with different changes in amino acid properties, which appears to influence our ability to computationally predict the effects of mutations. Ultimately, we hope that consideration of protein interface properties will eventually improve our ability to identify new disease-causing mutations.
Collapse
|
10
|
Zheng R, Zhu P, Gu J, Ni B, Sun H, He K, Bian J, Shao Y, Du J. Transcription factor Sp2 promotes TGFB-mediated interstitial cell osteogenic differentiation in bicuspid aortic valves through a SMAD-dependent pathway. Exp Cell Res 2021; 411:112972. [PMID: 34914964 DOI: 10.1016/j.yexcr.2021.112972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 11/04/2022]
Abstract
Calcification of the bicuspid aortic valve (BAV) involves differential expression of various RNA genes, which is achieved through complex regulatory networks that are controlled in part by transcription factors and microRNAs. We previously found that miR-195-5p regulates the osteogenic differentiation of valvular interstitial cells (VICs) by targeting the TGF-β pathway. However, the transcriptional regulation of miR-195-5p in calcified BAV patients is not yet clear. In this study, stenotic aortic valve tissues from patients with BAVs and tricuspid aortic valves (TAVs) were collected. Candidate transcription factors of miR-195-5p were predicted by bioinformatics analysis and tested in diseased valves and in male porcine VICs. SP2 gene expression and the corresponding protein levels in BAV were significantly lower than those in TAV, and a low SP2 expression level environment in VICs resulted in remarkable increases in RNA expression levels of RUNX2, BMP2, collagen 1, MMP2, and MMP9 and the corresponding proteins. ChIP assays revealed that SP2 directly bound to the transcription promoter region of miR-195-5p. Cotransfection of SP2 shRNA and a miR-195-5p mimic in porcine VICs demonstrated that SP2 repressed SMAD7 expression via miR-195-5p, while knockdown of SP2 increased the mRNA expression of SMAD7 and the corresponding protein and attenuated Smad 2/3 expression. Immunofluorescence staining of diseased valves confirmed that the functional proteins of osteogenesis differentiation, including RUNX2, BMP2, collagen 1, and osteocalcin, were overexpressed in BAVs. In Conclusion, the transcription factor Sp2 is expressed at low levels in VICs from BAV patients, which has a negative impact on miR-195-5p expression by binding its promoter region and partially promotes calcification through a SMAD-dependent pathway.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Pengcheng Zhu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Jiaxi Gu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Buqing Ni
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Haoliang Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Keshuai He
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Jinhui Bian
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Yongfeng Shao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China.
| | - Junjie Du
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China.
| |
Collapse
|
11
|
Ebersbach C, Beier AMK, Thomas C, Erb HHH. Impact of STAT Proteins in Tumor Progress and Therapy Resistance in Advanced and Metastasized Prostate Cancer. Cancers (Basel) 2021; 13:4854. [PMID: 34638338 PMCID: PMC8508518 DOI: 10.3390/cancers13194854] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022] Open
Abstract
Signal transducers and activators of transcription (STATs) are a family of transcription factors involved in several biological processes such as immune response, cell survival, and cell growth. However, they have also been implicated in the development and progression of several cancers, including prostate cancer (PCa). Although the members of the STAT protein family are structurally similar, they convey different functions in PCa. STAT1, STAT3, and STAT5 are associated with therapy resistance. STAT1 and STAT3 are involved in docetaxel resistance, while STAT3 and STAT5 are involved in antiandrogen resistance. Expression of STAT3 and STAT5 is increased in PCa metastases, and together with STAT6, they play a crucial role in PCa metastasis. Further, expression of STAT3, STAT5, and STAT6 was elevated in advanced and high-grade PCa. STAT2 and STAT4 are currently less researched in PCa. Since STATs are widely involved in PCa, they serve as potential therapeutic targets. Several inhibitors interfering with STATs signaling have been tested unsuccessfully in PCa clinical trials. This review focuses on the respective roles of the STAT family members in PCa, especially in metastatic disease and provides an overview of STAT-inhibitors evaluated in clinical trials.
Collapse
Affiliation(s)
- Celina Ebersbach
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (C.E.); (A.-M.K.B.); (C.T.)
- Mildred Scheel Early Career Center, Department of Urology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Alicia-Marie K. Beier
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (C.E.); (A.-M.K.B.); (C.T.)
- Mildred Scheel Early Career Center, Department of Urology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Christian Thomas
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (C.E.); (A.-M.K.B.); (C.T.)
| | - Holger H. H. Erb
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (C.E.); (A.-M.K.B.); (C.T.)
| |
Collapse
|
12
|
Downie ML, Lopez Garcia SC, Kleta R, Bockenhauer D. Inherited Tubulopathies of the Kidney: Insights from Genetics. Clin J Am Soc Nephrol 2021; 16:620-630. [PMID: 32238367 PMCID: PMC8092065 DOI: 10.2215/cjn.14481119] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The kidney tubules provide homeostasis by maintaining the external milieu that is critical for proper cellular function. Without homeostasis, there would be no heartbeat, no muscle movement, no thought, sensation, or emotion. The task is achieved by an orchestra of proteins, directly or indirectly involved in the tubular transport of water and solutes. Inherited tubulopathies are characterized by impaired function of one or more of these specific transport molecules. The clinical consequences can range from isolated alterations in the concentration of specific solutes in blood or urine to serious and life-threatening disorders of homeostasis. In this review, we focus on genetic aspects of the tubulopathies and how genetic investigations and kidney physiology have crossfertilized each other and facilitated the identification of these disorders and their molecular basis. In turn, clinical investigations of genetically defined patients have shaped our understanding of kidney physiology.
Collapse
Affiliation(s)
- Mallory L. Downie
- Department of Renal Medicine, University College London, London, United Kingdom,Department of Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Sergio C. Lopez Garcia
- Department of Renal Medicine, University College London, London, United Kingdom,Department of Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Robert Kleta
- Department of Renal Medicine, University College London, London, United Kingdom,Department of Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Detlef Bockenhauer
- Department of Renal Medicine, University College London, London, United Kingdom,Department of Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
13
|
Lin M, Guo JT. New insights into protein-DNA binding specificity from hydrogen bond based comparative study. Nucleic Acids Res 2020; 47:11103-11113. [PMID: 31665426 PMCID: PMC6868434 DOI: 10.1093/nar/gkz963] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/06/2019] [Accepted: 10/10/2019] [Indexed: 12/25/2022] Open
Abstract
Knowledge of protein-DNA binding specificity has important implications in understanding DNA metabolism, transcriptional regulation and developing therapeutic drugs. Previous studies demonstrated hydrogen bonds between amino acid side chains and DNA bases play major roles in specific protein-DNA interactions. In this paper, we investigated the roles of individual DNA strands and protein secondary structure types in specific protein-DNA recognition based on side chain-base hydrogen bonds. By comparing the contribution of each DNA strand to the overall binding specificity between DNA-binding proteins with different degrees of binding specificity, we found that highly specific DNA-binding proteins show balanced hydrogen bonding with each of the two DNA strands while multi-specific DNA binding proteins are generally biased towards one strand. Protein-base pair hydrogen bonds, in which both bases of a base pair are involved in forming hydrogen bonds with amino acid side chains, are more prevalent in the highly specific protein-DNA complexes than those in the multi-specific group. Amino acids involved in side chain-base hydrogen bonds favor strand and coil secondary structure types in highly specific DNA-binding proteins while multi-specific DNA-binding proteins prefer helices.
Collapse
Affiliation(s)
- Maoxuan Lin
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Jun-Tao Guo
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
14
|
Tripodi IJ, Allen MA, Dowell RD. Detecting Differential Transcription Factor Activity from ATAC-Seq Data. Molecules 2018; 23:molecules23051136. [PMID: 29748466 PMCID: PMC6099720 DOI: 10.3390/molecules23051136] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/05/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023] Open
Abstract
Transcription factors are managers of the cellular factory, and key components to many diseases. Many non-coding single nucleotide polymorphisms affect transcription factors, either by directly altering the protein or its functional activity at individual binding sites. Here we first briefly summarize high-throughput approaches to studying transcription factor activity. We then demonstrate, using published chromatin accessibility data (specifically ATAC-seq), that the genome-wide profile of TF recognition motifs relative to regions of open chromatin can determine the key transcription factor altered by a perturbation. Our method of determining which TFs are altered by a perturbation is simple, is quick to implement, and can be used when biological samples are limited. In the future, we envision that this method could be applied to determine which TFs show altered activity in response to a wide variety of drugs and diseases.
Collapse
Affiliation(s)
- Ignacio J Tripodi
- Computer Science, University of Colorado, Boulder, CO 80305, USA.
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA.
| | - Mary A Allen
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA.
| | - Robin D Dowell
- Computer Science, University of Colorado, Boulder, CO 80305, USA.
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA.
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80305, USA.
| |
Collapse
|
15
|
Bigley RB, Payumo AY, Alexander JM, Huang GN. Insights into nuclear dynamics using live-cell imaging approaches. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2017; 9:10.1002/wsbm.1372. [PMID: 28078793 PMCID: PMC5315593 DOI: 10.1002/wsbm.1372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 11/11/2022]
Abstract
The nucleus contains the genetic blueprint of the cell and myriad interactions within this subcellular structure are required for gene regulation. In the current scientific era, characterization of these gene regulatory networks through biochemical techniques coupled with systems-wide 'omic' approaches has become commonplace. However, these strategies are limited because they represent a mere snapshot of the cellular state. To obtain a holistic understanding of nuclear dynamics, relevant molecules must be studied in their native contexts in living systems. Live-cell imaging approaches are capable of providing quantitative assessment of the dynamics of gene regulatory interactions within the nucleus. We survey recent insights into what live-cell imaging approaches have provided the field of nuclear dynamics. In this review, we focus on interactions of DNA with other DNA loci, proteins, RNA, and the nuclear envelope. WIREs Syst Biol Med 2017, 9:e1372. doi: 10.1002/wsbm.1372 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Rachel B. Bigley
- Cardiovascular Research Institute and Department of Physiology, School of Medicine, University of California, San Francisco CA 94158, USA
| | - Alexander Y. Payumo
- Cardiovascular Research Institute and Department of Physiology, School of Medicine, University of California, San Francisco CA 94158, USA
| | - Jeffrey M. Alexander
- Cardiovascular Research Institute and Department of Physiology, School of Medicine, University of California, San Francisco CA 94158, USA
| | - Guo N. Huang
- Cardiovascular Research Institute and Department of Physiology, School of Medicine, University of California, San Francisco CA 94158, USA
| |
Collapse
|
16
|
Greb JE, Goldminz AM, Elder JT, Lebwohl MG, Gladman DD, Wu JJ, Mehta NN, Finlay AY, Gottlieb AB. Psoriasis. Nat Rev Dis Primers 2016; 2:16082. [PMID: 27883001 DOI: 10.1038/nrdp.2016.82] [Citation(s) in RCA: 623] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Psoriasis is a chronic, immune-mediated disorder with cutaneous and systemic manifestations and substantial negative effects on patient quality of life. Psoriasis has a strong, albeit polygenic, genetic basis. Whereas approximately half of the accountable genetic effect of psoriasis maps to the major histocompatibility complex, >70 other loci have been identified, many of which implicate nuclear factor-κB, interferon signalling and the IL-23-IL-23 receptor axis. Psoriasis pathophysiology is characterized by abnormal keratinocyte proliferation and immune cell infiltration in the dermis and epidermis involving the innate and adaptive immune systems, with important roles for dendritic cells and T cells, among other cells. Frequent comorbidities are rheumatological and cardiovascular in nature, in particular, psoriatic arthritis. Current treatments for psoriasis include topical agents, photo-based therapies, traditional systemic drugs and biologic agents. Treatments can be used in combination or as monotherapy. Biologic therapies that target specific disease mediators have become a mainstay in the treatment of moderate-to-severe disease, whereas advances in the treatment of mild-to-moderate disease have been limited.
Collapse
Affiliation(s)
- Jacqueline E Greb
- Tufts University School of Medicine, Boston, Massachusetts, USA.,Tufts Medical Center, Department of Dermatology, Boston, Massachusetts, USA
| | - Ari M Goldminz
- Tufts Medical Center, Department of Dermatology, Boston, Massachusetts, USA
| | - James T Elder
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,Ann Arbor Veterans Affairs Hospital, Ann Arbor, Michigan, USA
| | - Mark G Lebwohl
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dafna D Gladman
- University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Jashin J Wu
- Department of Dermatology, Kaiser Permanente Los Angeles Medical Center, Los Angeles, California, USA
| | - Nehal N Mehta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew Y Finlay
- Department of Dermatology and Wound Healing, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Alice B Gottlieb
- Department of Dermatology, New York Medical College, 40 Sunshine Cottage Rd, Valhalla, New York 10595, USA
| |
Collapse
|
17
|
Yin Y, Sieradzan AK, Liwo A, He Y, Scheraga HA. Physics-Based Potentials for Coarse-Grained Modeling of Protein-DNA Interactions. J Chem Theory Comput 2016; 11:1792-808. [PMID: 26052263 DOI: 10.1021/ct5009558] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Physics-based potentials have been developed for the interactions between proteins and DNA for simulations with the UNRES + NARES-2P force field. The mean-field interactions between a protein and a DNA molecule can be divided into eight categories: (1) nonpolar side chain–DNA base, (2) polar uncharged side chain–DNA base, (3) charged side chain–DNA base, (4) peptide group–phosphate group, (5) peptide group–DNA base, (6) nonpolar side chain–phosphate group, (7) polar uncharged side chain–phosphate group, and (8) charged side chain–phosphate group. Umbrella-sampling molecular dynamics simulations in explicit TIP3P water using the AMBER force field were carried out to determine the potentials of mean force (PMF) for all 105 pairs of interacting components. Approximate analytical expressions for the mean-field interaction energy of each pair of the different kinds of interacting molecules were then fitted to the PMFs to obtain the parameters of the analytical expressions. These analytical expressions can reproduce satisfactorily the PMF curves corresponding to different orientations of the interacting molecules. The results suggest that the physics-based mean-field potentials of amino acid–nucleotide interactions presented here can be used in coarse-grained simulation of protein–DNA interactions.
Collapse
|
18
|
Dhundale A, Goddard C. Reporter Assays in the High Throughput Screening Laboratory: A Rapid and Robust First Look? ACTA ACUST UNITED AC 2016. [DOI: 10.1177/108705719600100303] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Anil Dhundale
- Oncogene Science, Inc., Uniondale, New York 11553-3649
| | - Colin Goddard
- Oncogene Science, Inc., Uniondale, New York 11553-3649
| |
Collapse
|
19
|
Corona RI, Guo JT. Statistical analysis of structural determinants for protein-DNA-binding specificity. Proteins 2016; 84:1147-61. [PMID: 27147539 DOI: 10.1002/prot.25061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/21/2016] [Accepted: 04/28/2016] [Indexed: 12/27/2022]
Abstract
DNA-binding proteins play critical roles in biological processes including gene expression, DNA packaging and DNA repair. They bind to DNA target sequences with different degrees of binding specificity, ranging from highly specific (HS) to nonspecific (NS). Alterations of DNA-binding specificity, due to either genetic variation or somatic mutations, can lead to various diseases. In this study, a comparative analysis of protein-DNA complex structures was carried out to investigate the structural features that contribute to binding specificity. Protein-DNA complexes were grouped into three general classes based on degrees of binding specificity: HS, multispecific (MS), and NS. Our results show a clear trend of structural features among the three classes, including amino acid binding propensities, simple and complex hydrogen bonds, major/minor groove and base contacts, and DNA shape. We found that aspartate is enriched in HS DNA binding proteins and predominately binds to a cytosine through a single hydrogen bond or two consecutive cytosines through bidentate hydrogen bonds. Aromatic residues, histidine and tyrosine, are highly enriched in the HS and MS groups and may contribute to specific binding through different mechanisms. To further investigate the role of protein flexibility in specific protein-DNA recognition, we analyzed the conformational changes between the bound and unbound states of DNA-binding proteins and structural variations. The results indicate that HS and MS DNA-binding domains have larger conformational changes upon DNA-binding and larger degree of flexibility in both bound and unbound states. Proteins 2016; 84:1147-1161. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rosario I Corona
- Department of Bioinformatics and Genomics, College of Computing and Informatics, The University of North Carolina at Charlotte, Charlotte, North Carolina, 28223
| | - Jun-Tao Guo
- Department of Bioinformatics and Genomics, College of Computing and Informatics, The University of North Carolina at Charlotte, Charlotte, North Carolina, 28223
| |
Collapse
|
20
|
Mucaki EJ, Caminsky NG, Perri AM, Lu R, Laederach A, Halvorsen M, Knoll JHM, Rogan PK. A unified analytic framework for prioritization of non-coding variants of uncertain significance in heritable breast and ovarian cancer. BMC Med Genomics 2016; 9:19. [PMID: 27067391 PMCID: PMC4828881 DOI: 10.1186/s12920-016-0178-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 03/15/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sequencing of both healthy and disease singletons yields many novel and low frequency variants of uncertain significance (VUS). Complete gene and genome sequencing by next generation sequencing (NGS) significantly increases the number of VUS detected. While prior studies have emphasized protein coding variants, non-coding sequence variants have also been proven to significantly contribute to high penetrance disorders, such as hereditary breast and ovarian cancer (HBOC). We present a strategy for analyzing different functional classes of non-coding variants based on information theory (IT) and prioritizing patients with large intragenic deletions. METHODS We captured and enriched for coding and non-coding variants in genes known to harbor mutations that increase HBOC risk. Custom oligonucleotide baits spanning the complete coding, non-coding, and intergenic regions 10 kb up- and downstream of ATM, BRCA1, BRCA2, CDH1, CHEK2, PALB2, and TP53 were synthesized for solution hybridization enrichment. Unique and divergent repetitive sequences were sequenced in 102 high-risk, anonymized patients without identified mutations in BRCA1/2. Aside from protein coding and copy number changes, IT-based sequence analysis was used to identify and prioritize pathogenic non-coding variants that occurred within sequence elements predicted to be recognized by proteins or protein complexes involved in mRNA splicing, transcription, and untranslated region (UTR) binding and structure. This approach was supplemented by in silico and laboratory analysis of UTR structure. RESULTS 15,311 unique variants were identified, of which 245 occurred in coding regions. With the unified IT-framework, 132 variants were identified and 87 functionally significant VUS were further prioritized. An intragenic 32.1 kb interval in BRCA2 that was likely hemizygous was detected in one patient. We also identified 4 stop-gain variants and 3 reading-frame altering exonic insertions/deletions (indels). CONCLUSIONS We have presented a strategy for complete gene sequence analysis followed by a unified framework for interpreting non-coding variants that may affect gene expression. This approach distills large numbers of variants detected by NGS to a limited set of variants prioritized as potential deleterious changes.
Collapse
Affiliation(s)
- Eliseos J Mucaki
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Natasha G Caminsky
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Ami M Perri
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Ruipeng Lu
- Department of Computer Science, Faculty of Science, Western University, London, N6A 2C1, Canada
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599-3290, USA
| | - Matthew Halvorsen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Joan H M Knoll
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, N6A 2C1, Canada
- Cytognomix Inc., London, Canada
| | - Peter K Rogan
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada.
- Department of Computer Science, Faculty of Science, Western University, London, N6A 2C1, Canada.
- Cytognomix Inc., London, Canada.
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, N6A 2C1, Canada.
| |
Collapse
|
21
|
Xiong Y, Lin L, Zhang X, Wang G. Label-free electrochemiluminescent detection of transcription factors with hybridization chain reaction amplification. RSC Adv 2016. [DOI: 10.1039/c6ra00701e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Label-free and efficient ECL strategy for detection of NF-κB based on the HCR signal amplification.
Collapse
Affiliation(s)
- Yunfang Xiong
- Key Laboratory of Chem-Biosensing, Anhui Province
- Key Laboratory of Functional Molecular Solids, Anhui Province
- College of Chemistry and Materials Science
- Center for Nano Science and Technology
- Anhui Normal University
| | - Lin Lin
- Key Laboratory of Chem-Biosensing, Anhui Province
- Key Laboratory of Functional Molecular Solids, Anhui Province
- College of Chemistry and Materials Science
- Center for Nano Science and Technology
- Anhui Normal University
| | - Xiaojun Zhang
- Key Laboratory of Chem-Biosensing, Anhui Province
- Key Laboratory of Functional Molecular Solids, Anhui Province
- College of Chemistry and Materials Science
- Center for Nano Science and Technology
- Anhui Normal University
| | - Guangfeng Wang
- Key Laboratory of Chem-Biosensing, Anhui Province
- Key Laboratory of Functional Molecular Solids, Anhui Province
- College of Chemistry and Materials Science
- Center for Nano Science and Technology
- Anhui Normal University
| |
Collapse
|
22
|
Kordzadeh A. Factors associated with progression of the abdominal aortic aneurysm and novel inhibition therapies. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.rvm.2015.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
23
|
Swindell WR, Sarkar MK, Stuart PE, Voorhees JJ, Elder JT, Johnston A, Gudjonsson JE. Psoriasis drug development and GWAS interpretation through in silico analysis of transcription factor binding sites. Clin Transl Med 2015; 4:13. [PMID: 25883770 PMCID: PMC4392043 DOI: 10.1186/s40169-015-0054-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/26/2015] [Indexed: 12/22/2022] Open
Abstract
Background Psoriasis is a cytokine-mediated skin disease that can be treated effectively with immunosuppressive biologic agents. These medications, however, are not equally effective in all patients and are poorly suited for treating mild psoriasis. To develop more targeted therapies, interfering with transcription factor (TF) activity is a promising strategy. Methods Meta-analysis was used to identify differentially expressed genes (DEGs) in the lesional skin from psoriasis patients (n = 237). We compiled a dictionary of 2935 binding sites representing empirically-determined binding affinities of TFs and unconventional DNA-binding proteins (uDBPs). This dictionary was screened to identify “psoriasis response elements” (PREs) overrepresented in sequences upstream of psoriasis DEGs. Results PREs are recognized by IRF1, ISGF3, NF-kappaB and multiple TFs with helix-turn-helix (homeo) or other all-alpha-helical (high-mobility group) DNA-binding domains. We identified a limited set of DEGs that encode proteins interacting with PRE motifs, including TFs (GATA3, EHF, FOXM1, SOX5) and uDBPs (AVEN, RBM8A, GPAM, WISP2). PREs were prominent within enhancer regions near cytokine-encoding DEGs (IL17A, IL19 and IL1B), suggesting that PREs might be incorporated into complex decoy oligonucleotides (cdODNs). To illustrate this idea, we designed a cdODN to concomitantly target psoriasis-activated TFs (i.e., FOXM1, ISGF3, IRF1 and NF-kappaB). Finally, we screened psoriasis-associated SNPs to identify risk alleles that disrupt or engender PRE motifs. This identified possible sites of allele-specific TF/uDBP binding and showed that PREs are disproportionately disrupted by psoriasis risk alleles. Conclusions We identified new TF/uDBP candidates and developed an approach that (i) connects transcriptome informatics to cdODN drug development and (ii) enhances our ability to interpret GWAS findings. Disruption of PRE motifs by psoriasis risk alleles may contribute to disease susceptibility. Electronic supplementary material The online version of this article (doi:10.1186/s40169-015-0054-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- William R Swindell
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| | - Mrinal K Sarkar
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| | - Philip E Stuart
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| | - John J Voorhees
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| | - James T Elder
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| | - Andrew Johnston
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| |
Collapse
|
24
|
Song W, Guo JT. Investigation of arc repressor DNA-binding specificity by comparative molecular dynamics simulations. J Biomol Struct Dyn 2015; 33:2083-93. [PMID: 25495540 DOI: 10.1080/07391102.2014.997797] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Transcription factors regulate gene expression through binding to specific DNA sequences. How transcription factors achieve high binding specificity is still not well understood. In this paper, we investigated the role of protein flexibility in protein-DNA-binding specificity by comparative molecular dynamics (MD) simulations. Protein flexibility has been considered as a key factor in molecular recognition, which is intrinsically a dynamic process involving fine structural fitting between binding components. In this study, we performed comparative MD simulations on wild-type and F10V mutant P22 Arc repressor in both free and complex conformations. The F10V mutant has lower DNA-binding specificity though both the bound and unbound main-chain structures between the wild-type and F10V mutant Arc are highly similar. We found that the DNA-binding motif of wild-type Arc is structurally more flexible than the F10V mutant in the unbound state, especially for the six DNA base-contacting residues in each dimer. We demonstrated that the flexible side chains of wild-type Arc lead to a higher DNA-binding specificity through forming more hydrogen bonds with DNA bases upon binding. Our simulations also showed a possible conformational selection mechanism for Arc-DNA binding. These results indicate the important roles of protein flexibility and dynamic properties in protein-DNA-binding specificity.
Collapse
Affiliation(s)
- Wei Song
- a Department of Bioinformatics and Genomics , University of North Carolina at Charlotte , Charlotte , NC 28223 , USA
| | | |
Collapse
|
25
|
Ma F, Yang Y, Zhang CY. Ultrasensitive Detection of Transcription Factors Using Transcription-Mediated Isothermally Exponential Amplification-Induced Chemiluminescence. Anal Chem 2014; 86:6006-11. [DOI: 10.1021/ac5017369] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fei Ma
- Single-Molecule Detection
and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China
| | - Yong Yang
- Single-Molecule Detection
and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China
| | - Chun-yang Zhang
- Single-Molecule Detection
and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China
| |
Collapse
|
26
|
Wang WM, Chen JF, Liu ST, Hsu YJ, Liu YC, Huang SM. Biochemical properties of the recurrent LMX1b truncated mutant carried in a Taiwanese family with nail-patella syndrome. Br J Dermatol 2014; 171:356-62. [PMID: 24720768 DOI: 10.1111/bjd.13051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2014] [Indexed: 01/18/2023]
Abstract
BACKGROUND Loss of the DNA-binding activity of a transcription factor is detrimental to its function in responsive gene regulation. We diagnosed a Taiwanese family with nail-patella syndrome (NPS) whose members inherited the mutated LMX1b transcription factor with no DNA-binding homeodomain. The loss-of-function variants cause haploinsufficiency of LMX1b, leading to the clinical manifestation of NPS. The underlying molecular mechanism is unclear. OBJECTIVES To test whether the recurrent pathogenic truncated LMX1b-R198X reported in our patients might be a functional protein. Its biochemical properties were explored. METHODS The luciferase reporter driven by the human interleukin (IL)-6 gene promoter was assayed to measure the transcriptional activity of LMX1b. The nuclear localization of different enhanced green fluorescent protein-tagged LMX1b proteins was observed using fluorescence microscopy. Western blotting was employed to evaluate the expression of various transfected LMX1b constructs. RESULTS LMX1b-R198X enhanced the IL-6 promoter activity activated by the wild-type LMX1b and diminished the promoter activity induced by phorbol 12-myristate 13-acetate. LMX1b-R198X carried out its effect differentially in the expression of various human genes. The nuclear localization of the wild-type LMX1b was disrupted by the C-terminus truncation. The protein stability exhibited by LMX1b-R198X appears to be much higher than that of the wild-type protein. CONCLUSIONS We demonstrated that loss of function might not be the only way for mutated LMX1b to cause haploinsufficiency as the main pathogenic mechanism for NPS. LMX1b-R198X has less nuclear localization and higher stability than the wild-type protein; consequently, it might function as a competitor to sequester other effectors by protein-protein interaction to interfere with downstream transcriptional events.
Collapse
Affiliation(s)
- W-M Wang
- Department of Dermatology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Biochemistry Department, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Jamsai D, Clark BJ, Smith SJ, Whittle B, Goodnow CC, Ormandy CJ, O’Bryan MK. A missense mutation in the transcription factor ETV5 leads to sterility, increased embryonic and perinatal death, postnatal growth restriction, renal asymmetry and polydactyly in the mouse. PLoS One 2013; 8:e77311. [PMID: 24204802 PMCID: PMC3804586 DOI: 10.1371/journal.pone.0077311] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/06/2013] [Indexed: 01/01/2023] Open
Abstract
ETV5 (Ets variant gene 5) is a transcription factor that is required for fertility. In this study, we demonstrate that ETV5 plays additional roles in embryonic and postnatal developmental processes in the mouse. Through a genome-wide mouse mutagenesis approach, we generated a sterile mouse line that carried a nonsense mutation in exon 12 of the Etv5 gene. The mutation led to the conversion of lysine at position 412 into a premature termination codon (PTC) within the ETS DNA binding domain of the protein. We showed that the PTC-containing allele produced a highly unstable mRNA, which in turn resulted in an undetectable level of ETV5 protein. The Etv5 mutation resulted in male and female sterility as determined by breeding experiments. Mutant males were sterile due to a progressive loss of spermatogonia, which ultimately resulted in a Sertoli cell only phenotype by 8 week-of-age. Further, the ETV5 target genes Cxcr4 and Ccl9 were significantly down-regulated in mutant neonate testes. CXCR4 and CCL9 have been implicated in the maintenance and migration of spermatogonia, respectively. Moreover, the Etv5 mutation resulted in several developmental abnormalities including an increased incidence of embryonic and perinatal lethality, postnatal growth restriction, polydactyly and renal asymmetry. Thus, our data define a physiological role for ETV5 in many aspects of development including embryonic and perinatal survival, postnatal growth, limb patterning, kidney development and fertility.
Collapse
Affiliation(s)
- Duangporn Jamsai
- The Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- * E-mail:
| | - Brett J. Clark
- The Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Stephanie J. Smith
- The Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Belinda Whittle
- Australian Phenomics Facility, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Christopher C. Goodnow
- Australian Phenomics Facility, The Australian National University, Canberra, Australian Capital Territory, Australia
| | | | - Moira K. O’Bryan
- The Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Kumar G, Breen EJ, Ranganathan S. Identification of ovarian cancer associated genes using an integrated approach in a Boolean framework. BMC SYSTEMS BIOLOGY 2013; 7:12. [PMID: 23383610 PMCID: PMC3605242 DOI: 10.1186/1752-0509-7-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 01/23/2013] [Indexed: 12/31/2022]
Abstract
Background Cancer is a complex disease where molecular mechanism remains elusive. A systems approach is needed to integrate diverse biological information for the prognosis and therapy risk assessment using mechanistic approach to understand gene interactions in pathways and networks and functional attributes to unravel the biological behaviour of tumors. Results We weighted the functional attributes based on various functional properties observed between cancerous and non-cancerous genes reported from literature. This weighing schema was then encoded in a Boolean logic framework to rank differentially expressed genes. We have identified 17 genes to be differentially expressed from a total of 11,173 genes, where ten genes are reported to be down-regulated via epigenetic inactivation and seven genes are up-regulated. Here, we report that the overexpressed genes IRAK1, CHEK1 and BUB1 may play an important role in ovarian cancer. We also show that these 17 genes can be used to form an ovarian cancer signature, to distinguish normal from ovarian cancer subjects and that the set of three genes, CHEK1, AR, and LYN, can be used to classify good and poor prognostic tumors. Conclusion We provided a workflow using a Boolean logic schema for the identification of differentially expressed genes by integrating diverse biological information. This integrated approach resulted in the identification of genes as potential biomarkers in ovarian cancer.
Collapse
Affiliation(s)
- Gaurav Kumar
- ARC Centre of Excellence in Bioinformatics and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | | | | |
Collapse
|
30
|
Quantitative, solution-phase profiling of multiple transcription factors in parallel. Anal Bioanal Chem 2013; 405:2461-8. [PMID: 23361227 DOI: 10.1007/s00216-013-6712-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/17/2012] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
Abstract
Transcription factors are regulatory proteins that bind to specific sites of chromosomal DNA to enact responses to intracellular and extracellular stimuli. Transcription factor signalling networks are branched and interconnected so that any single transcription factor can activate many different genes and one gene can be activated by a combination of different transcription factors. Thus, trying to characterize a cellular response to a stimulus by measuring the level of only one transcription factor potentially ignores important simultaneous events that contribute to the response. Hence, parallel measurements of transcription factors are necessary to capture the breadth of valuable information about cellular responses that would not be obtained by measuring only a single transcription factor. We have sought to develop a new, scalable, flexible, and sensitive approach to analysis of transcription factor levels that complements existing parallel approaches. Here, we describe proof-of-principle analyses of purified human transcription factors and breast cancer nuclear extracts. Our assay can successfully quantify transcription factors in parallel with ~10-fold better sensitivity than current techniques. Sensitivity of the assay can be further increased by 200-fold through the use of PCR for signal amplification.
Collapse
|
31
|
Polyethylene glycol-based protein nanocapsules for functional delivery of a differentiation transcription factor. Biomaterials 2012; 33:5459-67. [DOI: 10.1016/j.biomaterials.2012.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 04/01/2012] [Indexed: 12/21/2022]
|
32
|
Leung CH, Chan DSH, Ma VPY, Ma DL. DNA-Binding Small Molecules as Inhibitors of Transcription Factors. Med Res Rev 2012; 33:823-46. [DOI: 10.1002/med.21266] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Victor Pui-Yan Ma
- Department of Chemistry; Hong Kong Baptist University; Kowloon Tong; Hong Kong
| | - Dik-Lung Ma
- Department of Chemistry; Hong Kong Baptist University; Kowloon Tong; Hong Kong
| |
Collapse
|
33
|
Vallée-Bélisle A, Bonham AJ, Reich NO, Ricci F, Plaxco KW. Transcription factor beacons for the quantitative detection of DNA binding activity. J Am Chem Soc 2011; 133:13836-9. [PMID: 21815647 DOI: 10.1021/ja204775k] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The development of convenient, real-time probes for monitoring protein function in biological samples represents an important challenge of the postgenomic era. In response, we introduce here "transcription factor beacons," binding-activated fluorescent DNA probes that signal the presence of specific DNA-binding activities. As a proof of principle, we present beacons for the rapid, sensitive detection of three transcription factors (TATA Binding Protein, Myc-Max, and NF-κB), and measure binding activity directly in crude nuclear extracts.
Collapse
Affiliation(s)
- Alexis Vallée-Bélisle
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, 93106, United States
| | | | | | | | | |
Collapse
|
34
|
A protein-based electrochemical method for label-free characterization of sequence-specific protein–DNA interactions. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.04.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
35
|
Bellis AD, Peňalver-Bernabé B, Weiss MS, Yarrington ME, Barbolina MV, Pannier AK, Jeruss JS, Broadbelt LJ, Shea LD. Cellular arrays for large-scale analysis of transcription factor activity. Biotechnol Bioeng 2011; 108:395-403. [PMID: 20812256 DOI: 10.1002/bit.22916] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Identifying molecular mechanisms or therapeutic targets is typically based on large-scale cellular analysis that measures the abundance of mRNA or protein; however, abundance does not necessarily correlate with activity. We report a method for direct large-scale quantification of active pathways that employs a cellular array with parallel gene delivery of constructs that report pathway activity. The reporter constructs encode luciferase, whose expression is influenced by binding of transcription factors (TFs), which are the downstream targets of signaling pathways. Luciferase levels are quantified by bioluminescence imaging (BLI), which allows for rapid, non-invasive measurements. Activity profiles by BLI of 32 TFs were robust, consistent, and reproducible, and correlated with standard cell lysis techniques. The array identified five TFs with differential activity during phorbol-12-myristate-13-acetate (PMA)-induced differentiation of breast cancer cells. A system for rapid, large-scale, BLI quantification of pathway activity provides an enabling technology for mechanistic studies of cellular responses and processes.
Collapse
Affiliation(s)
- Abigail D Bellis
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ma DL, Xu T, Chan DSH, Man BYW, Fong WF, Leung CH. A highly selective, label-free, homogenous luminescent switch-on probe for the detection of nanomolar transcription factor NF-kappaB. Nucleic Acids Res 2011; 39:e67. [PMID: 21398636 PMCID: PMC3105395 DOI: 10.1093/nar/gkr106] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Transcription factors are involved in a number of important cellular processes. The transcription factor NF-κB has been linked with a number of cancers, autoimmune and inflammatory diseases. As a result, monitoring transcription factors potentially represents a means for the early detection and prevention of diseases. Most methods for transcription factor detection tend to be tedious and laborious and involve complicated sample preparation, and are not practical for routine detection. We describe herein the first label-free luminescence switch-on detection method for transcription factor activity using Exonuclease III and a luminescent ruthenium complex, [Ru(phen)2(dppz)]2+. As a proof of concept for this novel assay, we have designed a double-stranded DNA sequence bearing two NF-κB binding sites. The results show that the luminescence response was proportional to the concentration of the NF-κB subunit p50 present in the sample within a wide concentration range, with a nanomolar detection limit. In the presence of a known NF-κB inhibitor, oridonin, a reduction in the luminescence response of the ruthenium complex was observed. The reduced luminescence response of the ruthenium complex in the presence of small molecule inhibitors allows the assay to be applied to the high-throughput screening of chemical libraries to identify new antagonists of transcription factor DNA binding activity. This will allow the rapid and low cost identification and development of novel scaffolds for the treatment of diseases caused by the deregulation of transcription factor activity.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | | | | | | | | | | |
Collapse
|
37
|
Overexpression of Jazf1 induces cardiac malformation through the upregulation of pro-apoptotic genes in mice. Transgenic Res 2011; 20:1019-31. [DOI: 10.1007/s11248-010-9476-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 12/15/2010] [Indexed: 11/25/2022]
|
38
|
He X, Xu J, Liu Y, Peng R, Lee ST, Kang Z. Carbon nanospheres for highly sensitive electrochemical detection of sequence-specific protein–DNA interactions. Chem Commun (Camb) 2011; 47:8316-8. [DOI: 10.1039/c1cc12375k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Park G, Masi T, Choi CK, Kim H, Becker JM, Sparer TE. Screening for novel constitutively active CXCR2 mutants and their cellular effects. Methods Enzymol 2010; 485:481-97. [PMID: 21050933 DOI: 10.1016/b978-0-12-381296-4.00026-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chemokines play an important role in inflammatory, developmental, and homeostatic processes. Deregulation of this system results in various diseases including tumorigenesis and cancer metastasis. Deregulation can occur when constitutively active mutant (CAM) chemokine receptors are locked in the "on" position. This can lead to cellular transformation/tumorigenesis. The CXC chemokine receptor 2 (CXCR2) is a G-protein-coupled receptor (GPCR) expressed on neutrophils, some monocytes, endothelial cells, and some epithelial cells. CXCR2 activation with CXC chemokines induces leukocyte migration, trafficking, leukocyte degranulation, cellular differentiation, and angiogenesis. Activation of CXCR2 can lead to cellular transformation. We hypothesized that CAM CXCR2s may play a role in cancer development. In order to identify CXCR2 CAMs, potential mutant CXCR2 receptors were screened using a modified Saccharomyces cerevisiae high-throughput system. S. cerevisiae has been used successfully to identify GPCR/G-protein interactions and autocrine selection for peptide agonists. The CXCR2 CAMs identified from this screen were characterized in mammalian cells. Their ability to transform cells in vitro was shown using foci formation, soft-agar growth, impedance measurement assays, and in vivo tumor growth following hind flank inoculation into mice. Signaling pathways contributing to cellular transformation were identified using luciferase reporter assays. Studying constitutively active GPCRs is an approach to "capturing" pluridimensional GPCRs in a "locked" activation state. In order to address the residues necessary for CXCR2 activation, we used S. cerevisiae for screening novel CAMs and characterized them using mammalian reporter assays.
Collapse
Affiliation(s)
- Giljun Park
- The University of Tennessee, Department of Microbiology, Knoxville, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
40
|
Hwang KC, Cho SK, Lee SH, Park JY, Kwon DN, Choi YJ, Park C, Kim JH, Park KK, Hwang S, Park SB, Kim JH. Depigmentation of skin and hair color in the somatic cell cloned pig. Dev Dyn 2009; 238:1701-8. [PMID: 19504460 DOI: 10.1002/dvdy.21986] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Previously, we have successfully produced nine cloned piglets using Duroc donor cells. Among these clones, one showed distinct depigmentation of the skin and hair color during puberty. In this study, we selected a clone with depigmentation to investigate the etiology of the anomaly in somatic cell nuclear transfer. We hypothesized that genes related to Waardenburg syndrome (Mitf, Pax-3, Sox-10, Slug, and Kit) are closely associated with the depigmentation of pig, which was derived from somatic cell nuclear transfer (scNT). Total RNA was extracted from the ear tissue of affected and unaffected scNT-derived pigs, and the transcripts encoding Mitf, Pax-3, Sox-10, and Slug, together with the Kit gene, were amplified by reverse transcription-polymerase chain reaction, sequenced, and analyzed. The cDNA sequences from the scNT pig that showed progressive depigmentation did not reveal a mutation in these genes. Although we did not find any mutations in these genes, expression of the genes implicated in Waardenburg syndrome was severely down-regulated in the affected scNT pig when compared with unaffected scNT pigs. This down-regulation of gene expression may result in a previously undescribed phenotype that shows melanocyte instability, leading to progressive loss of pigmentation.
Collapse
Affiliation(s)
- Kyu-Chan Hwang
- Department of Animal Biotechnology, KonKuk University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zemach A, Paul LK, Stambolsky P, Efroni I, Rotter V, Grafi G. The C-terminal domain of the Arabidopsis AtMBD7 protein confers strong chromatin binding activity. Exp Cell Res 2009; 315:3554-62. [PMID: 19647732 DOI: 10.1016/j.yexcr.2009.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/26/2009] [Accepted: 07/27/2009] [Indexed: 12/01/2022]
Abstract
The Arabidopsis MBD7 (AtMBD7) - a naturally occurring poly MBD protein - was previously found to be functional in binding methylated-CpG dinucleotides in vitro and localized to highly methylated chromocenters in vivo. Furthermore, AtMBD7 has significantly lower mobility within the nucleus conferred by cooperative activity of its three MBD motifs. Here we show that besides the MBD motifs, AtMBD7 possesses a strong chromatin binding domain located at its C-terminus designated sticky-C (StkC). Mutational analysis showed that a glutamic acid residue near the C-terminus is essential though not sufficient for the StkC function. Further analysis demonstrated that this motif can render nuclear proteins highly immobile both in plant and animal cells, without affecting their native subnuclear localization. Thus, the C-terminal, StkC motif plays an important role in fastening AtMBD7 to its chromosomal, CpG-methylated sites. It may be possible to utilize this motif for fastening nuclear proteins to their chromosomal sites both in plant and animal cells for research and gene therapy applications.
Collapse
Affiliation(s)
- Assaf Zemach
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
42
|
Dharmaraj S, Silva E, Pina AL, Li YY, Yang JM, Carter RC, Loyer M, El-Hilali H, Traboulsi E, Sundin O, Zhu D, Koenekoop RK, Maumenee IH. Mutational analysis and clinical correlation in Leber congenital amaurosis. Ophthalmic Genet 2009. [DOI: 10.1076/1381-6810(200009)2131-zft135] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Abstract
Abdominal aortic aneurysm (AAA) is a common degenerative condition with high mortality in older men. Elective surgical or endovascular repair is performed to prevent rupture of large AAAs. In contrast, despite gradual expansion, small AAAs have a low risk of rupture, and there is currently no well-defined treatment strategy for them. Therefore, a pharmacological approach for AAA is expected in the clinical setting. Indeed, several therapeutic effects of pharmacological agents have been reported in experimental models, and some agents have undergone clinical trials. Treatment with statins, angiotensin-converting enzyme-inhibitors, antibiotics, and anti-inflammatory agents appears to inhibit the growth rate of AAA in humans. However, as the sample size and follow-up period were limited in these studies, a large randomized study with long-term follow-up of small AAA should be performed to clarify the effect of these agents. Recently, the regression of AAA using molecular pharmacological approaches was reported in experimental studies. The characteristics of these strategies are the regulation of multiple molecular mediators and the signalling networks associated with AAA formation. On the basis of the results of these investigations, it may be possible to repair the injured aortic wall and obtain the remission of AAA using pharmacological therapy.
Collapse
Affiliation(s)
- Takashi Miyake
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
44
|
Lee S, Brown A, Pitt WR, Higueruelo AP, Gong S, Bickerton GR, Schreyer A, Tanramluk D, Baylay A, Blundell TL. Structural interactomics: informatics approaches to aid the interpretation of genetic variation and the development of novel therapeutics. MOLECULAR BIOSYSTEMS 2009; 5:1456-72. [DOI: 10.1039/b906402h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
45
|
Ho BC, Epping E, Wang K, Andreasen NC, Librant A, Wassink TH. Basic helix-loop-helix transcription factor NEUROG1 and schizophrenia: effects on illness susceptibility, MRI brain morphometry and cognitive abilities. Schizophr Res 2008; 106:192-9. [PMID: 18799289 PMCID: PMC2597152 DOI: 10.1016/j.schres.2008.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 08/05/2008] [Accepted: 08/11/2008] [Indexed: 12/22/2022]
Abstract
Transcription factors, including the basic helix-loop-helix (bHLH) family, regulate numerous genes and play vital roles in controlling gene expression. Consequently, transcription factor mutations can lead to phenotypic pleiotropy, and may be a candidate mechanism underlying the complex genetics and heterogeneous phenotype of schizophrenia. Neurogenin1 (NEUROG1; a.k.a. Ngn1 or Neurod3), a bHLH transcription factor encoded on a known schizophrenia linkage region in 5q31.1, induces glutamatergic and suppresses GABAergic neuronal differentiation during embryonic neurodevelopment. The goal of this study is to investigate NEUROG1 effects on schizophrenia risk and on phenotypic features of schizophrenia. We tested 392 patients with schizophrenia or schizoaffective disorder and 226 healthy normal volunteers for association with NEUROG1. Major alleles on two NEUROG1-associated SNPs (rs2344484-C-allele and rs8192558-G-allele) were significantly more prevalent among patients (p<or=.0018). Approximately 80% of the sample also underwent high-resolution, multi-spectral magnetic resonance brain imaging and standardized neuropsychological assessment. There were significant rs2344484 genotype main effects on total cerebral gray matter (GM) and temporal GM volumes (p<or=.05). C-allele-carrier patients and healthy volunteers had smaller total cerebral GM and temporal GM volumes than their respective T-homozygous counterparts. rs2344484-C-allele was further associated with generalized cognitive deficits among schizophrenia patients but not in healthy volunteers. Our findings replicate previous association between NEUROG1 and schizophrenia. More importantly, this is the first study to examine brain morphological and neurocognitive correlates of NEUROG1. rs2344484-C-allele may affect NEUROG1's role in transcription regulation such that brain morphology and cognitive abilities are altered resulting in increased susceptibility to develop schizophrenia.
Collapse
Affiliation(s)
- Beng-Choon Ho
- Department of Psychiatry, University of Iowa Carver College of Medicine, USA.
| | - Eric Epping
- Department of Psychiatry, University of Iowa Carver College of Medicine
| | - Kai Wang
- Department of Biostatistics, University of Iowa College of Public Health Iowa City, Iowa, USA
| | | | - Amy Librant
- Department of Psychiatry, University of Iowa Carver College of Medicine
| | - Thomas H. Wassink
- Department of Psychiatry, University of Iowa Carver College of Medicine
| |
Collapse
|
46
|
Cobaleda C, Pérez-Caro M, Vicente-Dueñas C, Sánchez-García I. Function of the Zinc-Finger Transcription FactorSNAI2in Cancer and Development. Annu Rev Genet 2007; 41:41-61. [PMID: 17550342 DOI: 10.1146/annurev.genet.41.110306.130146] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Elucidation of the molecular mechanisms that underlie disease development is still a tremendous challenge for basic science, and a prerequisite to the development of new and disease-specific targeted therapies. This review focuses on the function of SNAI2, a member of the Snail family of zinc-finger transcription factors, and discusses its possible role in disease development. SNAI2 has been implicated in diseases of melanocyte development and cancer in humans. Many malignancies arise from a rare population of cells that alone have the ability to self-renew and sustain the tumor (i.e., cancer stem cells). SNAI2 controls key aspects of stem cell function in mouse and human, suggesting that similar mechanisms control normal development and cancer stem cell properties. These insights are expected to contribute significantly to the genetics of cancer and to the development of both cancer therapy and new methods for assessing treatment efficacy.
Collapse
Affiliation(s)
- César Cobaleda
- Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | | | |
Collapse
|
47
|
Tomita N, Kashihara N, Morishita R. Transcription factor decoy oligonucleotide-based therapeutic strategy for renal disease. Clin Exp Nephrol 2007; 11:7-17. [PMID: 17384993 DOI: 10.1007/s10157-007-0459-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 01/04/2007] [Indexed: 10/23/2022]
Abstract
Renal disease, including slight renal injuries, has come to be seen as one of the risk factors for cardiovascular events. At present, most conventional therapy is inefficient, and tends to treat the symptoms rather than the underlying causes of the disorder. Gene therapy based on oligonucleotides (ODN) offers a novel approach for the prevention and treatment of renal diseases. Gene transfer into somatic cells to interfere with the pathogenesis contributing to renal disease may provide such an approach, leading to the better prevention and treatment of renal disease. The major development of gene transfer methods has made an important contribution to an intense investigation of the potential of gene therapy in renal diseases. Amazing advances in molecular biology have provided the dramatic improvement in the technology that is necessary to transfer target genes into somatic cells. Gene transfer methods, especially when mediated by several viral vectors, have improved to a surprising extent. In fact, some (retroviral vectors, adenoviral vectors, or liposome-based vectors, etc.) have already been used in clinical trials. On the other hand, recent progress in molecular biology has provided new techniques to inhibit target gene expression. The transfer of cis-element double-stranded ODN (= decoy) has been reported to be a powerful novel tool in a new class of antigene strategies for gene therapy. The transfer of decoy ODN corresponding to the cis sequence will result in attenuation of the authentic cis-trans interaction, leading to the removal of trans-factors from the endogenous cis-elements with a subsequent modulation of gene expression.
Collapse
Affiliation(s)
- Naruya Tomita
- Division of Nephrology, Department of Internal Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan.
| | | | | |
Collapse
|
48
|
Kroczak TJ, Baran J, Pryjma J, Siedlar M, Reshedi I, Hernandez E, Alberti E, Maddika S, Los M. The emerging importance of DNA mapping and other comprehensive screening techniques, as tools to identify new drug targets and as a means of (cancer) therapy personalisation. Expert Opin Ther Targets 2006; 10:289-302. [PMID: 16548777 DOI: 10.1517/14728222.10.2.289] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Every human being is genetically unique and this individuality is not only marked by morphologic and physical characteristics but also by an individual's response to a particular drug. Single nucleotide polymorphisms (SNPs) are largely responsible for one's individuality. A drug may be ineffective in one patient, whereas the exact same drug may cure another patient. Recent advances in DNA mapping and other screening technologies have provided researchers and drug developers with crucial information needed to create drugs that are specific for a given individual. In the future, physicians will be able to prescribe individualised drugs adjusted to, for example, activities of specific enzymatic pathways that would either be targeted by these drugs, or would be responsible for drug conversion or inactivation. Furthermore, the mapping of the human genome allows broader development and application of drugs that act on the level of gene transcription rather than as simple biochemical inhibitors or activators of certain enzymes. Such new approaches will maximise desired therapeutic results and may completely eliminate severe side effects. To illustrate the potential of genetic translational research, the authors discuss available analytical methodologies such as; gene arrays, flow cytometry-based screening for SNPs, proteomics, metabolomics, real-time PCR, and other methods capable of detecting both SNPs, as well as more profound changes in cell metabolism. Finally, the authors provide several examples that focus mostly on targeting protein-DNA interactions, but also other processes.
Collapse
Affiliation(s)
- Tadeusz J Kroczak
- Manitoba Institute of Cell Biology (MICB), 675 McDermot Avenue, Rm. ON6010, Winnipeg, MB, R3E 0V9, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tomita T, Kunugiza Y, Tomita N, Kuroda S, Morishita R, Yoshikawa H. Application of Decoy Oligodeoxynucleotides for Arthritis. Inflamm Regen 2006. [DOI: 10.2492/inflammregen.26.507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
50
|
Presta I, Arturi F, Ferretti E, Mattei T, Scarpelli D, Tosi E, Scipioni A, Celano M, Gulino A, Filetti S, Russo D. Recovery of NIS expression in thyroid cancer cells by overexpression of Pax8 gene. BMC Cancer 2005; 5:80. [PMID: 16029487 PMCID: PMC1180821 DOI: 10.1186/1471-2407-5-80] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 07/19/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recovery of iodide uptake in thyroid cancer cells by means of obtaining the functional expression of the sodium/iodide symporter (NIS) represents an innovative strategy for the treatment of poorly differentiated thyroid cancer. However, the NIS gene expression alone is not always sufficient to restore radioiodine concentration ability in these tumour cells. METHODS In this study, the anaplastic thyroid carcinoma ARO cells were stably transfected with a Pax8 gene expression vector. A quantitative RT-PCR was performed to assess the thyroid specific gene expression in selected clones. The presence of NIS protein was detected by Western blot and localized by immunofluorescence. A iodide uptake assay was also performed to verify the functional effect of NIS induction and differentiation switch. RESULTS The clones overexpressing Pax8 showed the re-activation of several thyroid specific genes including NIS, Pendrin, Thyroglobulin, TPO and TTF1. In ARO-Pax8 clones NIS protein was also localized both in cell cytoplasm and membrane. Thus, the ability to uptake the radioiodine was partially restored, associated to a high rate of efflux. In addition, ARO cells expressing Pax8 presented a lower rate of cell growth. CONCLUSION These finding demonstrate that induction of Pax8 expression may determine a re-differentiation of thyroid cancer cells, including a partial recovery of iodide uptake, fundamental requisite for a radioiodine-based therapeutic approach for thyroid tumours.
Collapse
Affiliation(s)
- Ivan Presta
- Dipartimento di Medicina Sperimentale e Clinica "G. Salvatore" and Dipartimento di Scienze Farmacobiologiche, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Franco Arturi
- Dipartimento di Medicina Sperimentale e Clinica "G. Salvatore" and Dipartimento di Scienze Farmacobiologiche, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Elisabetta Ferretti
- Dipartimento di Scienze Cliniche and Dipartimento di Medicina Sperimentale e Patologia, University of Rome "La Sapienza", Rome, Italy
| | - Tiziana Mattei
- Dipartimento di Scienze Cliniche and Dipartimento di Medicina Sperimentale e Patologia, University of Rome "La Sapienza", Rome, Italy
| | - Daniela Scarpelli
- Dipartimento di Medicina Sperimentale e Clinica "G. Salvatore" and Dipartimento di Scienze Farmacobiologiche, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Emanuele Tosi
- Dipartimento di Scienze Cliniche and Dipartimento di Medicina Sperimentale e Patologia, University of Rome "La Sapienza", Rome, Italy
| | - Angela Scipioni
- Dipartimento di Scienze Cliniche and Dipartimento di Medicina Sperimentale e Patologia, University of Rome "La Sapienza", Rome, Italy
| | - Marilena Celano
- Dipartimento di Medicina Sperimentale e Clinica "G. Salvatore" and Dipartimento di Scienze Farmacobiologiche, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Alberto Gulino
- Dipartimento di Scienze Cliniche and Dipartimento di Medicina Sperimentale e Patologia, University of Rome "La Sapienza", Rome, Italy
- Neuromed Institute, 86077 Pozzilli, Italy
| | - Sebastiano Filetti
- Dipartimento di Scienze Cliniche and Dipartimento di Medicina Sperimentale e Patologia, University of Rome "La Sapienza", Rome, Italy
| | - Diego Russo
- Dipartimento di Medicina Sperimentale e Clinica "G. Salvatore" and Dipartimento di Scienze Farmacobiologiche, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| |
Collapse
|