2
|
Hess A, Yu L, Klein I, De Mazancourt M, Jebrak G, Mal H, Brugière O, Fournier M, Courbage M, Dauriat G, Schouman-Clayes E, Clerici C, Mangin L. Neural mechanisms underlying breathing complexity. PLoS One 2013; 8:e75740. [PMID: 24098396 PMCID: PMC3789752 DOI: 10.1371/journal.pone.0075740] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 08/20/2013] [Indexed: 01/22/2023] Open
Abstract
Breathing is maintained and controlled by a network of automatic neurons in the brainstem that generate respiratory rhythm and receive regulatory inputs. Breathing complexity therefore arises from respiratory central pattern generators modulated by peripheral and supra-spinal inputs. Very little is known on the brainstem neural substrates underlying breathing complexity in humans. We used both experimental and theoretical approaches to decipher these mechanisms in healthy humans and patients with chronic obstructive pulmonary disease (COPD). COPD is the most frequent chronic lung disease in the general population mainly due to tobacco smoke. In patients, airflow obstruction associated with hyperinflation and respiratory muscles weakness are key factors contributing to load-capacity imbalance and hence increased respiratory drive. Unexpectedly, we found that the patients breathed with a higher level of complexity during inspiration and expiration than controls. Using functional magnetic resonance imaging (fMRI), we scanned the brain of the participants to analyze the activity of two small regions involved in respiratory rhythmogenesis, the rostral ventro-lateral (VL) medulla (pre-Bötzinger complex) and the caudal VL pons (parafacial group). fMRI revealed in controls higher activity of the VL medulla suggesting active inspiration, while in patients higher activity of the VL pons suggesting active expiration. COPD patients reactivate the parafacial to sustain ventilation. These findings may be involved in the onset of respiratory failure when the neural network becomes overwhelmed by respiratory overload We show that central neural activity correlates with airflow complexity in healthy subjects and COPD patients, at rest and during inspiratory loading. We finally used a theoretical approach of respiratory rhythmogenesis that reproduces the kernel activity of neurons involved in the automatic breathing. The model reveals how a chaotic activity in neurons can contribute to chaos in airflow and reproduces key experimental fMRI findings.
Collapse
Affiliation(s)
- Agathe Hess
- Laboratoire Matière et Systèmes complexes, UMR 7057, CNRS, Université Paris 7, Paris, France
- Service de Radiologie, APHP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Lianchun Yu
- Laboratoire Matière et Systèmes complexes, UMR 7057, CNRS, Université Paris 7, Paris, France
- Institute of Theoretical Physics, Lanzhou University, Lanzhou, China
| | - Isabelle Klein
- Service de Radiologie, APHP, Hôpital Bichat-Claude Bernard, Paris, France
- Unité Inserm 698, Université Paris 7, Paris, France
| | - Marine De Mazancourt
- Laboratoire Matière et Systèmes complexes, UMR 7057, CNRS, Université Paris 7, Paris, France
- Ecole Normale Supérieure, Paris, France
| | - Gilles Jebrak
- Service de Pneumologie B, APHP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Hervé Mal
- Service de Pneumologie B, APHP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Olivier Brugière
- Service de Pneumologie B, APHP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Michel Fournier
- Service de Pneumologie B, APHP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Maurice Courbage
- Laboratoire Matière et Systèmes complexes, UMR 7057, CNRS, Université Paris 7, Paris, France
| | - Gaelle Dauriat
- Service de Pneumologie B, APHP, Hôpital Bichat-Claude Bernard, Paris, France
| | | | - Christine Clerici
- Département de Physiologie-Explorations fonctionnelles, APHP, Hôpital Bichat-Claude Bernard, Paris, France
- Unité Inserm 700, Université Paris 7, Paris, France
| | - Laurence Mangin
- Laboratoire Matière et Systèmes complexes, UMR 7057, CNRS, Université Paris 7, Paris, France
- Département de Physiologie-Explorations fonctionnelles, APHP, Hôpital Bichat-Claude Bernard, Paris, France
- Centre d’Investigation Clinique APHP, Hôpital Bichat, Paris, France
- * E-mail:
| |
Collapse
|
3
|
Courbage M, Nekorkin VI, Vdovin LV. Chaotic oscillations in a map-based model of neural activity. CHAOS (WOODBURY, N.Y.) 2007; 17:043109. [PMID: 18163773 DOI: 10.1063/1.2795435] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We propose a discrete time dynamical system (a map) as a phenomenological model of excitable and spiking-bursting neurons. The model is a discontinuous two-dimensional map. We find conditions under which this map has an invariant region on the phase plane, containing a chaotic attractor. This attractor creates chaotic spiking-bursting oscillations of the model. We also show various regimes of other neural activities (subthreshold oscillations, phasic spiking, etc.) derived from the proposed model.
Collapse
Affiliation(s)
- M Courbage
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS et Université Paris 7-Denis Diderot, Batiment Condorcet 75205 Paris Cedex 13, France
| | | | | |
Collapse
|