1
|
Iyengar SS, Schlegel HB, Sumner I, Li J. Rare Events Sampling Methods for Quantum and Classical Ab Initio Molecular Dynamics. J Phys Chem A 2024; 128:5386-5397. [PMID: 38951489 DOI: 10.1021/acs.jpca.3c07385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
We provide an approach to sample rare events during classical ab initio molecular dynamics and quantum wavepacket dynamics. For classical AIMD, a set of fictitious degrees of freedom are introduced that may harmonically interact with the electronic and nuclear degrees of freedom to steer the dynamics in a conservative fashion toward energetically forbidden regions. A similar approach when introduced for quantum wavepacket dynamics has the effect of biasing the trajectory of the wavepacket centroid toward the regions of the potential surface that are difficult to sample. The approach is demonstrated for a phenol-amine system, which is a prototypical problem for condensed phase-proton transfer, and for model potentials undergoing wavepacket dynamics. In all cases, the approach yields trajectories that conserve energy while sampling rare events.
Collapse
Affiliation(s)
- Srinivasan S Iyengar
- Department of Chemistry, Department of Physics, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, 800 E. Kirkwood Avenue, Bloomington 47405, Indiana, United States
| | - H Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit 48202, Michigan, United States
| | - Isaiah Sumner
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg 22807, Virginia, United States
| | - Junjie Li
- Texas Advanced Computing Center, The University of Texas at Austin, Austin 78758, Texas, United States
| |
Collapse
|
2
|
Yuan S, Han X, Zhang J, Xie Z, Fan C, Xiao Y, Gao YQ, Yang YI. Generating High-Precision Force Fields for Molecular Dynamics Simulations to Study Chemical Reaction Mechanisms Using Molecular Configuration Transformer. J Phys Chem A 2024; 128:4378-4390. [PMID: 38759697 DOI: 10.1021/acs.jpca.4c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Theoretical studies on chemical reaction mechanisms have been crucial in organic chemistry. Traditionally, calculating the manually constructed molecular conformations of transition states for chemical reactions using quantum chemical calculations is the most commonly used method. However, this way is heavily dependent on individual experience and chemical intuition. In our previous study, we proposed a research paradigm that used enhanced sampling in molecular dynamics simulations to study chemical reactions. This approach can directly simulate the entire process of a chemical reaction. However, the computational speed limited the use of high-precision potential energy functions for simulations. To address this issue, we presented a scheme for training high-precision force fields for molecular modeling using a previously developed graph-neural-network-based molecular model, molecular configuration transformer. This potential energy function allowed for highly accurate simulations at a low computational cost, leading to more precise calculations of the mechanism of chemical reactions. We applied this approach to study a Claisen rearrangement reaction and a carbonyl insertion reaction catalyzed by manganese.
Collapse
Affiliation(s)
- Sihao Yuan
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xu Han
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jun Zhang
- Changping Laboratory, Beijing 102200, China
| | - Zhaoxin Xie
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Cheng Fan
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yunlong Xiao
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yi Qin Gao
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Changping Laboratory, Beijing 102200, China
| | - Yi Isaac Yang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
3
|
Abstract
A survey of protein databases indicates that the majority of enzymes exist in oligomeric forms, with about half of those found in the UniProt database being homodimeric. Understanding why many enzymes are in their dimeric form is imperative. Recent developments in experimental and computational techniques have allowed for a deeper comprehension of the cooperative interactions between the subunits of dimeric enzymes. This review aims to succinctly summarize these recent advancements by providing an overview of experimental and theoretical methods, as well as an understanding of cooperativity in substrate binding and the molecular mechanisms of cooperative catalysis within homodimeric enzymes. Focus is set upon the beneficial effects of dimerization and cooperative catalysis. These advancements not only provide essential case studies and theoretical support for comprehending dimeric enzyme catalysis but also serve as a foundation for designing highly efficient catalysts, such as dimeric organic catalysts. Moreover, these developments have significant implications for drug design, as exemplified by Paxlovid, which was designed for the homodimeric main protease of SARS-CoV-2.
Collapse
Affiliation(s)
- Ke-Wei Chen
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yun-Dong Wu
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
4
|
Zhuang Y, Thota N, Quirk S, Hernandez R. Implementation of Telescoping Boxes in Adaptive Steered Molecular Dynamics. J Chem Theory Comput 2022; 18:4649-4659. [PMID: 35830368 DOI: 10.1021/acs.jctc.2c00498] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Long-time dynamical processes, such as those involving protein unfolding and ligand interactions, can be accelerated and realized through steered molecular dynamics (SMD). The challenge has been the extraction of information from such simulations that generalize for complex nonequilibrium processes. The use of Jarzynski's equality opened the possibility of determining the free energy along the steered coordinate, but sampling over the nonequilibrium trajectories is slow to converge. Adaptive steered molecular dynamics (ASMD) and other related techniques have been introduced to overcome this challenge through the use of stages. Here, we take advantage of these stages to address the numerical cost that arises from the required use of very large solvent boxes. We introduce telescoping box schemes within adaptive steered molecular dynamics (ASMD) in which we adjust the solvent box between stages and thereby vary (and optimize) the required number of solvent molecules. We have benchmarked the method on a relatively long α-helical peptide, Ala30, with respect to the potential of mean force and hydrogen bonds. We show that the use of telescoping boxes introduces little numerical error while significantly reducing the computational cost.
Collapse
Affiliation(s)
- Yi Zhuang
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Nikhil Thota
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Stephen Quirk
- Kimberly-Clark Corporation, Atlanta, Georgia 30076-2199, United States
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
5
|
Zhuang Y, Bureau HR, Quirk S, Hernandez R. Adaptive steered molecular dynamics of biomolecules. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1807542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yi Zhuang
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Hailey R. Bureau
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
6
|
Ray D, Andricioaei I. Weighted ensemble milestoning (WEM): A combined approach for rare event simulations. J Chem Phys 2020; 152:234114. [DOI: 10.1063/5.0008028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Dhiman Ray
- Department of Chemistry, University of California Irvine, California 92697, USA
| | - Ioan Andricioaei
- Department of Chemistry, University of California Irvine, California 92697, USA
| |
Collapse
|
7
|
Yang YI, Shao Q, Zhang J, Yang L, Gao YQ. Enhanced sampling in molecular dynamics. J Chem Phys 2019; 151:070902. [PMID: 31438687 DOI: 10.1063/1.5109531] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Although molecular dynamics simulations have become a useful tool in essentially all fields of chemistry, condensed matter physics, materials science, and biology, there is still a large gap between the time scale which can be reached in molecular dynamics simulations and that observed in experiments. To address the problem, many enhanced sampling methods were introduced, which effectively extend the time scale being approached in simulations. In this perspective, we review a variety of enhanced sampling methods. We first discuss collective-variables-based methods including metadynamics and variationally enhanced sampling. Then, collective variable free methods such as parallel tempering and integrated tempering methods are presented. At last, we conclude with a brief introduction of some newly developed combinatory methods. We summarize in this perspective not only the theoretical background and numerical implementation of these methods but also the new challenges and prospects in the field of the enhanced sampling.
Collapse
Affiliation(s)
- Yi Isaac Yang
- Institute of Systems Biology, Shenzhen Bay Laboratory, Shenzhen 518055, Guangdong, China
| | - Qiang Shao
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jun Zhang
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, Berlin 14195, Germany
| | - Lijiang Yang
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yi Qin Gao
- Institute of Systems Biology, Shenzhen Bay Laboratory, Shenzhen 518055, Guangdong, China
| |
Collapse
|
8
|
Zhu L, Sheong FK, Cao S, Liu S, Unarta IC, Huang X. TAPS: A traveling-salesman based automated path searching method for functional conformational changes of biological macromolecules. J Chem Phys 2019; 150:124105. [DOI: 10.1063/1.5082633] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Lizhe Zhu
- Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong 518172, China
| | - Fu Kit Sheong
- Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Siqin Cao
- Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Song Liu
- Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ilona C. Unarta
- Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xuhui Huang
- Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Bioengineering Program, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China
| |
Collapse
|
9
|
Grazioli G, Andricioaei I. Advances in milestoning. I. Enhanced sampling via wind-assisted reweighted milestoning (WARM). J Chem Phys 2018; 149:084103. [DOI: 10.1063/1.5029954] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Gianmarc Grazioli
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | - Ioan Andricioaei
- Department of Chemistry, University of California, Irvine, California 92697, USA
| |
Collapse
|
10
|
Frank AT, Andricioaei I. Reaction Coordinate-Free Approach to Recovering Kinetics from Potential-Scaled Simulations: Application of Kramers’ Rate Theory. J Phys Chem B 2016; 120:8600-5. [DOI: 10.1021/acs.jpcb.6b02654] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aaron T. Frank
- Department
of Chemistry, The University of California, Irvine, 4212 Natural
Sciences 1, Irvine, California 92697, United States
| | - Ioan Andricioaei
- Department
of Chemistry, The University of California, Irvine, 4212 Natural
Sciences 1, Irvine, California 92697, United States
| |
Collapse
|
11
|
Phatak P, Venderley J, Debrota J, Li J, Iyengar SS. Active Site Dynamical Effects in the Hydrogen Transfer Rate-limiting Step in the Catalysis of Linoleic Acid by Soybean Lipoxygenase-1 (SLO-1): Primary and Secondary Isotope Contributions. J Phys Chem B 2015; 119:9532-46. [PMID: 26079999 DOI: 10.1021/acs.jpcb.5b02385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using ab initio molecular dynamics (AIMD) simulations that facilitate the treatment of rare events, we probe the active site participation in the rate-determining hydrogen transfer step in the catalytic oxidation of linoleic acid by soybean lipoxygenase-1 (SLO-1). The role of two different active site components is probed. (a) On the hydrogen atom acceptor side of the active site, the hydrogen bonding propensity between the acceptor side hydroxyl group, which is bound to the iron cofactor, and the backbone carboxyl group of isoleucine (residue number 839) is studied toward its role in promoting the hydrogen transfer event. Primary and secondary (H/D) isotope effects are also probed and a definite correlation with subtle secondary H/D isotope effects is found. With increasing average nuclear kinetic energy, the increase in transfer probability is enhanced due to the presence of the hydrogen bond between the backbone carbonyl of I839 and the acceptor oxygen. Further increase in average nuclear kinetic energy reduces the strength of this secondary hydrogen bond which leads to a deterioration in hydrogen transfer rates and finally embrances an Arrhenius-like behavior. (b) On the hydrogen atom donor side, the coupling between vibrational modes predominantly localized on the donor-side linoleic acid group and the reactive mode is probed. There appears to be a qualitative difference in the coupling between modes that belong to linoleic acid and the hydrogen transfer mode, for hydrogen and deuterium transfer. For example, the donor side secondary hydrogen atom is much more labile (by nearly a factor of 5) during deuterium transfer as compared to the case for hydrogen transfer. This appears to indicate a greater coupling between the modes belonging to the linoleic acid scaffold and the deuterium transfer mode and also provides a new rationalization for the abnormal (nonclassical) secondary isotope effect results obtained by Knapp, Rickert, and Klinman in J. Am. Chem. Soc. , 2002 , 124 , 3865 . To substantiate our findings noted in point a above, we have suggested an I839 → A839 or I839 → V839 mutation. This will modify the bulkiness of hydrogen the bonding residue, allowing greater flexibility in the secondary hydrogen bond formation highlighted above and adversely affecting the reaction rate.
Collapse
Affiliation(s)
- Prasad Phatak
- Department of Chemistry and Department of Physics, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Jordan Venderley
- Department of Chemistry and Department of Physics, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - John Debrota
- Department of Chemistry and Department of Physics, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Junjie Li
- Department of Chemistry and Department of Physics, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Srinivasan S Iyengar
- Department of Chemistry and Department of Physics, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
12
|
Constrained Unfolding of a Helical Peptide: Implicit versus Explicit Solvents. PLoS One 2015; 10:e0127034. [PMID: 25970521 PMCID: PMC4430545 DOI: 10.1371/journal.pone.0127034] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/11/2015] [Indexed: 11/19/2022] Open
Abstract
Steered Molecular Dynamics (SMD) has been seen to provide the potential of mean force (PMF) along a peptide unfolding pathway effectively but at significant computational cost, particularly in all-atom solvents. Adaptive steered molecular dynamics (ASMD) has been seen to provide a significant computational advantage by limiting the spread of the trajectories in a staged approach. The contraction of the trajectories at the end of each stage can be performed by taking a structure whose nonequilibrium work is closest to the Jarzynski average (in naive ASMD) or by relaxing the trajectories under a no-work condition (in full-relaxation ASMD--namely, FR-ASMD). Both approaches have been used to determine the energetics and hydrogen-bonding structure along the pathway for unfolding of a benchmark peptide initially constrained as an α-helix in a water environment. The energetics are quite different to those in vacuum, but are found to be similar between implicit and explicit solvents. Surprisingly, the hydrogen-bonding pathways are also similar in the implicit and explicit solvents despite the fact that the solvent contact plays an important role in opening the helix.
Collapse
|
13
|
Ozer G, Keyes T, Quirk S, Hernandez R. Multiple branched adaptive steered molecular dynamics. J Chem Phys 2014; 141:064101. [DOI: 10.1063/1.4891807] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Gungor Ozer
- Department of Chemistry, Boston University, Boston, Massachusetts 02215-2521, USA
| | - Thomas Keyes
- Department of Chemistry, Boston University, Boston, Massachusetts 02215-2521, USA
| | - Stephen Quirk
- Kimberly-Clark Corporation, Atlanta, Georgia 30076-2199, USA
- Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Rigoberto Hernandez
- Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
14
|
Perišić O. Pulling-spring modulation as a method for improving the potential-of-mean-force reconstruction in single-molecule manipulation experiments. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:013303. [PMID: 23410456 DOI: 10.1103/physreve.87.013303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/22/2012] [Indexed: 06/01/2023]
Abstract
The free-energy calculation is usually limited to close to equilibrium perturbation regimes because faster perturbations introduce a bias into the estimate. The Jarzynski equality offers a solution to this problem by directly connecting the free-energy difference and the external work, regardless how far from equilibrium that work may be. However, a limited sampling coupled to the fast perturbation introduces a slowly converging bias into the Jarzynski free-energy estimate also. In this paper we present two perturbation protocols devised with the intention to overcome the convergence issues of the Jarzynski-based potential of mean force estimation in the single-molecule, constant velocity manipulation experiments. The protocols are designed to improve the convergence issues by increasing the variation of the external work through the modulation of the spring used to pull a molecule. Of the two methods, the one which continuously changes the amplitude of the spring stiffness offers an excellent reconstruction and requires less than one tenth of the samples required by the normal, constant spring pulling to produce the same quality of the reconstruction.
Collapse
|
15
|
Phatak P, Sumner I, Iyengar SS. Gauging the flexibility of the active site in soybean lipoxygenase-1 (SLO-1) through an atom-centered density matrix propagation (ADMP) treatment that facilitates the sampling of rare events. J Phys Chem B 2012; 116:10145-64. [PMID: 22838384 PMCID: PMC3558621 DOI: 10.1021/jp3015047] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a computational methodology to sample rare events in large biological enzymes that may involve electronically polarizing, reactive processes. The approach includes simultaneous dynamical treatment of electronic and nuclear degrees of freedom, where contributions from the electronic portion are computed using hybrid density functional theory and the computational costs are reduced through a hybrid quantum mechanics/molecular mechanics (QM/MM) treatment. Thus, the paper involves a QM/MM dynamical treatment of rare events. The method is applied to probe the effect of the active site elements on the critical hydrogen transfer step in the soybean lipoxygenase-1 (SLO-1) catalyzed oxidation of linoleic acid. It is found that the dynamical fluctuations and associated flexibility of the active site are critical toward maintaining the electrostatics in the regime where the reactive process can occur smoothly. Physical constraints enforced to limit the active site flexibility are akin to mutations and, in the cases studied, have a detrimental effect on the electrostatic fluctuations, thus adversely affecting the hydrogen transfer process.
Collapse
Affiliation(s)
- Prasad Phatak
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Ave, Bloomington, IN-47405
| | - Isaiah Sumner
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Ave, Bloomington, IN-47405
| | - Srinivasan S. Iyengar
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Ave, Bloomington, IN-47405
| |
Collapse
|
16
|
Perišić O, Lu H. Efficient free-energy-profile reconstruction using adaptive stochastic perturbation protocols. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:056705. [PMID: 22181545 DOI: 10.1103/physreve.84.056705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/07/2011] [Indexed: 05/31/2023]
Abstract
The Jarzynski-relation-based free-energy calculation is limited by the very slow convergence of the estimate when dissipation is high. We present two novel perturbation protocols able to significantly improve the quality of the potential of mean force (PMF) calculation by reducing the estimate's bias without increasing the number of samples. The protocols are directly applicable with both numerical simulations and real-life experiments. The improvement is achieved through the intentional but controlled widening of the distribution of the external work used to perturb a given system. Our protocols can achieve the same accuracy in PMF estimation as the normal constant velocity pulling with less than 10% of the required samples.
Collapse
Affiliation(s)
- Ognjen Perišić
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | |
Collapse
|
17
|
Kunz APE, Liu H, van Gunsteren WF. Enhanced sampling of particular degrees of freedom in molecular systems based on adiabatic decoupling and temperature or force scaling. J Chem Phys 2011; 135:104106. [DOI: 10.1063/1.3629450] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Musselman C, Zhang Q, Al-Hashimi H, Andricioaei I. Referencing strategy for the direct comparison of nuclear magnetic resonance and molecular dynamics motional parameters in RNA. J Phys Chem B 2010; 114:929-39. [PMID: 20039757 PMCID: PMC4287414 DOI: 10.1021/jp905286h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations are both techniques that can be used to characterize the structural dynamics of biomolecules and their underlying time scales. Comparison of relaxation parameters obtained through each methodology allows for cross validation of techniques and for complementarity in the analysis of dynamics. Here we present a combined NMR/MD study of the dynamics of HIV-1 transactivation response (TAR) RNA. We compute relaxation constants (R(1), R(2), and NOE) and model-free parameters (S(2) and tau) from a 65 ns molecular dynamics (MD) trajectory and compare them with the respective parameters measured in a domain-elongation NMR experiment. Using the elongated domain as the frame of reference for all computed parameters allows for a direct comparison between experiment and simulation. We see good agreement for many parameters and gain further insight into the nature of the local and global dynamics of TAR, which are found to be quite complex, spanning multiple time scales. For the few cases where agreement is poor, comparison of the dynamical parameters provides insight into the limits of each technique. We suggest a frequency-matching procedure that yields an upper bound for the time scale of dynamics to which the NMR relaxation experiment is sensitive.
Collapse
Affiliation(s)
- Catherine Musselman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
19
|
Brooks B, Brooks C, MacKerell A, Nilsson L, Petrella R, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner A, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor R, Post C, Pu J, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York D, Karplus M. CHARMM: the biomolecular simulation program. J Comput Chem 2009; 30:1545-614. [PMID: 19444816 PMCID: PMC2810661 DOI: 10.1002/jcc.21287] [Citation(s) in RCA: 6456] [Impact Index Per Article: 403.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
CHARMM (Chemistry at HARvard Molecular Mechanics) is a highly versatile and widely used molecular simulation program. It has been developed over the last three decades with a primary focus on molecules of biological interest, including proteins, peptides, lipids, nucleic acids, carbohydrates, and small molecule ligands, as they occur in solution, crystals, and membrane environments. For the study of such systems, the program provides a large suite of computational tools that include numerous conformational and path sampling methods, free energy estimators, molecular minimization, dynamics, and analysis techniques, and model-building capabilities. The CHARMM program is applicable to problems involving a much broader class of many-particle systems. Calculations with CHARMM can be performed using a number of different energy functions and models, from mixed quantum mechanical-molecular mechanical force fields, to all-atom classical potential energy functions with explicit solvent and various boundary conditions, to implicit solvent and membrane models. The program has been ported to numerous platforms in both serial and parallel architectures. This article provides an overview of the program as it exists today with an emphasis on developments since the publication of the original CHARMM article in 1983.
Collapse
Affiliation(s)
- B.R. Brooks
- Laboratory of Computational Biology, National Heart, Lung, and
Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - C.L. Brooks
- Departments of Chemistry & Biophysics, University of
Michigan, Ann Arbor, MI 48109
| | - A.D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy,
University of Maryland, Baltimore, MD, 21201
| | - L. Nilsson
- Karolinska Institutet, Department of Biosciences and Nutrition,
SE-141 57, Huddinge, Sweden
| | - R.J. Petrella
- Department of Chemistry and Chemical Biology, Harvard University,
Cambridge, MA 02138
- Department of Medicine, Harvard Medical School, Boston, MA
02115
| | - B. Roux
- Department of Biochemistry and Molecular Biology, University of
Chicago, Gordon Center for Integrative Science, Chicago, IL 60637
| | - Y. Won
- Department of Chemistry, Hanyang University, Seoul
133–792 Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - M. Karplus
- Department of Chemistry and Chemical Biology, Harvard University,
Cambridge, MA 02138
- Laboratoire de Chimie Biophysique, ISIS, Université de
Strasbourg, 67000 Strasbourg France
| |
Collapse
|
20
|
Mills M, Andricioaei I. An experimentally guided umbrella sampling protocol for biomolecules. J Chem Phys 2009; 129:114101. [PMID: 19044944 DOI: 10.1063/1.2976440] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a simple method for utilizing experimental data to improve the efficiency of numerical calculations of free energy profiles from molecular dynamics simulations. The method involves umbrella sampling simulations with restraining potentials based on a known approximate estimate of the free energy profile derived solely from experimental data. The use of the experimental data results in optimal restraining potentials, guides the simulation along relevant pathways, and decreases overall computational time. In demonstration of the method, two systems are showcased. First, guided, unguided (regular) umbrella sampling simulations and exhaustive sampling simulations are compared to each other in the calculation of the free energy profile for the distance between the ends of a pentapeptide. The guided simulation use restraints based on a simulated "experimental" potential of mean force of the end-to-end distance that would be measured by fluorescence resonance energy transfer (obtained from exhaustive sampling). Statistical analysis shows a dramatic improvement in efficiency for a 5 window guided umbrella sampling over 5 and 17 window unguided umbrella sampling simulations. Moreover, the form of the potential of mean force for the guided simulations evolves, as one approaches convergence, along the same milestones as the extensive simulations, but exponentially faster. Second, the method is further validated by replicating the forced unfolding pathway of the titin I27 domain using guiding umbrella sampling potentials determined from actual single molecule pulling data. Comparison with unguided umbrella sampling reveals that the use of guided sampling encourages unfolding simulations to converge faster to a forced unfolding pathway that agrees with previous results and produces a more accurate potential of mean force.
Collapse
Affiliation(s)
- Maria Mills
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | | |
Collapse
|
21
|
MacFadyen J, Wereszczynski J, Andricioaei I. Directionally negative friction: A method for enhanced sampling of rare event kinetics. J Chem Phys 2008; 128:114112. [DOI: 10.1063/1.2841102] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Ceotto M, Ayton GS, Voth GA. Accelerated Superposition State Molecular Dynamics for Condensed Phase Systems. J Chem Theory Comput 2008; 4:560-8. [DOI: 10.1021/ct7003275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michele Ceotto
- Dipartimento di Chimica Fisica ed Elettrochimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Gary S. Ayton
- Department of Chemistry and Center for Biophysical Modeling and Simulation, University of Utah, Salt Lake City, Utah 84112
| | - Gregory A. Voth
- Department of Chemistry and Center for Biophysical Modeling and Simulation, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
23
|
Nummela J, Yassin F, Andricioaei I. Entropy-energy decomposition from nonequilibrium work trajectories. J Chem Phys 2008; 128:024104. [DOI: 10.1063/1.2817332] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Nummela J, Andricioaei I. Exact low-force kinetics from high-force single-molecule unfolding events. Biophys J 2007; 93:3373-81. [PMID: 17704183 PMCID: PMC2072064 DOI: 10.1529/biophysj.107.111658] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mechanical forces play a key role in crucial cellular processes involving force-bearing biomolecules, as well as in novel single-molecule pulling experiments. We present an exact method that enables one to extrapolate, to low (or zero) forces, entire time-correlation functions and kinetic rate constants from the conformational dynamics either simulated numerically or measured experimentally at a single, relatively higher, external force. The method has twofold relevance: 1), to extrapolate the kinetics at physiological force conditions from molecular dynamics trajectories generated at higher forces that accelerate conformational transitions; and 2), to extrapolate unfolding rates from experimental force-extension single-molecule curves. The theoretical formalism, based on stochastic path integral weights of Langevin trajectories, is presented for the constant-force, constant loading rate, and constant-velocity modes of the pulling experiments. For the first relevance, applications are described for simulating the conformational isomerization of alanine dipeptide; and for the second relevance, the single-molecule pulling of RNA is considered. The ability to assign a weight to each trace in the single-molecule data also suggests a means to quantitatively compare unfolding pathways under different conditions.
Collapse
Affiliation(s)
- Jeremiah Nummela
- Department of Chemistry, Center for Computational Medicine and Biology, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
25
|
Meirovitch H. Recent developments in methodologies for calculating the entropy and free energy of biological systems by computer simulation. Curr Opin Struct Biol 2007; 17:181-6. [PMID: 17395451 DOI: 10.1016/j.sbi.2007.03.016] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 01/11/2007] [Accepted: 03/16/2007] [Indexed: 10/23/2022]
Abstract
The Helmholtz free energy, F, plays an important role in proteins because of their rugged potential energy surface, which is 'decorated' with a tremendous number of local wells (denoted microstates, m). F governs protein folding, whereas differences DeltaF(mn) determine the relative populations of microstates that are visited by a flexible cyclic peptide or a flexible protein segment (e.g. a surface loop). Recently developed methodologies for calculating DeltaF(mn) (and entropy differences, DeltaS(mn)) mainly use thermodynamic integration and calculation of the absolute F; interesting new approaches in these categories are the adaptive integration method and the hypothetical scanning molecular dynamics method, respectively.
Collapse
Affiliation(s)
- Hagai Meirovitch
- Department of Computational Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| |
Collapse
|
26
|
|
27
|
van Erp TS. Efficiency analysis of reaction rate calculation methods using analytical models I: The two-dimensional sharp barrier. J Chem Phys 2006; 125:174106. [PMID: 17100428 DOI: 10.1063/1.2363996] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We analyze the efficiency of different methods for the calculation of reaction rates in the case of a simple two-dimensional analytical benchmark system. Two classes of methods are considered: the first is based on the free energy calculation along a reaction coordinate and the calculation of the transmission coefficient, the second on the sampling of dynamical pathways. We give scaling rules for how this efficiency depends on barrier height and width, and we hand out simple optimization rules for the method-specific parameters. We show that the path sampling methods, using the transition interface sampling technique, become exceedingly more efficient than the others when the reaction coordinate is not the optimal one.
Collapse
Affiliation(s)
- Titus S van Erp
- Centrum voor Oppervlaktechemie en Katalyse, K.U. Leuven, Kasteelpark Arenberg 23, B-3001 Leuven, Belgium.
| |
Collapse
|
28
|
Bartsch T, Uzer T, Moix JM, Hernandez R. Identifying reactive trajectories using a moving transition state. J Chem Phys 2006; 124:244310. [PMID: 16821980 DOI: 10.1063/1.2206587] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A time-dependent no-recrossing dividing surface is shown to lead to a new criterion for identifying reactive trajectories well before they are evolved to infinite time. Numerical dynamics simulations of a dissipative anharmonic two-dimensional system confirm the efficiency of this approach. The results are compared to the standard fixed transition state dividing surface that is well-known to suffer from recrossings and therefore requires trajectories to be evolved over a long time interval before they can reliably be classified as reactive or nonreactive. The moving dividing surface can be used to identify reactive trajectories in harmonic or moderately anharmonic systems with considerably lower numerical effort or even without any simulation at all.
Collapse
Affiliation(s)
- Thomas Bartsch
- Center for Nonlinear Science, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA
| | | | | | | |
Collapse
|
29
|
Xing C, Andricioaei I. On the calculation of time correlation functions by potential scaling. J Chem Phys 2006; 124:034110. [PMID: 16438570 DOI: 10.1063/1.2159476] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present and analyze a general method to calculate time correlation functions from molecular dynamics on scaled potentials for complex systems for which simulation is affected by broken ergodicity. Depending on the value of the scaling factor, correlations can be calculated for times that can be orders of magnitude longer than those accessible to direct simulations. We show that the exact value of the time correlation functions of the original system (i.e., with unscaled potential) can be obtained, in principle, using an action-reweighting scheme based on a stochastic path-integral formalism. Two tests (involving a bistable potential model and a dipeptide bond-vector orientational relaxation) are exemplified to showcase the strengths, as well as the limitations of the approach, and a procedure for the estimation of the time-dependent standard deviation error is outlined.
Collapse
Affiliation(s)
- Chenyue Xing
- Department of Chemistry and The Program in Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|