1
|
Gan Z, Gloor CJ, Yan L, Zhong X, You W, Moran AM. Elucidating phonon dephasing mechanisms in layered perovskites with coherent Raman spectroscopies. J Chem Phys 2024; 161:074202. [PMID: 39158047 DOI: 10.1063/5.0216472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024] Open
Abstract
Organic-inorganic hybrid perovskite quantum wells exhibit electronic structures with properties intermediate between those of inorganic semiconductors and molecular crystals. In these systems, periodic layers of organic spacer molecules occupy the interstitial spaces between perovskite sheets, thereby confining electronic excitations to two dimensions. Here, we investigate spectroscopic line broadening mechanisms for phonons coupled to excitons in lead-iodide layered perovskites with phenyl ethyl ammonium (PEA) and azobenzene ethyl ammonium (AzoEA) spacer cations. Using a modified Elliot line shape analysis for the absorbance and photoluminescence spectra, polaron binding energies of 11.2 and 17.5 meV are calculated for (PEA)2PbI4 and (AzoEA)2PbI4, respectively. To determine whether the polaron stabilization processes influence the dephasing mechanisms of coupled phonons, five-pulse coherent Raman spectroscopies are applied to the two systems under electronically resonant conditions. The prominence of inhomogeneous line broadening mechanisms detected in (AzoEA)2PbI4 suggests that thermal fluctuations involving the deformable organic phase broaden the distributions of phonon frequencies within the quantum wells. In addition, our data indicate that polaron stabilization primarily involves photoinduced reorganization of the organic phases for both systems, whereas the impulsively excited phonons represent less than 10% of the total polaron binding energy. The signal generation mechanisms associated with our fifth-order coherent Raman experiments are explored with a perturbative model in which cumulant expansions are used to account for time-coincident vibrational dephasing and polaron stabilization processes.
Collapse
Affiliation(s)
- Zijian Gan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Camryn J Gloor
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Liang Yan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Xiaowei Zhong
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew M Moran
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
2
|
Ouyang Z, Gan Z, Yan L, You W, Moran AM. Measuring carrier diffusion in MAPbI3 solar cells with photocurrent-detected transient grating spectroscopy. J Chem Phys 2023; 159:094201. [PMID: 37668248 DOI: 10.1063/5.0159301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023] Open
Abstract
Conventional time-of-flight methods can be used to determine carrier mobilities for photovoltaic cells in which the transit time between electrodes is greater than the RC time constant of the device. To measure carrier drift on sub-ns timescales, we have recently developed a two-pulse time-of-flight technique capable of detecting drift velocities with 100-ps time resolution in perovskite materials. In this method, the rates of carrier transit across the active layer of a device are determined by varying the delay time between laser pulses and measuring the magnitude of the recombination-induced nonlinearity in the photocurrent. Here, we present a related experimental approach in which diffractive optic-based transient grating spectroscopy is combined with our two-pulse time-of-flight technique to simultaneously probe drift and diffusion in orthogonal directions within the active layer of a photovoltaic cell. Carrier density gratings are generated using two time-coincident pulse-pairs with passively stabilized phases. Relaxation of the grating amplitude associated with the first pulse-pair is detected by varying the delay and phase of the density grating corresponding to the second pulse-pair. The ability of the technique to reveal carrier diffusion is demonstrated with model calculations and experiments conducted using MAPbI3 photovoltaic cells.
Collapse
Affiliation(s)
- Zhenyu Ouyang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Zijian Gan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Liang Yan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew M Moran
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
3
|
Haggag O, Levinsky N, Ruhman S. Coherent intramolecular excimer formation in solid [2,2]‐Paracyclophane: Time resolved springing of a molecular “trap”. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Omer Haggag
- The Hebrew University of Jerusalem - Givat Ram Campus: Hebrew University of Jerusalem - Edmond J Safra Campus Chemistry 9190401 ISRAEL
| | - Noam Levinsky
- The Hebrew University of Jerusalem - Givat Ram Campus: Hebrew University of Jerusalem - Edmond J Safra Campus Chemistry 9190401 ISRAEL
| | - Sanford Ruhman
- Hebrew University of Jerusalem Chemistry Givat-Ram 9190401 Jerusalem ISRAEL
| |
Collapse
|
4
|
Henderson WR, Fagnani DE, Grolms J, Abboud KA, Castellano RK. Transannular Hydrogen Bonding in Planar‐Chiral [2.2]Paracyclophane‐Bisamides. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Will R. Henderson
- Department of ChemistryUniversity of Florida, PO Box 117200 Gainesville FL 32611–7200 USA
| | - Danielle E. Fagnani
- Department of ChemistryUniversity of Florida, PO Box 117200 Gainesville FL 32611–7200 USA
| | - Jonathan Grolms
- Department of ChemistryUniversity of Florida, PO Box 117200 Gainesville FL 32611–7200 USA
| | - Khalil A. Abboud
- Department of ChemistryUniversity of Florida, PO Box 117200 Gainesville FL 32611–7200 USA
| | - Ronald K. Castellano
- Department of ChemistryUniversity of Florida, PO Box 117200 Gainesville FL 32611–7200 USA
| |
Collapse
|
5
|
Roscioli JD, Ghosh S, LaFountain AM, Frank HA, Beck WF. Quantum Coherent Excitation Energy Transfer by Carotenoids in Photosynthetic Light Harvesting. J Phys Chem Lett 2017; 8:5141-5147. [PMID: 28968122 DOI: 10.1021/acs.jpclett.7b01791] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
It remains an open question whether quantum coherence and molecular excitons created by delocalization of electronic excited states are essential features of the mechanisms that enable efficient light capture and excitation energy transfer to reaction centers in photosynthetic organisms. The peridinin-chlorophyll a protein from marine dinoflagellates is an example of a light-harvesting system with tightly clustered antenna chromophores in which quantum coherence has long been suspected, but unusually it features the carotenoid peridinin as the principal light absorber for mid-visible photons. We report that broad-band two-dimensional electronic spectroscopy indeed reveals the initial presence of exciton relaxation pathways that enable transfer of excitation from peridinin to chlorophyll a in <20 fs, but the quantum coherence that permits this is very short-lived. Strongly coupled excited-state vibrational distortions of the peridinins trigger a dynamic transition of the electronic structure of the system and a rapid conversion to incoherent energy transfer mechanisms.
Collapse
Affiliation(s)
- Jerome D Roscioli
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Soumen Ghosh
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Amy M LaFountain
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3036, United States
| | - Harry A Frank
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3036, United States
| | - Warren F Beck
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| |
Collapse
|
6
|
Ghosh S, Bishop MM, Roscioli JD, LaFountain AM, Frank HA, Beck WF. Excitation Energy Transfer by Coherent and Incoherent Mechanisms in the Peridinin-Chlorophyll a Protein. J Phys Chem Lett 2017; 8:463-469. [PMID: 28042923 DOI: 10.1021/acs.jpclett.6b02881] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Excitation energy transfer from peridinin to chlorophyll (Chl) a is unusually efficient in the peridinin-chlorophyll a protein (PCP) from dinoflagellates. This enhanced performance is derived from the long intrinsic lifetime of 4.4 ps for the S2 (11Bu+) state of peridinin in PCP, which arises from the electron-withdrawing properties of its carbonyl substituent. Results from heterodyne transient grating spectroscopy indicate that S2 serves as the donor for two channels of energy transfer: a 30 fs process involving quantum coherence and delocalized peridinin-Chl states and an incoherent, 2.5 ps process initiated by dynamic exciton localization, which accompanies the formation of a conformationally distorted intermediate in 45 fs. The lifetime of the S2 state is lengthened in PCP by its intramolecular charge-transfer character, which increases the system-bath coupling and slows the torsional motions that promote nonradiative decay to the S1 (21Ag-) state.
Collapse
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Michael M Bishop
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Jerome D Roscioli
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Amy M LaFountain
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3036, United States
| | - Harry A Frank
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3036, United States
| | - Warren F Beck
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| |
Collapse
|
7
|
Ghosh S, Roscioli JD, Bishop MM, Gurchiek JK, LaFountain AM, Frank HA, Beck WF. Torsional Dynamics and Intramolecular Charge Transfer in the S2 (1(1)Bu(+)) Excited State of Peridinin: A Mechanism for Enhanced Mid-Visible Light Harvesting. J Phys Chem Lett 2016; 7:3621-3626. [PMID: 27571487 DOI: 10.1021/acs.jpclett.6b01642] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Of the carotenoids known in photosynthetic organisms, peridinin exhibits one of the highest quantum efficiencies for excitation energy transfer to chlorophyll (Chl) a acceptors. The mechanism for this enhanced performance involves an order-of-magnitude slowing of the S2 (1(1)Bu(+)) → S1 (2(1)Ag(-)) nonradiative decay pathway compared to carotenoids lacking carbonyl substitution. Using femtosecond transient grating spectroscopy with optical heterodyne detection, we have obtained the first evidence that the nonradiative decay of the S2 state of peridinin is promoted by large-amplitude torsional motions. The decay of an intermediate state termed Sx, which we assign to a twisted form of the S2 state, is substantially slowed by solvent friction in peridinin due to its intramolecular charge transfer (ICT) character.
Collapse
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Jerome D Roscioli
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Michael M Bishop
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Jason K Gurchiek
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Amy M LaFountain
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3036, United States
| | - Harry A Frank
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3036, United States
| | - Warren F Beck
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| |
Collapse
|
8
|
Ghosh S, Bishop MM, Roscioli JD, LaFountain AM, Frank HA, Beck WF. Femtosecond Heterodyne Transient Grating Studies of Nonradiative Deactivation of the S2 (11Bu+) State of Peridinin: Detection and Spectroscopic Assignment of an Intermediate in the Decay Pathway. J Phys Chem B 2016; 120:3601-14. [DOI: 10.1021/acs.jpcb.5b12753] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Soumen Ghosh
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322 United States
| | - Michael M. Bishop
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322 United States
| | - Jerome D. Roscioli
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322 United States
| | - Amy M. LaFountain
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3036 United States
| | - Harry A. Frank
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3036 United States
| | - Warren F. Beck
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322 United States
| |
Collapse
|
9
|
Courtney TL, Fox ZW, Slenkamp KM, Khalil M. Two-dimensional vibrational-electronic spectroscopy. J Chem Phys 2016; 143:154201. [PMID: 26493900 DOI: 10.1063/1.4932983] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([Fe(III)(CN)6](3-) dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5Fe(II)CNRu(III)(NH3)5](-) dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.
Collapse
Affiliation(s)
- Trevor L Courtney
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Zachary W Fox
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Karla M Slenkamp
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Munira Khalil
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| |
Collapse
|
10
|
Bakulin AA, Silva C, Vella E. Ultrafast Spectroscopy with Photocurrent Detection: Watching Excitonic Optoelectronic Systems at Work. J Phys Chem Lett 2016; 7:250-8. [PMID: 26711855 PMCID: PMC4819534 DOI: 10.1021/acs.jpclett.5b01955] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/29/2015] [Indexed: 05/22/2023]
Abstract
While ultrafast spectroscopy with photocurrent detection was almost unknown before 2012, in the last 3 years, a number of research groups from different fields have independently developed ultrafast electric probe approaches and reported promising pilot studies. Here, we discuss these recent advances and provide our perspective on how photocurrent detection successfully overcomes many limitations of all-optical methods, which makes it a technique of choice when device photophysics is concerned. We also highlight compelling existing problems and research questions and suggest ways for further development, outlining the potential breakthroughs to be expected in the near future using photocurrent ultrafast optical probes.
Collapse
Affiliation(s)
- Artem A. Bakulin
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Carlos Silva
- Département de physique & Regroupement
québécois sur les matériaux de pointe, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Eleonora Vella
- Département de physique & Regroupement
québécois sur les matériaux de pointe, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
11
|
Ghosh S, Bishop MM, Roscioli JD, Mueller JJ, Shepherd NC, LaFountain AM, Frank HA, Beck WF. Femtosecond Heterodyne Transient-Grating Studies of Nonradiative Decay of the S2 (11Bu+) State of β-Carotene: Contributions from Dark Intermediates and Double-Quantum Coherences. J Phys Chem B 2015; 119:14905-24. [DOI: 10.1021/acs.jpcb.5b09405] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Soumen Ghosh
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Michael M. Bishop
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Jerome D. Roscioli
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Jenny Jo Mueller
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Nolan C. Shepherd
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Amy M. LaFountain
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Harry A. Frank
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Warren F. Beck
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| |
Collapse
|
12
|
Bishop MM, Roscioli JD, Ghosh S, Mueller JJ, Shepherd NC, Beck WF. Vibrationally Coherent Preparation of the Transition State for Photoisomerization of the Cyanine Dye Cy5 in Water. J Phys Chem B 2015; 119:6905-15. [DOI: 10.1021/acs.jpcb.5b02391] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael M. Bishop
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Jerome D. Roscioli
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Soumen Ghosh
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Jenny Jo Mueller
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Nolan C. Shepherd
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Warren F. Beck
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| |
Collapse
|
13
|
Molesky BP, Giokas PG, Guo Z, Moran AM. Multidimensional resonance raman spectroscopy by six-wave mixing in the deep UV. J Chem Phys 2014; 141:114202. [DOI: 10.1063/1.4894846] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Brian P. Molesky
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Paul G. Giokas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Zhenkun Guo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew M. Moran
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
14
|
Butkus V, Valkunas L, Abramavicius D. Vibronic phenomena and exciton–vibrational interference in two-dimensional spectra of molecular aggregates. J Chem Phys 2014; 140:034306. [DOI: 10.1063/1.4861466] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
15
|
Liu S, Schmitz D, Jester SS, Borys NJ, Höger S, Lupton JM. Coherent and Incoherent Interactions between Cofacial Π-Conjugated Oligomer Dimers in Macrocycle Templates. J Phys Chem B 2012; 117:4197-203. [DOI: 10.1021/jp301903u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Su Liu
- Department of Physics & Astronomy, University of Utah, Salt Lake City, Utah 84112, United States
| | - Daniela Schmitz
- Kekulé-Institut für
Organische Chemie und Biochemie der Universität Bonn, 53121 Bonn, Germany
| | - Stefan-S. Jester
- Kekulé-Institut für
Organische Chemie und Biochemie der Universität Bonn, 53121 Bonn, Germany
| | - Nicholas J. Borys
- Department of Physics & Astronomy, University of Utah, Salt Lake City, Utah 84112, United States
| | - Sigurd Höger
- Kekulé-Institut für
Organische Chemie und Biochemie der Universität Bonn, 53121 Bonn, Germany
| | - John M. Lupton
- Department of Physics & Astronomy, University of Utah, Salt Lake City, Utah 84112, United States
- Institut für Experimentelle
und Angewandte Physik, Universität Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
16
|
Seibt J, Eisfeld A. Intermolecular torsional motion of a π-aggregated dimer probed by two-dimensional electronic spectroscopy. J Chem Phys 2012; 136:024109. [DOI: 10.1063/1.3674993] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
17
|
West BA, Womick JM, Moran AM. Influence of temperature on thymine-to-solvent vibrational energy transfer. J Chem Phys 2011; 135:114505. [DOI: 10.1063/1.3628451] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Turner DB, Stone KW, Gundogdu K, Nelson KA. Invited article: The coherent optical laser beam recombination technique (COLBERT) spectrometer: coherent multidimensional spectroscopy made easier. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2011; 82:081301. [PMID: 21895226 DOI: 10.1063/1.3624752] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We have developed an efficient spectrometer capable of performing a wide variety of coherent multidimensional measurements at optical wavelengths. The two major components of the largely automated device are a spatial beam shaper which controls the beam geometry and a spatiotemporal pulse shaper which controls the temporal waveform of the femtosecond pulse in each beam. We describe how to construct, calibrate, and operate the device, and we discuss its limitations. We use the exciton states of a semiconductor nanostructure as a working example. A series of complex multidimensional spectra-displayed in amplitude and real parts-reveals increasingly intricate correlations among the excitons.
Collapse
Affiliation(s)
- Daniel B Turner
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
19
|
West BA, Womick JM, Moran AM. Probing ultrafast dynamics in adenine with mid-UV four-wave mixing spectroscopies. J Phys Chem A 2011; 115:8630-7. [PMID: 21756005 DOI: 10.1021/jp204416m] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Heterodyne-detected transient grating (TG) and two-dimensional photon echo (2DPE) spectroscopies are extended to the mid-UV spectral range in this investigation of photoinduced relaxation processes of adenine in aqueous solution. These experiments are the first to combine a new method for generating 25 fs laser pulses (at 263 nm) with the passive phase stability afforded by diffractive optics-based interferometry. We establish a set of conditions (e.g., laser power density, solute concentration) appropriate for the study of dynamics involving the neutral solute. Undesired solute photoionization is shown to take hold at higher peak powers of the laser pulses. Signatures of internal conversion and vibrational cooling dynamics are examined using TG measurements with signal-to-noise ratios as high as 350 at short delay times. In addition, 2DPE line shapes reveal correlations between excitation and emission frequencies in adenine, which reflect electronic and nuclear relaxation processes associated with particular tautomers. Overall, this study demonstrates the feasibility of techniques that will hold many advantages for the study of biomolecules whose lowest-energy electronic resonances are found in the mid-UV (e.g., DNA bases, amino acids).
Collapse
Affiliation(s)
- Brantley A West
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
20
|
Chen L, Zheng R, Jing Y, Shi Q. Simulation of the two-dimensional electronic spectra of the Fenna-Matthews-Olson complex using the hierarchical equations of motion method. J Chem Phys 2011; 134:194508. [DOI: 10.1063/1.3589982] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
21
|
Selig U, Schleussner CF, Foerster M, Langhojer F, Nuernberger P, Brixner T. Coherent two-dimensional ultraviolet spectroscopy in fully noncollinear geometry. OPTICS LETTERS 2010; 35:4178-80. [PMID: 21165129 DOI: 10.1364/ol.35.004178] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We introduce fully noncollinear coherent two-dimensional (2D) spectroscopy in the UV domain with an all-reflective and miniaturized setup design. Phase stability is achieved via pairwise beam manipulation, and the concept can be transferred to all wavelength regimes. Here we present results from an implementation that has been optimized for wavelengths between 250 and 375 nm. Interferometric measurements prove phase stability over several hours. We obtained 2D spectra of the nonpolar UV chromophore p-terphenyl in ethanol, excited with 50 fs pulses at 287 nm.
Collapse
Affiliation(s)
- Ulrike Selig
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Womick JM, Miller SA, Moran AM. Toward the origin of exciton electronic structure in phycobiliproteins. J Chem Phys 2010; 133:024507. [PMID: 20632763 DOI: 10.1063/1.3457378] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Femtosecond laser spectroscopies are used to examine the electronic structures of two proteins found in the phycobilisome antenna of cyanobacteria, allophycocyanin (APC) and C-phycocyanin (CPC). The wave function composition involving the pairs of phycocyanobilin pigments (i.e., dimers) found in both proteins is the primary focus of this investigation. Despite their similar geometries, earlier experimental studies conducted in our laboratory and elsewhere observe clear signatures of exciton electronic structure in APC but not CPC. This issue is further investigated here using new experiments. Transient grating (TG) experiments employing broadband quasicontinuum probe pulses find a redshift in the signal spectrum of APC, which is almost twice that of CPC. Dynamics in the TG signal spectra suggest that the sub-100 fs dynamics in APC and CPC are respectively dominated by internal conversion and nuclear relaxation. A specialized technique, intraband electronic coherence spectroscopy (IECS), photoexcites electronic and nuclear coherences with nearly full suppression of signals corresponding to electronic populations. The main conclusion drawn by IECS is that dephasing of intraband electronic coherences in APC occurs in less than 25 fs. This result rules out correlated pigment fluctuations as the mechanism enabling exciton formation in APC and leads us to propose that the large Franck-Condon factors of APC promote wave function delocalization in the vibronic basis. For illustration, we compute the Hamiltonian matrix elements involving the electronic origin of the alpha84 pigment and the first excited vibronic level of the beta84 pigment associated with a hydrogen out-of-plane wagging mode at 800 cm(-1). For this pair of vibronic states, the -51 cm(-1) coupling is larger than the 40 cm(-1) energy gap, thereby making wave function delocalization a feasible prospect. By contrast, CPC possesses no pair of vibronic levels for which the intermolecular coupling is larger than the energy gap between vibronic states. This study of APC and CPC may be important for understanding the photophysics of other phycobiliproteins, which generally possess large vibronic couplings.
Collapse
Affiliation(s)
- Jordan M Womick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
23
|
West BA, Womick JM, McNeil LE, Tan KJ, Moran AM. Influence of Vibronic Coupling on Band Structure and Exciton Self-Trapping in α-Perylene. J Phys Chem B 2010; 115:5157-67. [DOI: 10.1021/jp105115n] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
| | | | | | - Ke Jie Tan
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798
| | | |
Collapse
|
24
|
Nemeth A, Milota F, Mančal T, Lukeš V, Hauer J, Kauffmann HF, Sperling J. Vibrational wave packet induced oscillations in two-dimensional electronic spectra. I. Experiments. J Chem Phys 2010. [DOI: 10.1063/1.3404404] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
25
|
Spectral tuning in photoactive yellow protein by modulation of the shape of the excited state energy surface. Proc Natl Acad Sci U S A 2010; 107:5821-6. [PMID: 20220103 DOI: 10.1073/pnas.0903092107] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein-chromophore interactions in photoreceptors often shift the chromophore absorbance maximum to a biologically relevant spectral region. A fundamental question regarding such spectral tuning effects is how the electronic ground state S(0) and excited state S(1) are modified by the protein. It is widely assumed that changes in energy gap between S(0) and S(1) are the main factor in biological spectral tuning. We report a generally applicable approach to determine if a specific residue modulates the energy gap, or if it alters the equilibrium nuclear geometry or width of the energy surfaces. This approach uses the effects that changes in these three parameters have on the absorbance and fluorescence emission spectra of mutants. We apply this strategy to a set of mutants of photoactive yellow protein (PYP) containing all 20 side chains at active site residue 46. While the mutants exhibit significant variation in both the position and width of their absorbance spectra, the fluorescence emission spectra are largely unchanged. This provides strong evidence against a major role for changes in energy gap in the spectral tuning of these mutants and reveals a change in the width of the S(1) energy surface. We determined the excited state lifetime of selected mutants and the observed correlation between the fluorescence quantum yield and lifetime shows that the fluorescence spectra are representative of the energy surfaces of the mutants. These results reveal that residue 46 tunes the absorbance spectrum of PYP largely by modulating the width of the S(1) energy surface.
Collapse
|
26
|
Miller SA, Moran AM. Nonlinear Optical Detection of Electron Transfer Adiabaticity in Metal Polypyridyl Complexes. J Phys Chem A 2010; 114:2117-26. [DOI: 10.1021/jp9092145] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stephen A. Miller
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Andrew M. Moran
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
27
|
Chen L, Zheng R, Shi Q, Yan Y. Two-dimensional electronic spectra from the hierarchical equations of motion method: Application to model dimers. J Chem Phys 2010; 132:024505. [DOI: 10.1063/1.3293039] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Womick JM, Moran AM. Nature of Excited States and Relaxation Mechanisms in C-Phycocyanin. J Phys Chem B 2009; 113:15771-82. [DOI: 10.1021/jp908093x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jordan M. Womick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Andrew M. Moran
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
29
|
Womick JM, Moran AM. Exciton Coherence and Energy Transport in the Light-Harvesting Dimers of Allophycocyanin. J Phys Chem B 2009; 113:15747-59. [DOI: 10.1021/jp907644h] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jordan M. Womick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Andrew M. Moran
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
30
|
Milota F, Sperling J, Nemeth A, Mančal T, Kauffmann HF. Two-dimensional electronic spectroscopy of molecular excitons. Acc Chem Res 2009; 42:1364-74. [PMID: 19673525 DOI: 10.1021/ar800282e] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Understanding of the nuclear and electronic structure and dynamics of molecular systems has advanced considerably through probing the nonlinear response of molecules to sequences of pulsed electromagnetic fields. The ability to control various degrees of freedom of the excitation pulses-such as duration, sequence, frequency, polarization, and shape-has led to a variety of time-resolved spectroscopic methods. The various techniques that researchers use are commonly classified by their dimensionality, which refers to the number of independently variable time delays between the pulsed fields that induce the signal. Though pico- and femtosecond time-resolved spectroscopies of electronic transitions have come of age, only recently have researchers been able to perform two-dimensional electronic spectroscopy (2D-ES) in the visible frequency regime and correlate transition frequencies that evolve in different time intervals. The two-dimensional correlation plots and their temporal evolution allow one to access spectral information that is not exposed directly in other one-dimensional nonlinear methods. In this Account, we summarize our studies of a series of increasingly complex molecular chromophores. We examine noninteracting dye molecules, a monomer-dimer equilibrium of a prototypical dye molecule, and finally a supramolecular assembly of electronically coupled absorbers. By tracing vibronic signal modulations, differentiating line-broadening mechanisms, analyzing distinctly different relaxation dynamics, determining electronic coupling strengths, and directly following excitation energy transfer pathways, we illustrate how two-dimensional electronic spectroscopy can image physical phenomena that underlie the optical response of a particular system. Although 2D-ES is far from being a "turn-key" method, we expect that experimental progress and potential commercialization of instrumentation will make 2D-ES accessible to a much broader scientific audience, analogous to the development of multidimensional NMR and 2D-IR.
Collapse
Affiliation(s)
- Franz Milota
- Department of Physical Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Jaroslaw Sperling
- Department of Physical Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Alexandra Nemeth
- Department of Physical Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Tomáš Mančal
- Faculty of Mathematics and Physics, Charles University in Prague, 121 16 Prague 2, Czech Republic
| | - Harald F. Kauffmann
- Department of Physical Chemistry, University of Vienna, 1090 Vienna, Austria
- Ultrafast Dynamics Group, Technical University of Vienna, 1040 Vienna, Austria
| |
Collapse
|
31
|
Womick JM, Miller SA, Moran AM. Probing the Dynamics of Intraband Electronic Coherences in Cylindrical Molecular Aggregates. J Phys Chem A 2009; 113:6587-98. [DOI: 10.1021/jp811064z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jordan M. Womick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Stephen A. Miller
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Andrew M. Moran
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
32
|
Womick JM, Miller SA, Moran AM. Correlated Exciton Fluctuations in Cylindrical Molecular Aggregates. J Phys Chem B 2009; 113:6630-9. [DOI: 10.1021/jp810291d] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jordan M. Womick
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Stephen A. Miller
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Andrew M. Moran
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
33
|
Nemeth A, Milota F, Sperling J, Abramavicius D, Mukamel S, Kauffmann HF. Tracing exciton dynamics in molecular nanotubes with 2D electronic spectroscopy. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2008.12.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Nemeth A, Lukeš V, Sperling J, Milota F, Kauffmann HF, Mančal T. Two-dimensional electronic spectra of an aggregating dye: simultaneous measurement of monomeric and dimeric line-shapes. Phys Chem Chem Phys 2009; 11:5986-97. [DOI: 10.1039/b902477h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
35
|
Milota F, Sperling J, Nemeth A, Abramavicius D, Mukamel S, Kauffmann HF. Excitonic couplings and interband energy transfer in a double-wall molecular aggregate imaged by coherent two-dimensional electronic spectroscopy. J Chem Phys 2009; 131:054510. [DOI: 10.1063/1.3197852] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Salvador MR, Sreekumari Nair P, Cho M, Scholes GD. Interaction between excitons determines the non-linear response of nanocrystals. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2007.12.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Nemeth A, Milota F, Mančal T, Lukeš V, Kauffmann HF, Sperling J. Vibronic modulation of lineshapes in two-dimensional electronic spectra. Chem Phys Lett 2008. [DOI: 10.1016/j.cplett.2008.05.057] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Cina JA. Wave-Packet Interferometry and Molecular State Reconstruction: Spectroscopic Adventures on the Left-Hand Side of the Schrödinger Equation. Annu Rev Phys Chem 2008; 59:319-42. [DOI: 10.1146/annurev.physchem.59.032607.093753] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jeffrey A. Cina
- Department of Chemistry and Oregon Center for Optics, University of Oregon, Eugene, Oregon 97403;
| |
Collapse
|
39
|
Becker K, Fritzsche M, Höger S, Lupton JM. Phenylene−Ethynylene Macrocycles as Model Systems of Interchromophoric Interactions in π-Conjugated Macromolecules. J Phys Chem B 2008; 112:4849-53. [DOI: 10.1021/jp800160h] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- K. Becker
- Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universität München, Amalienstr. 54, 80799 Munich, Germany
| | - M. Fritzsche
- Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - S. Höger
- Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - J. M. Lupton
- Department of Physics, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
40
|
|
41
|
Moran AM, Nome RA, Scherer NF. Field-resolved measurement of reaction-induced spectral densities by polarizability response spectroscopy. J Chem Phys 2007; 127:184505. [DOI: 10.1063/1.2792943] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
42
|
Chang MH, Frampton MJ, Anderson HL, Herz LM. Intermolecular interaction effects on the ultrafast depolarization of the optical emission from conjugated polymers. PHYSICAL REVIEW LETTERS 2007; 98:027402. [PMID: 17358647 DOI: 10.1103/physrevlett.98.027402] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Indexed: 05/14/2023]
Abstract
We have investigated the effect of interchain interactions on the ultrafast depolarization of the photoluminescence from solid films of a conjugated polymer. Accurate control was exercised over the interchain separation by threading of the conjugated chains with insulating macrocycles or complexation with an inert host polymer. Our measurements indicate that excitation into the higher electronic states of a chain aggregate is followed by a fast (<100 fs) relaxation into lower excited states with an associated rotation of the transition dipole moment. These findings emphasize the need for consideration of initial excitonic delocalization across more than one polymeric chain.
Collapse
Affiliation(s)
- M H Chang
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | | | | | | |
Collapse
|
43
|
Moran AM, Nome RA, Scherer NF. Field-Resolved Coherent Raman Spectroscopy of High Frequency Vibrational Resonances. J Phys Chem A 2006; 110:10925-8. [PMID: 16986825 DOI: 10.1021/jp0645061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Electric fields of coherent Raman signals are resolved with sensitivity for high-frequency vibrational resonances utilizing a four-pulse, trapezoidal beam geometry in a diffractive optic-based interferometer. Our experiments show that the heterodyne detected signal phase is stabilized for particular terms in the third-order response function by the cancellation of inter-pulse phases. The C-H stretching modes of cyclohexane and benzene are studied under two polarization conditions. The temporal profiles of signal fields for cyclohexane exhibit a low-frequency recurrence due to the interference between the signals associated with the symmetric and asymmetric C-H stretching modes. In contrast, the electronically nonresonant polarizability response of benzene gives rise to a significant broadband signal component in addition to that associated with its C-H vibrational resonance. Time-frequency shapes of the Raman signal fields are strongly dependent on the properties of the liquid and the polarizations of the laser pulses.
Collapse
|
44
|
Moran AM, Park S, Scherer NF. Coherent Electronic and Nuclear Dynamics for Charge Transfer in 1-Ethyl-4-(carbomethoxy)pyridinium Iodide. J Phys Chem B 2006; 110:19771-83. [PMID: 17020360 DOI: 10.1021/jp062020e] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although polaronic interactions and states abound in charge transfer processes and reactions, quantitative and separable determination of electronic and nuclear relaxation is still challenging. The present paper employs the amplitudes, polarizations, and phases of four-wave mixing signals to obtain unique dynamical information on relaxation processes following photoinduced charge transfer between iodide and 1-ethyl-4-(carbomethoxy)pyridinium ions. Pump-probe signal amplitudes reveal the coherent coupling of an underdamped 115 cm(-1) nuclear mode to the charge transfer excitation. Assignments of this recurrence to intramolecular vibrational modes of the acceptor and to modulation of the intermolecular donor-acceptor distance are discussed on the basis of a high-level density functional theory normal-mode analysis and previously observed wave packet dynamics of solvated molecular iodine. Nuclear relaxation of the acceptor induces sub-picosecond decay of the pump-probe polarization anisotropy from an initial value of 0.4 to an asymptotic value of -0.05. Electronic structure calculations suggest that relaxation along the torsional coordinate of the ethyl group is the origin of the anisotropy decay. Electric-field-resolved transient grating (EFR-TG) signal fields are obtained by spectral interferometry with a diffractive optic based interferometer. These measurements show that the signal phase and amplitude possess similar dynamics. Model calculations are used to demonstrate how the EFR-TG signal phase yields unique information on transient material resonances located outside the laser pulse spectrum. This effect can be rationalized in that the real and imaginary parts of the nonlinear polarization are related by the Kramers-Kronig transformation, which allows the dispersive component of the polarization response to exhibit spectral sensitivity over a larger frequency range than that defined by the absorption bandwidth.
Collapse
Affiliation(s)
- Andrew M Moran
- Department of Chemistry and the James Franck Institute, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
45
|
Moran AM, Nome RA, Scherer NF. Resolving the emission times of solute and solvent four-wave mixing signals by spectral interferometry. J Chem Phys 2006; 125:31101. [PMID: 16863337 DOI: 10.1063/1.2217940] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Electric field-resolved transient grating measurements are used to distinguish the four-wave mixing signal emission from a resonant solute and a non-resonant solvent. The two components of the solution (i.e., solute and solvent) emit signal fields at different times with respect to the arrival of the probe pulse to the sample. This gives rise to a recurrence in the temporal profile of the total signal field. We show that the origin of this interference is the difference in relaxation time scales of the holographic gratings associated with the solute and solvent. The grating of the resonant solute relaxes on the time scale of a few picoseconds due to depopulation of its excited electronic state, whereas the electronic polarizability response of the solvent relaxes on the femtosecond time scale. This separability of responses is a general phenomenon that is particularly useful for studying weakly absorbing solute dynamics in polarizable solvents.
Collapse
Affiliation(s)
- Andrew M Moran
- Department of Chemistry and The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|