1
|
Suresh H, Haridasan N, Varghese B, Sathian SP. The role of functionalization in the translocation of peptides through multilayer graphene nanopores. J Chem Phys 2025; 162:064701. [PMID: 39927545 DOI: 10.1063/5.0249099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/22/2025] [Indexed: 02/11/2025] Open
Abstract
The rapid translocation speed of peptides through graphene nanopores poses a challenge, hindering the accurate sensing of the biomarkers. Employing the functionalized graphene nanopores is at the forefront of reducing the translocation speed. The current work details the translocation of a negatively charged peptide endothelin-1 through a bare multilayer graphene nanopore, a hydrogen-functionalized graphene nanopore, and a hydroxyl-functionalized graphene nanopore by applying electric fields. The hydroxyl-functionalized graphene nanopore significantly reduces the peptide's translocation speed. The time required for the peptide to translocate through the hydroxyl-functionalized graphene nanopore is 2.25 times longer than in the non-functionalized graphene nanopore and 1.25 times longer than in the hydrogen-functionalized graphene nanopore. We critically analyze the factors influencing the reduced translocation speed, including the interactions between the pore and the peptide, the conformational changes of the peptide within the pore, the solvent velocity inside the pore, and the solvent's viscosity near the peptide. The altered solvent velocities within functionalized pores have a minimal role in the speed reduction of peptides. When a constant force is applied to the peptide without any electric field, the hydroxyl-functionalized graphene nanopore delivers the lowest diffusion rate. The persistence time, which serves as a measure of the solvent viscosity near the peptide, is the highest within the hydroxyl-functionalized pore. Finally, we conclude that the Coulombic interactions between the peptide and the pore play a major role in its speed reduction inside the hydroxyl-functionalized graphene nanopore.
Collapse
Affiliation(s)
- Hareesh Suresh
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Navaneeth Haridasan
- Amrita School of Artificial Intelligence, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Binu Varghese
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Sarith P Sathian
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
2
|
Sposini V, Likos CN, Camargo M. Glassy phases of the Gaussian core model. SOFT MATTER 2023. [PMID: 38050434 DOI: 10.1039/d3sm01314f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
We present results from molecular dynamics simulations exploring the supercooled dynamics of the Gaussian Core Model in the low- and intermediate-density regimes. In particular, we analyse the transition from the low-density hard-sphere-like glassy dynamics to the high-density one. The dynamics at low densities is well described by the caging mechanism, giving rise to intermittent dynamics. At high densities, the particles undergo a more continuous motion in which the concept of cage loses its meaning. We elaborate on the idea that these different supercooled dynamics are in fact the precursors of two different glass states.
Collapse
Affiliation(s)
- Vittoria Sposini
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
| | - Christos N Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
| | - Manuel Camargo
- Facultad de Ciencias & CICBA, Universidad Antonio Nariño-Campus Farallones, Km 18 via Cali-Jamundí, 760030 Cali, Colombia
| |
Collapse
|
3
|
Berthier L, Flenner E, Szamel G. Comment on "Fickian Non-Gaussian Diffusion in Glass-Forming Liquids". PHYSICAL REVIEW LETTERS 2023; 131:119801. [PMID: 37774276 DOI: 10.1103/physrevlett.131.119801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 08/08/2023] [Indexed: 10/01/2023]
Affiliation(s)
- L Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - E Flenner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | - G Szamel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
4
|
Kim HJ. Spectroscopic and Chemical Properties of Ionic Liquids: Computational Study. CHEM REC 2023; 23:e202300075. [PMID: 37166396 DOI: 10.1002/tcr.202300075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/18/2023] [Indexed: 05/12/2023]
Abstract
A brief account is given of highlights of our computational efforts - often in collaboration with experimental groups - to understand spectroscopic and chemical properties of ionic liquids (ILs). Molecular dynamics, including their inhomogeneous character, responsible for key spectral features observed in dielectric absorption, infra-red (IR) and fluorescence correlation spectroscopy (FCS) measurements are elucidated. Mechanisms of chemical processes involving imidazolium-based ILs are illustrated for CO2 capture and related reactions, transesterification of cellulose, and Au nanocluster-catalyzed Suzuki cross-coupling reaction with attention paid to differing roles of IL ions. A comparison with experiments is also made.
Collapse
Affiliation(s)
- Hyung J Kim
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Stoppleman JP, McDaniel JG, Cicerone MT. Excitations follow (or lead?) density scaling in propylene carbonate. J Chem Phys 2022; 157:204506. [DOI: 10.1063/5.0123444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Structural excitations that enable interbasin (IB) barrier crossings on a potential energy landscape are thought to play a facilitating role in the relaxation of liquids. Here, we show that the population of these excitations exhibits the same density scaling observed for α relaxation in propylene carbonate, even though they are heavily influenced by intramolecular modes. We also find that IB crossing modes exhibit a Gr[Formula: see text]neisen parameter ( γ G) that is approximately equivalent to the density scaling parameter γ TS. These observations suggest that the well-documented relationship between γ G and γ TS may be a direct result of the pressure dependence of the frequency of unstable (relaxation) modes associated with IB motion.
Collapse
Affiliation(s)
- John P. Stoppleman
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA,
| | - Jesse G. McDaniel
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA,
| | - Marcus T. Cicerone
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA,
| |
Collapse
|
6
|
Sun S, GrandPre T, Limmer DT, Groves JT. Kinetic frustration by limited bond availability controls the LAT protein condensation phase transition on membranes. SCIENCE ADVANCES 2022; 8:eabo5295. [PMID: 36322659 PMCID: PMC9629719 DOI: 10.1126/sciadv.abo5295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
LAT is a membrane-linked scaffold protein that undergoes a phase transition to form a two-dimensional protein condensate on the membrane during T cell activation. Governed by tyrosine phosphorylation, LAT recruits various proteins that ultimately enable condensation through a percolation network of discrete and selective protein-protein interactions. Here, we describe detailed kinetic measurements of the phase transition, along with coarse-grained model simulations, that reveal that LAT condensation is kinetically frustrated by the availability of bonds to form the network. Unlike typical miscibility transitions in which compact domains may coexist at equilibrium, the LAT condensates are dynamically arrested in extended states, kinetically trapped out of equilibrium. Modeling identifies the structural basis for this kinetic arrest as the formation of spindle arrangements, favored by limited multivalent binding interactions along the flexible, intrinsically disordered LAT protein. These results reveal how local factors controlling the kinetics of LAT condensation enable formation of different, stable condensates, which may ultimately coexist within the cell.
Collapse
Affiliation(s)
- Simou Sun
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 639798 Singapore
| | - Trevor GrandPre
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David T. Limmer
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jay T. Groves
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 639798 Singapore
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
Single molecule demonstration of Debye-Stokes-Einstein breakdown in polystyrene near the glass transition temperature. Nat Commun 2022; 13:3580. [PMID: 35739122 PMCID: PMC9226357 DOI: 10.1038/s41467-022-31318-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022] Open
Abstract
Rotational-translational decoupling, in which translational motion is apparently enhanced over rotational motion in violation of Stokes-Einstein (SE) and Debye-Stokes-Einstein (DSE) predictions, has been observed in materials near their glass transition temperatures (Tg). This has been posited to result from ensemble averaging in the context of dynamic heterogeneity. In this work, ensemble and single molecule experiments are performed in parallel on a fluorescent probe in high molecular weight polystyrene near its Tg. Ensemble results show decoupling onset at approximately 1.15Tg, increasing to over three orders of magnitude at Tg. Single molecule measurements also show a high degree of decoupling, with typical molecules at Tg showing translational diffusion coefficients nearly 400 times higher than expected from SE/DSE predictions. At the single molecule level, higher degree of breakdown is associated with particularly mobile molecules and anisotropic trajectories, providing support for anomalous diffusion as a critical driver of rotational-translational decoupling and SE/DSE breakdown. Experiments with high-molecular-weight polystyrene provide insights into the mechanisms behind rotational-translational decoupling in glassy systems. Specifically, particularly mobile molecules exhibiting anisotropic trajectories are found to play a key role in Debye-Stokes-Einstein breakdown.
Collapse
|
8
|
Comparing Microscopic and Macroscopic Dynamics in a Paradigmatic Model of Glass-Forming Molecular Liquid. Int J Mol Sci 2022; 23:ijms23073556. [PMID: 35408916 PMCID: PMC8998722 DOI: 10.3390/ijms23073556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/12/2022] [Accepted: 03/20/2022] [Indexed: 02/04/2023] Open
Abstract
Glass transition is a most intriguing and long-standing open issue in the field of molecular liquids. From a macroscopic perspective, glass-forming systems display a dramatic slowing-down of the dynamics, with the inverse diffusion coefficient and the structural relaxation times increasing by orders of magnitude upon even modest supercooling. At the microscopic level, single-molecule motion becomes strongly intermittent, and can be conveniently described in terms of “cage-jump” events. In this work, we investigate a paradigmatic glass-forming liquid, the Kob–Andersen Lennard–Jones model, by means of Molecular Dynamics simulations, and compare the macroscopic and microscopic descriptions of its dynamics on approaching the glass-transition. We find that clear changes in the relations between macroscopic timescales and cage-jump quantities occur at the crossover temperature where Mode Coupling-like description starts failing. In fact, Continuous Time Random Walk and lattice model predictions based on cage-jump statistics are also violated below the crossover temperature, suggesting the onset of a qualitative change in cage-jump motion. Interestingly, we show that a fully microscopic relation linking cage-jump time- and length-scales instead holds throughout the investigated temperature range.
Collapse
|
9
|
Lim H, Jung Y. Computational investigation of dynamical heterogeneity in ionic liquids based on the restricted primitive model. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hyuntae Lim
- Department of Chemistry Seoul National University Seoul Korea
| | - YounJoon Jung
- Department of Chemistry Seoul National University Seoul Korea
| |
Collapse
|
10
|
Pastore R, Kikutsuji T, Rusciano F, Matubayasi N, Kim K, Greco F. Breakdown of the Stokes-Einstein relation in supercooled liquids: A cage-jump perspective. J Chem Phys 2021; 155:114503. [PMID: 34551555 DOI: 10.1063/5.0059622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The breakdown of the Stokes-Einstein relation in supercooled liquids, which is the increase in the ratio τατD between the two macroscopic times for structural relaxation and diffusion on decreasing the temperature, is commonly ascribed to dynamic heterogeneities, but a clear-cut microscopic interpretation is still lacking. Here, we tackle this issue exploiting the single-particle cage-jump framework to analyze molecular dynamics simulations of soft disk assemblies and supercooled water. We find that τατD∝⟨tp⟩⟨tc⟩, where ⟨tp⟩ and ⟨tc⟩ are the cage-jump times characterizing slow and fast particles, respectively. We further clarify that this scaling does not arise from a simple term-by-term proportionality; rather, the relations τα∝⟨tp⟩⟨ΔrJ 2⟩ and τD∝⟨tc⟩⟨ΔrJ 2⟩ effectively connect the macroscopic and microscopic timescales, with the mean square jump length ⟨ΔrJ 2⟩ shrinking on cooling. Our work provides a microscopic perspective on the Stokes-Einstein breakdown and generalizes previous results on lattice models to the case of more realistic glass-formers.
Collapse
Affiliation(s)
- Raffaele Pastore
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Napoli 80125, Italy
| | - Takuma Kikutsuji
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Francesco Rusciano
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Napoli 80125, Italy
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kang Kim
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Francesco Greco
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Napoli 80125, Italy
| |
Collapse
|
11
|
Åberg C, Poolman B. Glass-like characteristics of intracellular motion in human cells. Biophys J 2021; 120:2355-2366. [PMID: 33887228 DOI: 10.1016/j.bpj.2021.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 03/29/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022] Open
Abstract
The motion in the cytosol of microorganisms such as bacteria and yeast has been observed to undergo a dramatic slowing down upon cell energy depletion. These observations have been interpreted as the motion being "glassy," but whether this notion is useful also for active, motor-protein-driven transport in eukaryotic cells is less clear. Here, we use fluorescence microscopy of beads in human (HeLa) cells to probe the motion of membrane-surrounded structures that are carried along the cytoskeleton by motor proteins. Evaluating several hallmarks of glassy dynamics, we show that at short length scales, the motion is heterogeneous, is nonergodic, is well described by a model for the displacement distribution in glassy systems, and exhibits a decoupling of the exchange and persistence times. Overall, these results suggest that the short length scale behavior of objects that can be transported actively by motor proteins in human cells shares features with the motion in glassy systems.
Collapse
Affiliation(s)
- Christoffer Åberg
- Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands; Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
12
|
Haridasan N, Sathian SP. Rotational dynamics of proteins in nanochannels: role of solvent's local viscosity. NANOTECHNOLOGY 2021; 32:225102. [PMID: 33621966 DOI: 10.1088/1361-6528/abe906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Viscosity variation of solvent in local regions near a solid surface, be it a biological surface of a protein or an engineered surface of a nanoconfinement, is a direct consequence of intermolecular interactions between the solid body and the solvent. The current coarse-grained molecular dynamics study takes advantage of this phenomenon to investigate the anomaly in a solvated protein's rotational dynamics confined using a representative solid matrix. The concept of persistence time, the characteristic time of structural reordering in liquids, is used to compute the solvent's local viscosity. With an increase in the degree of confinement, the confining matrix significantly influences the solvent molecule's local viscosity present in the protein hydration layer through intermolecular interactions. This effect contributes to the enhanced drag force on protein motion, causing a reduction in the rotational diffusion coefficient. Simulation results suggest that the direct matrix-protein non-bonded interaction is responsible for the occasional jump and discontinuity in orientational motion when the protein is in very tight confinement.
Collapse
Affiliation(s)
- Navaneeth Haridasan
- Micro and Nanoscale Transport Lab, Applied Mechanics Department, Indian Institute of Technology Madras, Chennai, India
| | - Sarith P Sathian
- Micro and Nanoscale Transport Lab, Applied Mechanics Department, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
13
|
The diffusion, structural relaxation, and fragility of [VIO2+][Tf2N−]2 ionic liquid. J Mol Model 2020; 26:55. [DOI: 10.1007/s00894-020-4317-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/31/2020] [Indexed: 10/25/2022]
|
14
|
Li SJ, Qian HJ, Lu ZY. A comparative study on the dynamic heterogeneity of supercooled polymers under nanoconfinement. Phys Chem Chem Phys 2019; 21:15888-15898. [PMID: 31287116 DOI: 10.1039/c9cp02550b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dynamic heterogeneity (DH) is a universal property of glass transition phenomena. In this work, we perform a comparative analysis of DH for pure polymer and polymer/nanoparticle composite systems in both film and bulk states via molecular dynamics simulations. We find that the dynamic gradient and the faster average dynamics due to the presence of a free surface are two leading factors, resulting from a nanoconfinement effect, which influence different parts of DH in a film system. The dynamic gradient results from differences in dynamics at different distances from the mobile surface, which induces a large deviation from the Gaussian distribution for the displacement distribution in the film. At the same time, the maximum string size which describes the region size for cooperative motion (dynamic correlation) can also be influenced by the dynamic gradient, although this influence is much weaker than that on the displacement distribution. On the other hand, reflecting temporal fluctuations of dynamics or temporal parts of DH, characteristic peak times of the non-Gaussian parameter and string size, and the ratio between persistent times and exchange times which describe the dynamic exchange properties, are mainly influenced by the faster dynamics on average. Our results demonstrate that measuring different properties (dynamic distribution, dynamic correlation or dynamic exchange) place an emphasis on distinct temporal and spatial parts of DH. It is necessary to use combinational measurements of these properties to give a complete picture of DH in nanoconfinement environments.
Collapse
Affiliation(s)
- Shu-Jia Li
- State Key Laboratory of Supramolecular Structure and Materials, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China.
| | - Hu-Jun Qian
- State Key Laboratory of Supramolecular Structure and Materials, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China.
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China.
| |
Collapse
|
15
|
Remsing RC, Klein ML. Exponential Scaling of Water Exchange Rates with Ion Interaction Strength from the Perspective of Dynamic Facilitation Theory. J Phys Chem A 2019; 123:1077-1084. [PMID: 30609371 DOI: 10.1021/acs.jpca.8b09667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Richard C. Remsing
- Institute for Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Michael L. Klein
- Institute for Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
16
|
Helfferich J, Brisch J, Meyer H, Benzerara O, Ziebert F, Farago J, Baschnagel J. Continuous-time random-walk approach to supercooled liquids: Self-part of the van Hove function and related quantities. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:71. [PMID: 29876655 DOI: 10.1140/epje/i2018-11680-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
From equilibrium molecular dynamics (MD) simulations of a bead-spring model for short-chain glass-forming polymer melts we calculate several quantities characterizing the single-monomer dynamics near the (extrapolated) critical temperature [Formula: see text] of mode-coupling theory: the mean-square displacement g0(t), the non-Gaussian parameter [Formula: see text] and the self-part of the van Hove function [Formula: see text] which measures the distribution of monomer displacements r in time t. We also determine these quantities from a continuous-time random walk (CTRW) approach. The CTRW is defined in terms of various probability distributions which we know from previous analysis. Utilizing these distributions the CTRW can be solved numerically and compared to the MD data with no adjustable parameter. The MD results reveal the heterogeneous and non-Gaussian single-particle dynamics of the supercooled melt near [Formula: see text]. In the time window of the early [Formula: see text] relaxation [Formula: see text] is large and [Formula: see text] is broad, reflecting the coexistence of monomer displacements that are much smaller ("slow particles") and much larger ("fast particles") than the average at time t, i.e. than [Formula: see text]. For large r the tail of [Formula: see text] is compatible with an exponential decay, as found for many glassy systems. The CTRW can reproduce the spatiotemporal dependence of [Formula: see text] at a qualitative to semiquantitative level. However, it is not quantitatively accurate in the studied temperature regime, although the agreement with the MD data improves upon cooling. In the early [Formula: see text] regime we also analyze the MD results for [Formula: see text] via the space-time factorization theorem predicted by ideal mode-coupling theory. While we find the factorization to be well satisfied for small r, both above and below [Formula: see text] , deviations occur for larger r comprising the tail of [Formula: see text]. The CTRW analysis suggests that single-particle "hops" are a contributing factor for these deviations.
Collapse
Affiliation(s)
- J Helfferich
- Institute of Nanotechnology, Karlsruhe Institute of Technology, D-76021, Karlsruhe, Germany
| | - J Brisch
- Université de Strasbourg, CNRS, ICS UPR22, F-67000, Strasbourg, France
| | - H Meyer
- Université de Strasbourg, CNRS, ICS UPR22, F-67000, Strasbourg, France
| | - O Benzerara
- Université de Strasbourg, CNRS, ICS UPR22, F-67000, Strasbourg, France
| | - F Ziebert
- Institute for Theoretical Physics, University of Heidelberg, D-69120, Heidelberg, Germany
| | - J Farago
- Université de Strasbourg, CNRS, ICS UPR22, F-67000, Strasbourg, France
| | - J Baschnagel
- Université de Strasbourg, CNRS, ICS UPR22, F-67000, Strasbourg, France.
| |
Collapse
|
17
|
Ren KX, Jia XM, Jiao GS, Chen T, Qian HJ, Lu ZY. Interfacial Properties and Hopping Diffusion of Small Nanoparticle in Polymer/Nanoparticle Composite with Attractive Interaction on Side Group. Polymers (Basel) 2018; 10:E598. [PMID: 30966632 PMCID: PMC6403981 DOI: 10.3390/polym10060598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 12/03/2022] Open
Abstract
The diffusion dynamics of fullerene (C 60 ) in unentangled linear atactic polystyrene (PS) and polypropylene (PP) melts and the structure and dynamic properties of polymers in interface area are investigated by performing all-atom molecular dynamics simulations. The comparison of the results in two systems emphasises the influence of local interactions exerted by polymer side group on the diffusion dynamics of the nanoparticle. In the normal diffusive regime at long time scales, the displacement distribution function (DDF) follows a Gaussian distribution in PP system, indicating a normal diffusion of C 60 . However, we observe multiple peaks in the DDF curve for C 60 diffusing in PS melt, which indicates a diffusion mechanism of hopping of C 60 . The attractive interaction between C 60 and phenyl ring side groups are found to be responsible for the observed hopping diffusion. In addition, we find that the C 60 is dynamically coupled with a subsection of a tetramer on PS chain, which has a similar size with C 60 . The phenyl ring on PS chain backbone tends to have a parallel configuration in the vicinity of C 60 surface, therefore neighbouring phenyl rings can form chelation effect on the C 60 surface. Consequently, the rotational dynamics of phenyl ring and the translational diffusion of styrene monomers are found to be slowed down in this interface area. We hope our results can be helpful for understanding of the influence of the local interactions on the nanoparticle diffusion dynamics and interfacial properties in polymer/nanoparticle composites.
Collapse
Affiliation(s)
- Kai-Xin Ren
- State Key Laboratory of Supramolecular Structure and Materials, and Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China.
| | - Xiang-Meng Jia
- State Key Laboratory of Supramolecular Structure and Materials, and Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China.
| | - Gui-Sheng Jiao
- State Key Laboratory of Supramolecular Structure and Materials, and Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China.
| | - Tao Chen
- State Key Laboratory of Supramolecular Structure and Materials, and Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China.
| | - Hu-Jun Qian
- State Key Laboratory of Supramolecular Structure and Materials, and Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China.
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, and Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China.
| |
Collapse
|
18
|
Ash B, Chakrabarti J, Ghosal A. Static and dynamic properties of two-dimensional Coulomb clusters. Phys Rev E 2018; 96:042105. [PMID: 29347627 DOI: 10.1103/physreve.96.042105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Indexed: 11/07/2022]
Abstract
We study the temperature dependence of static and dynamic responses of Coulomb interacting particles in two-dimensional confinements across the crossover from solid- to liquid-like behaviors. While static correlations that investigate the translational and bond orientational order in the confinements show the footprints of hexatic-like phase at low temperatures, dynamics of the particles slow down considerably in this phase, reminiscent of a supercooled liquid. Using density correlations, we probe long-lived heterogeneities arising from the interplay of the irregularity in the confinement and long-range Coulomb interactions. The relaxation at multiple time scales show stretched-exponential decay of spatial correlations in irregular traps. Temperature dependence of characteristic time scales, depicting the structural relaxation of the system, show striking similarities with those observed for the glassy systems, indicating that some of the key signatures of supercooled liquids emerge in confinements with lower spatial symmetries.
Collapse
Affiliation(s)
- Biswarup Ash
- Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - J Chakrabarti
- S.N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098, India
| | - Amit Ghosal
- Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| |
Collapse
|
19
|
Ren G, Chen L, Wang Y. Dynamic heterogeneity in aqueous ionic solutions. Phys Chem Chem Phys 2018; 20:21313-21324. [DOI: 10.1039/c8cp02787k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is well known that supercooled liquids have heterogeneous dynamics, but it is still unclear whether dynamic heterogeneity also exists in aqueous ionic solutions at room or even higher temperatures.
Collapse
Affiliation(s)
- Gan Ren
- Department of Physics
- Civil Aviation Flight University of China
- Guanghan
- China
| | - Lin Chen
- State Key Laboratory of Environment-Friendly Energy Material
- Southwest University of Science and Technology
- Mianyang
- China
| | - Yanting Wang
- CAS Key Laboratory of Theoretical Physics
- Institute of Theoretical Physics
- Chinese Academy of Sciences
- Beijing
- China
| |
Collapse
|
20
|
Caballero NB, Zuriaga M, Tamarit JL, Serra P. Dynamic heterogeneity in an orientational glass. J Chem Phys 2017; 147:184501. [DOI: 10.1063/1.5004671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nirvana B. Caballero
- CNEA, CONICET, Centro Atomico Bariloche, 8400 San Carlos de Bariloche, Rio Negro, Argentina
| | - Mariano Zuriaga
- Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba, Argentina and IFEG-CONICET, Ciudad Universitaria, X5016LAE Córdoba, Argentina
| | - Josep Lluís Tamarit
- Grup de Caracterització de Materials, Departament de Física, EEBE and Barcelona Research Center in Multiscale Science and Engineering, Eduard Maristany, 10-14, 08019 Barcelona, Catalonia, Spain
| | - Pablo Serra
- Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba, Argentina and IFEG-CONICET, Ciudad Universitaria, X5016LAE Córdoba, Argentina
| |
Collapse
|
21
|
Pastore R, Pesce G, Sasso A, Ciamarra MP. Many facets of intermittent dynamics in colloidal and molecular glasses. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Singh S, Bowman GR. Quantifying Allosteric Communication via Both Concerted Structural Changes and Conformational Disorder with CARDS. J Chem Theory Comput 2017; 13:1509-1517. [PMID: 28282132 PMCID: PMC5934993 DOI: 10.1021/acs.jctc.6b01181] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Allosteric (i.e., long-range) communication within proteins is crucial for many biological processes, such as the activation of signaling cascades in response to specific stimuli. However, the physical basis for this communication remains unclear. Existing computational methods for identifying allostery focus on the role of concerted structural changes, but recent experimental work demonstrates that disorder is also an important factor. Here, we introduce the Correlation of All Rotameric and Dynamical States (CARDS) framework for quantifying correlations between both the structure and disorder of different regions of a protein. To quantify disorder, we draw inspiration from methods for quantifying "dynamic heterogeneity" from chemical physics to classify segments of a dihedral's time evolution as being in either ordered or disordered regimes. To demonstrate the utility of this approach, we apply CARDS to the Catabolite Activator Protein (CAP), a transcriptional activator that is regulated by Cyclic Adenosine MonoPhosphate (cAMP) binding. We find that CARDS captures allosteric communication between the two cAMP-Binding Domains (CBDs). Importantly, CARDS reveals that this coupling is dominated by disorder-mediated correlations, consistent with NMR experiments that establish allosteric coupling between the CBDs occurs without a concerted structural change. CARDS also recapitulates an enhanced role for disorder in the communication between the DNA-Binding Domains (DBDs) and CBDs in the S62F variant of CAP. Finally, we demonstrate that using CARDS to find communication hotspots identifies regions of CAP that are in allosteric communication without foreknowledge of their identities. Therefore, we expect CARDS to be of great utility for both understanding and predicting allostery.
Collapse
Affiliation(s)
- Sukrit Singh
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO
| | - Gregory R. Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO
- Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
23
|
Fodor É, Hayakawa H, Visco P, van Wijland F. Active cage model of glassy dynamics. Phys Rev E 2016; 94:012610. [PMID: 27575182 DOI: 10.1103/physreve.94.012610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Indexed: 06/06/2023]
Abstract
We build up a phenomenological picture in terms of the effective dynamics of a tracer confined in a cage experiencing random hops to capture some characteristics of glassy systems. This minimal description exhibits scale invariance properties for the small-displacement distribution that echo experimental observations. We predict the existence of exponential tails as a crossover between two Gaussian regimes. Moreover, we demonstrate that the onset of glassy behavior is controlled only by two dimensionless numbers: the number of hops occurring during the relaxation of the particle within a local cage and the ratio of the hopping length to the cage size.
Collapse
Affiliation(s)
- Étienne Fodor
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS/P7, Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75205 Paris cedex 13, France
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa-oiwake cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Paolo Visco
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS/P7, Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75205 Paris cedex 13, France
| | - Frédéric van Wijland
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS/P7, Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75205 Paris cedex 13, France
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa-oiwake cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
24
|
Lin MM. Timing Correlations in Proteins Predict Functional Modules and Dynamic Allostery. J Am Chem Soc 2016; 138:5036-43. [PMID: 27003106 DOI: 10.1021/jacs.5b08814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
How protein structure encodes functionality is not fully understood. For example, long-range intraprotein communication can occur without measurable conformational change and is often not captured by existing structural correlation functions. It is shown here that important functional information is encoded in the timing of protein motions, rather than motion itself. I introduce the conditional activity function to quantify such timing correlations among the degrees of freedom within proteins. For three proteins, the conditional activities between side-chain dihedral angles were computed using the output of microseconds-long atomistic simulations. The new approach demonstrates that a sparse fraction of side-chain pairs are dynamically correlated over long distances (spanning protein lengths up to 7 nm), in sharp contrast to structural correlations, which are short-ranged (<1 nm). Regions of high self- and inter-side-chain dynamical correlations are found, corresponding to experimentally determined functional modules and allosteric connections, respectively.
Collapse
Affiliation(s)
- Milo M Lin
- Green Center for Molecular, Computational, and Systems Biology, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States.,Department of Biophyics, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States.,Pitzer Center for Theoretical Chemistry, University of California , Berkeley, California 94720, United States
| |
Collapse
|
25
|
Das J. Limiting Energy Dissipation Induces Glassy Kinetics in Single-Cell High-Precision Responses. Biophys J 2016; 110:1180-90. [PMID: 26958894 PMCID: PMC4788747 DOI: 10.1016/j.bpj.2016.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 12/17/2015] [Accepted: 01/15/2016] [Indexed: 10/22/2022] Open
Abstract
Single cells often generate precise responses by involving dissipative out-of-thermodynamic-equilibrium processes in signaling networks. The available free energy to fuel these processes could become limited depending on the metabolic state of an individual cell. How does limiting dissipation affect the kinetics of high-precision responses in single cells? I address this question in the context of a kinetic proofreading scheme used in a simple model of early-time T cell signaling. Using exact analytical calculations and numerical simulations, I show that limiting dissipation qualitatively changes the kinetics in single cells marked by emergence of slow kinetics, large cell-to-cell variations of copy numbers, temporally correlated stochastic events (dynamic facilitation), and ergodicity breaking. Thus, constraints in energy dissipation, in addition to negatively affecting ligand discrimination in T cells, can create a fundamental difficulty in determining single-cell kinetics from cell-population results.
Collapse
Affiliation(s)
- Jayajit Das
- Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Biophysics Program and Departments of Pediatrics and Physics, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
26
|
Ciamarra MP, Pastore R, Coniglio A. Particle jumps in structural glasses. SOFT MATTER 2016; 12:358-366. [PMID: 26481331 DOI: 10.1039/c5sm01568e] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Particles in structural glasses rattle around temporary equilibrium positions, that seldom change through a process which is much faster than the relaxation time, known as particle jump. Since the relaxation of the system is due to the accumulation of many such jumps, it could be possible to connect the single particle short time motion to the macroscopic relaxation by understanding the features of the jump dynamics. Here we review recent results in this research direction, clarifying the features of particle jumps that have been understood and those that are still under investigation, and examining the role of particle jumps in different theories of the glass transition.
Collapse
Affiliation(s)
- Massimo Pica Ciamarra
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore and CNR-SPIN, Dipartimento di Scienze Fisiche, University of Napoli Federico II, Italy.
| | - Raffaele Pastore
- CNR-SPIN, Dipartimento di Scienze Fisiche, University of Napoli Federico II, Italy.
| | - Antonio Coniglio
- CNR-SPIN, Dipartimento di Scienze Fisiche, University of Napoli Federico II, Italy.
| |
Collapse
|
27
|
Kim S, Park SW, Jung Y. Heterogeneous dynamics and its length scale in simple ionic liquid models: a computational study. Phys Chem Chem Phys 2016; 18:6486-97. [DOI: 10.1039/c5cp07368e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We numerically investigate the dynamic heterogeneity and its length scale found in coarse-grained ionic liquid model systems.
Collapse
Affiliation(s)
- Soree Kim
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Korea
| | - Sang-Won Park
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Korea
| | - YounJoon Jung
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Korea
| |
Collapse
|
28
|
Dynamic heterogeneity controls diffusion and viscosity near biological interfaces. Nat Commun 2015; 5:3034. [PMID: 24398864 PMCID: PMC3971065 DOI: 10.1038/ncomms4034] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 11/29/2013] [Indexed: 11/14/2022] Open
Abstract
At a nanometer scale, the behavior of biological fluids is largely governed by interfacial physical chemistry. This may manifest as slowed or anomalous diffusion. Here we describe how measures developed for studying glassy systems allow quantitative measurement of interfacial effects on water dynamics, showing that correlated motions of particles near a surface result in a viscosity greater than anticipated from individual particle motions. This effect arises as a fundamental consequence of spatial heterogeneity on nanometer length scales and applies to any fluid near any surface. Increased interfacial viscosity also causes the classic finding that large solutes such as proteins diffuse much more slowly than predicted in bulk water. This has previously been treated via an empirical correction to the solute size: the hydrodynamic radius. Using measurements of quantities from theories of glass dynamics, we can now calculate diffusion constants from molecular details alone, eliminating the empirical correction factor.
Collapse
|
29
|
Keys AS, Chandler D, Garrahan JP. Using the s ensemble to probe glasses formed by cooling and aging. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:022304. [PMID: 26382403 DOI: 10.1103/physreve.92.022304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Indexed: 06/05/2023]
Abstract
From length scale distributions characterizing frozen amorphous domains, we relate the s ensemble method with standard cooling and aging protocols for forming glass. We show that in a class of models where space-time scaling is in harmony with that of experiment, the spatial distributions of excitations obtained with the s ensemble are identical to those obtained through cooling or aging, but the computational effort for applying the s ensemble is generally many orders of magnitude smaller than that of straightforward numerical simulation of cooling or aging. We find that in contrast to the equilibrium ergodic state, a nonequilibrium length scale characterizes the anticorrelation between excitations and encodes the preparation history of glass states.
Collapse
Affiliation(s)
- Aaron S Keys
- Department of Chemistry, University of California, Berkeley California 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley California 94720, USA
| | - David Chandler
- Department of Chemistry, University of California, Berkeley California 94720, USA
| | - Juan P Garrahan
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
30
|
Dynamic phase coexistence in glass-forming liquids. Sci Rep 2015; 5:11770. [PMID: 26156304 PMCID: PMC4496729 DOI: 10.1038/srep11770] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/13/2015] [Indexed: 11/08/2022] Open
Abstract
One of the most controversial hypotheses for explaining the heterogeneous dynamics of glasses postulates the temporary coexistence of two phases characterized by a high and by a low diffusivity. In this scenario, two phases with different diffusivities coexist for a time of the order of the relaxation time and mix afterwards. Unfortunately, it is difficult to measure the single-particle diffusivities to test this hypothesis. Indeed, although the non-Gaussian shape of the van-Hove distribution suggests the transient existence of a diffusivity distribution, it is not possible to infer from this quantity whether two or more dynamical phases coexist. Here we provide the first direct observation of the dynamical coexistence of two phases with different diffusivities, by showing that in the deeply supercooled regime the distribution of the single-particle diffusivities acquires a transient bimodal shape. We relate this distribution to the heterogeneity of the dynamics and to the breakdown of the Stokes-Einstein relation, and we show that the coexistence of two dynamical phases occurs up to a timescale growing faster than the relaxation time on cooling, for some of the considered models. Our work offers a basis for rationalizing the dynamics of supercooled liquids and for relating their structural and dynamical properties.
Collapse
|
31
|
Choi SW, Kim S, Jung Y. Dynamic heterogeneity in crossover spin facilitated model of supercooled liquid and fractional Stokes-Einstein relation. J Chem Phys 2015; 142:244506. [PMID: 26133440 DOI: 10.1063/1.4922932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Kinetically constrained models have gained much interest as models that assign the origins of interesting dynamic properties of supercooled liquids to dynamical facilitation mechanisms that have been revealed in many experiments and numerical simulations. In this work, we investigate the dynamic heterogeneity in the fragile-to-strong liquid via Monte Carlo method using the model that linearly interpolates between the strong liquid-like behavior and the fragile liquid-like behavior by an asymmetry parameter b. When the asymmetry parameter is sufficiently small, smooth fragile-to-strong transition is observed both in the relaxation time and the diffusion constant. Using these physical quantities, we investigate fractional Stokes-Einstein relations observed in this model. When b is fixed, the system shows constant power law exponent under the temperature change, and the exponent has the value between that of the Frederickson-Andersen model and the East model. Furthermore, we investigate the dynamic length scale of our systems and also find the crossover relation between the relaxation time. We ascribe the competition between energetically favored symmetric relaxation mechanism and entropically favored asymmetric relaxation mechanism to the fragile-to-strong crossover behavior.
Collapse
Affiliation(s)
- Seo-Woo Choi
- Department of Chemistry, Seoul National University, Seoul 151-747, South Korea
| | - Soree Kim
- Department of Chemistry, Seoul National University, Seoul 151-747, South Korea
| | - YounJoon Jung
- Department of Chemistry, Seoul National University, Seoul 151-747, South Korea
| |
Collapse
|
32
|
Lee E, Kim S, Jung Y. Slowing down of ring polymer diffusion caused by inter-ring threading. Macromol Rapid Commun 2015; 36:1115-21. [PMID: 25881785 DOI: 10.1002/marc.201400713] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/13/2015] [Indexed: 11/08/2022]
Abstract
Diffusion of long ring polymers in a melt is much slower than the reorganization of their internal structures. While direct evidence for entanglements has not been observed in the long ring polymers unlike linear polymer melts, threading between the rings is suspected to be the main reason for slowing down of ring polymer diffusion. It is, however, difficult to define the threading configuration between two rings because the rings have no chain end. In this work, evidence for threading dynamics of ring polymers is presented by using molecular dynamics simulation and applying a novel analysis method. The simulation results are analyzed in terms of the statistics of persistence and exchange times that have proved useful in studying heterogeneous dynamics of glassy systems. It is found that the threading time of ring polymer melts increases more rapidly with the degree of polymerization than that of linear polymer melts. This indicates that threaded ring polymers cannot diffuse until an unthreading event occurs, which results in the slowing down of ring polymer diffusion.
Collapse
Affiliation(s)
- Eunsang Lee
- Department of Chemistry, Seoul National University, Seoul, 151-747, Korea
| | - Soree Kim
- Department of Chemistry, Seoul National University, Seoul, 151-747, Korea
| | - YounJoon Jung
- Department of Chemistry, Seoul National University, Seoul, 151-747, Korea
| |
Collapse
|
33
|
Shenker JQ, Lin MM. Cooperativity leads to temporally-correlated fluctuations in the bacteriophage lambda genetic switch. FRONTIERS IN PLANT SCIENCE 2015; 6:214. [PMID: 25904924 PMCID: PMC4389348 DOI: 10.3389/fpls.2015.00214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/17/2015] [Indexed: 06/04/2023]
Abstract
Cooperative interactions are widespread in biochemical networks, providing the nonlinear response that underlies behavior such as ultrasensitivity and robust switching. We introduce a temporal correlation function-the conditional activity-to study the behavior of these phenomena. Applying it to the bistable genetic switch in bacteriophage lambda, we find that cooperative binding between binding sites on the prophage DNA lead to non-Markovian behavior, as quantified by the conditional activity. Previously, the conditional activity has been used to predict allosteric pathways in proteins; here, we show that it identifies the rare unbinding events which underlie induction from lysogeny to lysis.
Collapse
Affiliation(s)
- Jacob Q. Shenker
- Department of Physics, California Institute of TechnologyPasadena, CA, USA
| | - Milo M. Lin
- Pitzer Center for Theoretical Chemistry, University of CaliforniaBerkeley, CA, USA
| |
Collapse
|
34
|
Pronk S, Lindahl E, Kasson PM. Coupled diffusion in lipid bilayers upon close approach. J Am Chem Soc 2015; 137:708-14. [PMID: 25535654 PMCID: PMC4308745 DOI: 10.1021/ja508803d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Indexed: 11/28/2022]
Abstract
Biomembrane interfaces create regions of slowed water dynamics in their vicinity. When two lipid bilayers come together, this effect is further accentuated, and the associated slowdown can affect the dynamics of larger-scale processes such as membrane fusion. We have used molecular dynamics simulations to examine how lipid and water dynamics are affected as two lipid bilayers approach each other. These two interacting fluid systems, lipid and water, both slow and become coupled when the lipid membranes are separated by a thin water layer. We show in particular that the water dynamics become glassy, and diffusion of lipids in the apposed leaflets becomes coupled across the water layer, while the "outer" leaflets remain unaffected. This dynamic coupling between bilayers appears mediated by lipid-water-lipid hydrogen bonding, as it occurs at bilayer separations where water-lipid hydrogen bonds become more common than water-water hydrogen bonds. We further show that such coupling occurs in simulations of vesicle-vesicle fusion prior to the fusion event itself. Such altered dynamics at membrane-membrane interfaces may both stabilize the interfacial contact and slow fusion stalk formation within the interface region.
Collapse
Affiliation(s)
- Sander Pronk
- 'Department
of Theoretical Physics, KTH Royal Institute
of Technology, AlbaNova, 106 91 Stockholm, Sweden
| | - Erik Lindahl
- 'Department
of Theoretical Physics, KTH Royal Institute
of Technology, AlbaNova, 106 91 Stockholm, Sweden
- Science
for Life Laboratory, 171
21 Stockholm, Sweden
| | - Peter M. Kasson
- Department
of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
35
|
Pastore R, Pica Ciamarra M, Pesce G, Sasso A. Connecting short and long time dynamics in hard-sphere-like colloidal glasses. SOFT MATTER 2015; 11:622-626. [PMID: 25435455 DOI: 10.1039/c4sm02147a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Glass-forming materials are characterized by an intermittent motion at the microscopic scale. Particles spend most of their time rattling within the cages formed by their neighbors, and seldom jump to a different cage. In molecular glass formers the temperature dependence of the jump features, such as the average caging time and jump length, characterizes the relaxation processes and allows for a short-time prediction of the diffusivity. Here we experimentally investigate the cage-jump motion of a two-dimensional hard-sphere-like colloidal suspension, where the volume fraction is the relevant parameter controlling the slowing down of the dynamics. We characterize the volume fraction dependence of the cage-jump features and show that, as in molecular systems, they allow for a short time prediction of the diffusivity.
Collapse
|
36
|
Park SW, Kim S, Jung Y. Time scale of dynamic heterogeneity in model ionic liquids and its relation to static length scale and charge distribution. Phys Chem Chem Phys 2015; 17:29281-92. [DOI: 10.1039/c5cp03390j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We find a general power-law behavior: , where ζdh ≈ 1.2 for all the ionic liquid models, regardless of charges and the length scale of structural relaxation.
Collapse
Affiliation(s)
- Sang-Won Park
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Korea
| | - Soree Kim
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Korea
| | - YounJoon Jung
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Korea
| |
Collapse
|
37
|
Charbonneau P, Jin Y, Parisi G, Zamponi F. Hopping and the Stokes-Einstein relation breakdown in simple glass formers. Proc Natl Acad Sci U S A 2014; 111:15025-30. [PMID: 25288722 PMCID: PMC4210276 DOI: 10.1073/pnas.1417182111] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the most actively debated issues in the study of the glass transition is whether a mean-field description is a reasonable starting point for understanding experimental glass formers. Although the mean-field theory of the glass transition--like that of other statistical systems--is exact when the spatial dimension d → ∞, the evolution of systems properties with d may not be smooth. Finite-dimensional effects could dramatically change what happens in physical dimensions,d = 2, 3. For standard phase transitions finite-dimensional effects are typically captured by renormalization group methods, but for glasses the corrections are much more subtle and only partially understood. Here, we investigate hopping between localized cages formed by neighboring particles in a model that allows to cleanly isolate that effect. By bringing together results from replica theory, cavity reconstruction, void percolation, and molecular dynamics, we obtain insights into how hopping induces a breakdown of the Stokes-Einstein relation and modifies the mean-field scenario in experimental systems. Although hopping is found to supersede the dynamical glass transition, it nonetheless leaves a sizable part of the critical regime untouched. By providing a constructive framework for identifying and quantifying the role of hopping, we thus take an important step toward describing dynamic facilitation in the framework of the mean-field theory of glasses.
Collapse
Affiliation(s)
| | - Yuliang Jin
- Departments of Chemistry and Dipartimento di Fisica, Sapienza Università di Roma, I-00185 Rome, Italy;
| | - Giorgio Parisi
- Dipartimento di Fisica, Sapienza Università di Roma, I-00185 Rome, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Roma I, Istituto per i Processi Chimico Fisici, Consiglio Nazionale delle Ricerche, I-00185 Rome, Italy; and
| | - Francesco Zamponi
- Laboratoire de Physique Théorique, Ecole Normale Supérieure, UMR 8549 CNRS, 75005 Paris, France
| |
Collapse
|
38
|
Helfferich J. Renewal events in glass-forming liquids. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2014; 37:32. [PMID: 25160488 DOI: 10.1140/epje/i2014-14073-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/16/2014] [Accepted: 07/29/2014] [Indexed: 06/03/2023]
Abstract
On cooling toward the glass transition temperature, glass-forming liquids display long periods of localized motion interrupted by fast "jumps" in the single-particle trajectories. Several theoretical models based on these single-particle jumps have been proposed, most prominently the continuous-time random walk (CTRW). The central assumption of the CTRW is that jumps are renewal events, i.e. that the internal clock of a particle can be reset upon a jump. In this paper, I present an easy-to-implement method to test whether jumps detected in a supercooled liquid or glass are renewal events or not. The test was applied to molecular dynamics simulations of a short-chain polymer melt, demonstrating that the jumps can in fact be treated as renewal events. The test further revealed that additional relaxation processes are present which are not accounted for in the CTRW picture, highlighting the limitations of this approach. The notion of renewal events in glass-forming systems could be a very important building block for the interpretation of aging and the glass transition. Furthermore, it could have practical implications for the study of non-equilibrium dynamics in glasses as well as mechanical rejuvenation.
Collapse
Affiliation(s)
- Julian Helfferich
- Theoretical Polymer Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104, Freiburg, Germany,
| |
Collapse
|
39
|
Guan J, Wang B, Granick S. Even hard-sphere colloidal suspensions display Fickian yet non-Gaussian diffusion. ACS NANO 2014; 8:3331-3336. [PMID: 24646449 DOI: 10.1021/nn405476t] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We scrutinize three decades of probability density displacement distribution in a simple colloidal suspension with hard-sphere interactions. In this index-matched and density-matched solvent, fluorescent tracer nanoparticles diffuse among matrix particles that are eight times larger, at concentrations from dilute to concentrated, over times up to when the tracer diffuses a few times its size. Displacement distributions of tracers, Gaussian in pure solvent, broaden systematically with increasing obstacle density. The onset of non-Gaussian dynamics is seen in even modestly dilute suspensions, which traditionally would be assumed to follow classic Gaussian expectation. The findings underscore, in agreement with recent studies of more esoteric soft matter systems, the prevalence of non-Gaussian yet Fickian diffusion.
Collapse
Affiliation(s)
- Juan Guan
- Departments of Materials Science, ‡Chemistry, and §Physics, University of Illinois , Urbana, Illinois 61801, United States
| | | | | |
Collapse
|
40
|
Helfferich J, Ziebert F, Frey S, Meyer H, Farago J, Blumen A, Baschnagel J. Continuous-time random-walk approach to supercooled liquids. II. Mean-square displacements in polymer melts. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:042604. [PMID: 24827271 DOI: 10.1103/physreve.89.042604] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Indexed: 06/03/2023]
Abstract
The continuous-time random walk (CTRW) describes the single-particle dynamics as a series of jumps separated by random waiting times. This description is applied to analyze trajectories from molecular dynamics (MD) simulations of a supercooled polymer melt. Based on the algorithm presented by Helfferich et al. [Phys. Rev. E 89, 042603 (2014)], we detect jump events of the monomers. As a function of temperature and chain length, we examine key distributions of the CTRW: the jump-length distribution (JLD), the waiting-time distribution (WTD), and the persistence-time distribution (PTD), i.e., the distribution of waiting times for the first jump. For the equilibrium (polymer) liquid under consideration, we verify that the PTD is determined by the WTD. For the mean-square displacement (MSD) of a monomer, the results for the CTRW model are compared with the underlying MD data. The MD data exhibit two regimes of subdiffusive behavior, one for the early α process and another at later times due to chain connectivity. By contrast, the analytical solution of the CTRW yields diffusive behavior for the MSD at all times. Empirically, we can account for the effect of chain connectivity in Monte Carlo simulations of the CTRW. The results of these simulations are then in good agreement with the MD data in the connectivity-dominated regime, but not in the early α regime where they systematically underestimate the MSD from the MD.
Collapse
Affiliation(s)
- J Helfferich
- Physikalisches Institut, Albert-Ludwigs-Universität, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - F Ziebert
- Physikalisches Institut, Albert-Ludwigs-Universität, Hermann-Herder-Str. 3, 79104 Freiburg, Germany and Institut Charles Sadron, Université de Strasbourg, CNRS UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | - S Frey
- Institut Charles Sadron, Université de Strasbourg, CNRS UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | - H Meyer
- Institut Charles Sadron, Université de Strasbourg, CNRS UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | - J Farago
- Institut Charles Sadron, Université de Strasbourg, CNRS UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | - A Blumen
- Physikalisches Institut, Albert-Ludwigs-Universität, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - J Baschnagel
- Institut Charles Sadron, Université de Strasbourg, CNRS UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| |
Collapse
|
41
|
Helfferich J, Ziebert F, Frey S, Meyer H, Farago J, Blumen A, Baschnagel J. Continuous-time random-walk approach to supercooled liquids. I. Different definitions of particle jumps and their consequences. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:042603. [PMID: 24827270 DOI: 10.1103/physreve.89.042603] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Indexed: 06/03/2023]
Abstract
Single-particle trajectories in supercooled liquids display long periods of localization interrupted by "fast moves." This observation suggests a modeling by a continuous-time random walk (CTRW). We perform molecular dynamics simulations of equilibrated short-chain polymer melts near the critical temperature of mode-coupling theory Tc and extract "moves" from the monomer trajectories. We show that not all moves comply with the conditions of a CTRW. Strong forward-backward correlations are found in the supercooled state. A refinement procedure is suggested to exclude these moves from the analysis. We discuss the repercussions of the refinement on the jump-length and waiting-time distributions as well as on characteristic time scales, such as the average waiting time ("exchange time") and the average time for the first move ("persistence time"). The refinement modifies the temperature (T) dependence of these time scales. For instance, the average waiting time changes from an Arrhenius-type to a Vogel-Fulcher-type T dependence. We discuss this observation in the context of the bifurcation of the α process and (Johari) β process found in many glass-forming materials to occur near Tc. Our analysis lays the foundation for a study of the jump-length and waiting-time distributions, their temperature and chain-length dependencies, and the modeling of the monomer dynamics by a CTRW approach in the companion paper [J. Helfferich et al., Phys. Rev. E 89, 042604 (2014)].
Collapse
Affiliation(s)
- J Helfferich
- Physikalisches Institut, Albert-Ludwigs-Universität, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - F Ziebert
- Physikalisches Institut, Albert-Ludwigs-Universität, Hermann-Herder-Str. 3, 79104 Freiburg, Germany and Institut Charles Sadron, Université de Strasbourg, CNRS UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | - S Frey
- Institut Charles Sadron, Université de Strasbourg, CNRS UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | - H Meyer
- Institut Charles Sadron, Université de Strasbourg, CNRS UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | - J Farago
- Institut Charles Sadron, Université de Strasbourg, CNRS UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | - A Blumen
- Physikalisches Institut, Albert-Ludwigs-Universität, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - J Baschnagel
- Institut Charles Sadron, Université de Strasbourg, CNRS UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| |
Collapse
|
42
|
Kim D, Jeong D, Jung Y. Dynamic propensity as an indicator of heterogeneity in room-temperature ionic liquids. Phys Chem Chem Phys 2014; 16:19712-9. [DOI: 10.1039/c4cp01893a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dynamic propensity of an RTIL system exhibits broad and asymmetric distributions, and spatial patterns of the dynamic propensity and mobility distribution are shown.
Collapse
Affiliation(s)
- Daekeon Kim
- Department of Chemistry
- Seoul National University
- Seoul, Korea
| | - Daun Jeong
- Department of Chemistry
- Seoul National University
- Seoul, Korea
| | - YounJoon Jung
- Department of Chemistry
- Seoul National University
- Seoul, Korea
| |
Collapse
|
43
|
Abstract
Analyses of random walks traditionally use the mean square displacement (MSD) as an order parameter characterizing dynamics. We show that the distribution of relative angles of motion between successive time intervals of random walks in two or more dimensions provides information about stochastic processes beyond the MSD. We illustrate the behavior of this measure for common models and apply it to experimental particle tracking data. For a colloidal system, the distribution of relative angles reports sensitively on caging as the density varies. For transport mediated by molecular motors on filament networks in vitro and in vivo, we discover self-similar properties that cannot be described by existing models and discuss possible scenarios that can lead to the elucidated statistical features.
Collapse
|
44
|
Abstract
We provide here a brief perspective on the glass transition field. It is an assessment, written from the point of view of theory, of where the field is and where it seems to be heading. We first give an overview of the main phenomenological characteristics, or "stylised facts," of the glass transition problem, i.e., the central observations that a theory of the physics of glass formation should aim to explain in a unified manner. We describe recent developments, with a particular focus on real space properties, including dynamical heterogeneity and facilitation, the search for underlying spatial or structural correlations, and the relation between the thermal glass transition and athermal jamming. We then discuss briefly how competing theories of the glass transition have adapted and evolved to account for such real space issues. We consider in detail two conceptual and methodological approaches put forward recently, that aim to access the fundamental critical phenomenon underlying the glass transition, be it thermodynamic or dynamic in origin, by means of biasing of ensembles, of configurations in the thermodynamic case, or of trajectories in the dynamic case. We end with a short outlook.
Collapse
Affiliation(s)
- Giulio Biroli
- IPhT, CEA/DSM-CNRS/URA 2306, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France.
| | | |
Collapse
|
45
|
Willard AP, Limmer DT, Madden PA, Chandler D. Characterizing heterogeneous dynamics at hydrated electrode surfaces. J Chem Phys 2013; 138:184702. [DOI: 10.1063/1.4803503] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
46
|
Ahn JW, Falahee B, Del Piccolo C, Vogel M, Bingemann D. Are rare, long waiting times between rearrangement events responsible for the slowdown of the dynamics at the glass transition? J Chem Phys 2013; 138:12A527. [PMID: 23556778 DOI: 10.1063/1.4775740] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ji Won Ahn
- Department of Chemistry, Williams College, Williamstown, Massachusetts 01267, USA
| | | | | | | | | |
Collapse
|
47
|
Kim K, Saito S. Multiple length and time scales of dynamic heterogeneities in model glass-forming liquids: A systematic analysis of multi-point and multi-time correlations. J Chem Phys 2013; 138:12A506. [DOI: 10.1063/1.4769256] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
48
|
Frahsa F, Bhattacharjee AK, Horbach J, Fuchs M, Voigtmann T. On the Bauschinger effect in supercooled melts under shear: Results from mode coupling theory and molecular dynamics simulations. J Chem Phys 2013; 138:12A513. [DOI: 10.1063/1.4770336] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
49
|
Intracellular transport of insulin granules is a subordinated random walk. Proc Natl Acad Sci U S A 2013; 110:4911-6. [PMID: 23479621 DOI: 10.1073/pnas.1221962110] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We quantitatively analyzed particle tracking data on insulin granules expressing fluorescent fusion proteins in MIN6 cells to better understand the motions contributing to intracellular transport and, more generally, the means for characterizing systems far from equilibrium. Care was taken to ensure that the statistics reflected intrinsic features of the individual granules rather than details of the measurement and overall cell state. We find anomalous diffusion. Interpreting such data conventionally requires assuming that a process is either ergodic with particles working against fluctuating obstacles (fractional brownian motion) or nonergodic with a broad distribution of dwell times for traps (continuous-time random walk). However, we find that statistical tests based on these two models give conflicting results. We resolve this issue by introducing a subordinated scheme in which particles in cages with random dwell times undergo correlated motions owing to interactions with a fluctuating environment. We relate this picture to the underlying microtubule structure by imaging in the presence of vinblastine. Our results provide a simple physical picture for how diverse pools of insulin granules and, in turn, biphasic secretion could arise.
Collapse
|
50
|
Sussman DM, Schweizer KS. Space-time correlated two-particle hopping in glassy fluids: structural relaxation, irreversibility, decoupling, and facilitation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:061504. [PMID: 23005101 DOI: 10.1103/physreve.85.061504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Indexed: 06/01/2023]
Abstract
The microscopic nonlinear Langevin equation (NLE) theory of correlated two-particle dynamics in dense fluids of spherical particles is extended to construct a predictive model of multiple correlated hopping and recaging events of a pair of tagged particles as a function of their initial separation. Modest coarse graining over the liquid structural disorder allows contact to be made with various definitions of irreversible particle motion within the context of a multistate Markov model. The correlated space-time hopping process that underlies structural relaxation can also be analyzed in the context of kinetically constrained models. The dependence of microscopically defined mean persistence and exchange times, their distributions, and relaxation-diffusion decoupling on hard-sphere fluid volume fraction is derived from a model in which irreversible jumps serve as the nucleating persistence event. For a subset of questions, the predictions of the two-particle theory are compared with results from the earlier single-particle NLE approach.
Collapse
Affiliation(s)
- Daniel M Sussman
- Department of Physics, University of Illinois, 1304 W. Green Street, Urbana, Illinois 61801, USA
| | | |
Collapse
|