• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4598790)   Today's Articles (9770)   Subscriber (49356)
For: Bizjak A, Urbic T, Vlachy V, Dill KA. Theory for the three-dimensional Mercedes-Benz model of water. J Chem Phys 2010;131:194504. [PMID: 19929057 DOI: 10.1063/1.3259970] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
Number Cited by Other Article(s)
1
Ogrin P, Urbic T. Isothermal-isobaric algorithm to study the effects of rotational degrees of freedom-Benz water model. J Mol Liq 2022;349:118152. [PMID: 37727581 PMCID: PMC10508877 DOI: 10.1016/j.molliq.2021.118152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
2
The effect of rotational degrees of freedom on solvation of nonpolar solute. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116453] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
3
Podjed N, Urbic T. Two-dimensional core-softened model with water like properties: solvation of non-polar solute. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1932876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
4
Thermodynamic perturbation theory for rotational degrees of freedom. Application to the Mercedes–Benz water model. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
5
Ogrin P, Urbic T. Integral equation study of the effects of rotational degrees of freedom on properties of the Mercedes–Benz water model. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114880] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
6
Jin J, Han Y, Pak AJ, Voth GA. A new one-site coarse-grained model for water: Bottom-up many-body projected water (BUMPer). I. General theory and model. J Chem Phys 2021;154:044104. [PMID: 33514116 PMCID: PMC7826168 DOI: 10.1063/5.0026651] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022]  Open
7
Urbic T, Dill KA. Hierarchy of anomalies in the two-dimensional Mercedes-Benz model of water. Phys Rev E 2018;98. [PMID: 32025599 DOI: 10.1103/physreve.98.032116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
8
Urbic T. Modelling water with simple Mercedes-Benz models. MOLECULAR SIMULATION 2018;45:279-294. [PMID: 31156291 PMCID: PMC6542362 DOI: 10.1080/08927022.2018.1502430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/14/2018] [Indexed: 10/28/2022]
9
Dandekar R, Hassanali AA. Hierarchical lattice models of hydrogen-bond networks in water. Phys Rev E 2018;97:062113. [PMID: 30011567 DOI: 10.1103/physreve.97.062113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 06/08/2023]
10
Urbic T. Liquid part of the phase diagram and percolation line for two-dimensional Mercedes-Benz water. Phys Rev E 2018;96:032122. [PMID: 29346988 DOI: 10.1103/physreve.96.032122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Indexed: 11/07/2022]
11
Urbic T, Dill KA. Analytical theory of the hydrophobic effect of solutes in water. Phys Rev E 2018;96:032101. [PMID: 29347026 DOI: 10.1103/physreve.96.032101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Indexed: 11/07/2022]
12
Integral equation and thermodynamic perturbation theory for a two-dimensional model of chain-forming fluid. J Mol Liq 2017;238:129-135. [PMID: 28729752 DOI: 10.1016/j.molliq.2017.04.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
13
Kalyuzhnyi YV, Vlachy V. Explicit-water theory for the salt-specific effects and Hofmeister series in protein solutions. J Chem Phys 2017;144:215101. [PMID: 27276970 DOI: 10.1063/1.4953067] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
14
Urbic T. Liquid-liquid critical point in a simple analytical model of water. Phys Rev E 2016;94:042126. [PMID: 27841542 DOI: 10.1103/physreve.94.042126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Indexed: 11/07/2022]
15
Musiani F, Giorgetti A. Protein Aggregation and Molecular Crowding: Perspectives From Multiscale Simulations. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016;329:49-77. [PMID: 28109331 DOI: 10.1016/bs.ircmb.2016.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
16
Djikaev Y, Ruckenstein E. Recent developments in the theoretical, simulational, and experimental studies of the role of water hydrogen bonding in hydrophobic phenomena. Adv Colloid Interface Sci 2016;235:23-45. [PMID: 27312562 DOI: 10.1016/j.cis.2016.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/27/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022]
17
Zemánková K, Troncoso J, Cerdeiriña CA, Romaní L, Anisimov MA. Hydrophobicity and thermodynamic response for aqueous solutions of amphiphiles. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
18
Kastelic M, Kalyuzhnyi YV, Hribar-Lee B, Dill KA, Vlachy V. Protein aggregation in salt solutions. Proc Natl Acad Sci U S A 2015;112:6766-70. [PMID: 25964322 PMCID: PMC4450416 DOI: 10.1073/pnas.1507303112] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
19
Jirsák J, Škvor J. A molecular-based approach to the thermodynamics of aqueous solutions: binary mixture of water and carbon dioxide. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015;27:194114. [PMID: 25923412 DOI: 10.1088/0953-8984/27/19/194114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
20
Huš M, Urbic T. Existence of a liquid-liquid phase transition in methanol. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014;90:062306. [PMID: 25615092 DOI: 10.1103/physreve.90.062306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Indexed: 06/04/2023]
21
Huš M, Urbic T. Thermodynamics and the hydrophobic effect in a core-softened model and comparison with experiments. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014;90:022115. [PMID: 25215697 DOI: 10.1103/physreve.90.022115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Indexed: 06/03/2023]
22
Huš M, Urbic T. The hydrophobic effect in a simple isotropic water-like model: Monte Carlo study. J Chem Phys 2014;140:144904. [PMID: 24735315 DOI: 10.1063/1.4870514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
23
Lazaridis T, Versace R. The Treatment of Solvent in Multiscale Biophysical Modeling. Isr J Chem 2014. [DOI: 10.1002/ijch.201400006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
24
Graziano G. Comment on "The application of the thermodynamic perturbation theory to study the hydrophobic hydration" [J. Chem. Phys. 139, 024101 (2013)]. J Chem Phys 2013;139:127101. [PMID: 24089808 DOI: 10.1063/1.4822006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
25
Huš M, Urbic T. Core-softened fluids as a model for water and the hydrophobic effect. J Chem Phys 2013;139:114504. [PMID: 24070294 DOI: 10.1063/1.4821226] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
26
Mohoric T, Urbic T, Hribar-Lee B. The application of the thermodynamic perturbation theory to study the hydrophobic hydration. J Chem Phys 2013;139:024101. [PMID: 23862923 DOI: 10.1063/1.4812744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
27
Cartwright JHE, Piro O, Sánchez PA, Sintes T. Ice polyamorphism in the minimal Mercedes-Benz model of water. J Chem Phys 2012;137:244503. [PMID: 23277941 DOI: 10.1063/1.4772202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
28
Hadley KR, McCabe C. Coarse-Grained Molecular Models of Water: A Review. MOLECULAR SIMULATION 2012;38:671-681. [PMID: 22904601 PMCID: PMC3420348 DOI: 10.1080/08927022.2012.671942] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
29
Darré L, Machado MR, Pantano S. Coarse-grained models of water. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2012. [DOI: 10.1002/wcms.1097] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
30
Urbic T. Analytical model for three-dimensional Mercedes-Benz water molecules. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012;85:061503. [PMID: 23005100 PMCID: PMC3808123 DOI: 10.1103/physreve.85.061503] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/13/2012] [Indexed: 05/19/2023]
31
Lukšič M, Urbic T, Hribar-Lee B, Dill KA. Simple model of hydrophobic hydration. J Phys Chem B 2012;116:6177-86. [PMID: 22564051 DOI: 10.1021/jp300743a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
32
Sillrén P, Bielecki J, Mattsson J, Börjesson L, Matic A. A statistical model of hydrogen bond networks in liquid alcohols. J Chem Phys 2012;136:094514. [DOI: 10.1063/1.3690137] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]  Open
33
Nezbeda I, Jirsák J. Water and aqueous solutions: simple non-speculative model approach. Phys Chem Chem Phys 2011;13:19689-703. [PMID: 21952227 DOI: 10.1039/c1cp21903k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
34
Djikaev Y, Ruckenstein E. The variation of the number of hydrogen bonds per water molecule in the vicinity of a hydrophobic surface and its effect on hydrophobic interactions. Curr Opin Colloid Interface Sci 2011. [DOI: 10.1016/j.cocis.2010.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
35
Dias CL, Hynninen T, Ala-Nissila T, Foster AS, Karttunen M. Hydrophobicity within the three-dimensional Mercedes-Benz model: Potential of mean force. J Chem Phys 2011;134:065106. [DOI: 10.1063/1.3537734] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
36
Djikaev YS, Ruckenstein E. Dependence of the number of hydrogen bonds per water molecule on its distance to a hydrophobic surface and a thereupon-based model for hydrophobic attraction. J Chem Phys 2010;133:194105. [DOI: 10.1063/1.3499318] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
37
Urbic T, Dill KA. A statistical mechanical theory for a two-dimensional model of water. J Chem Phys 2010;132:224507. [PMID: 20550408 DOI: 10.1063/1.3454193] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA